Harmonic Conjugates

Let a, b, c, d be points on a straight line. The point d is the harmonic conjugate of c with respect to a, b if the cross ratio equals -1 , that is

$$
\frac{a-c}{a-d} \frac{b-d}{b-c}=-1
$$

By inverting each side of the equation, it is clear that c is then also a harmonic conjugate of d with respect to a, b. And, at the same time, a, b are harmonic conjugates with respect to c, d.

Harmonic conjugates shows how to geometrically construct harmonic conjugates.

Fix A, B, C as above. Choose D. Choose E on the line $C D$. Let F be on $A D$ and $B E$ and let G be on $B D$ and $A E$. The point H which is on $F G$ and $A B$ is the harmonic conjugate of C.

In case C is not between B and C, as above, we proceed as follows. Choose D. Choose E on $B D$. Let F be on $C E$ and $A D$ and let G be on $B F$ and $A E$. The point H which is on $D G$ and $A B$ is the harmonic conjugate of C .

Harmonic conjugates shows that the point H does not depend on the choice of D , nor on the choice of E.

