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Abstract
We apply Kahan’s discretisation method to three classes of 2D quadratic 
vector fields with quadratic, resp. cubic, resp. quartic Hamiltonians. We show 
that the maps obtained in this way can be geometrically understood as the 
composition of two involutions, one of which is a (linear) symmetry switch, 
and the other is a generalised Manin involution. Applications to 2D Suslov 
and reduced Nahm equations are included.
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1. Introduction

Kahan’s method for discretizing quadratic differential equations was introduced in [9]. It was 
rediscovered in the context of integrable systems by Hirota and Kimura [11]. Suris and col-
laborators extended the applications to integrable systems significantly in a series of papers [8, 
15–19]. Applications to both integrable as well as non-integrable Hamiltonian systems and the 
use of polarisation to discretise arbitrary degree Hamiltonian systems were studied in [2–4]. 
For homogeneous quadratic vector fields,

dxi

dt
=

∑
j,k

aijkxjxk.
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Kahan’s method gives the following discretisation

x′i − xi

h
=

∑
j,k

aijk(x′jxk + xjx′k)/2.

Two classes of 2-dimensional ODE systems of quadratic vector fields where the Kahan discre-
tisation is integrable were presented in [1]. The latter systems are of the form

dx
dt

= ϕ(x)J∇H(x), (1)

where

x :=
(

x
y

)
, J :=

(
0 1
−1 0

)
,

and ϕ(x) and H(x) are scalar functions of the components of x. In the present paper we 
show that for one of these classes, and for two other classes, the Kahan discretisation can 
be geometrically understood as the composition of two involutions, one of which is a sym-
metry switch and the other is a generalised Manin involution, both introduced in [10]. This 
implies that in each case the Kahan map is the root of a generalised Manin transformation, and 
hence that there is a (fractional affine) transformation which brings the map into symmetric 
Quispel–Roberts–Thompson (QRT) form [13, 14]. We briefly review all these concepts in the 
next section.

The three classes we consider are quite general. We include some illustrative applications 
to systems from the physics literature: a two-dimensional sub-system of the three-dimensional 
non-holonomic Suslov problem which describes the motion of a rigid body under the con-
straint that a certain component of the angular velocity vector vanishes [20],

d
dt

(
x
y

)
=

1
2

xJ∇(x2 + αy2) =

(
αxy
−x2

)
; (2)

the reduced Nahm equations  [7] corresponding to tetrahedrally symmetric monopoles of 
charge 3,

d
dt

(
x
y

)
= J∇y(x2 − 1

3
y2) =

(
x2 − y2

−2xy

)
; (3)

and the reduced Nahm equations for octahedrally symmetric monopoles of charge 4,

d
dt

(
x
y

)
=

1
x − y

J∇y(2x + 3y)(x − y)2 =

(
2x2 − 12y2

−6xy − 4y2

)
. (4)

Their Kahan (or Hirota–Kimura) discretisations, together with an invariant two-form and an 
integral of motion, were given in [18]. In this paper we show that the Kahan discretisations of 
(2)–(4) are each equivalent to a symmetric QRT map, (x, y) → (y, y′) with

y′ =
y2 + α(2h)2

x
, y′ =

(x + y)y − (6h)2

3x − y
, y′ =

xy − 2(2h)2

2x − y

respectively.
This paper provides a geometric understanding of the Kahan discretisation of three distinct 

classes of ODEs, in particular it shows they possess the same geometric structure.
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2. Preliminaries on QRT maps and generalised Manin transformations

2.1. QRT map

Let P(x) = αFa(x) + βFb(x) = 0 be a pencil of biquadratic curves. The horizontal switch 
ι1 switches the two points on the curve P(x) = 0 with the same y-coordinate and the verti-
cal switch ι2 switches the two points on the curve P(x) = 0 with the same x-coordinate, see 
figure 1 in the preface of [5]. The QRT-map is the composition of the two involutions given by 
ι2 ◦ ι1. In [5, 21] it is shown that every smooth member of the pencil P  is an elliptic curve, on 
which the QRT map acts as a translation.

2.2. Symmetric QRT map

When P  is symmetric, i.e. invariant under the (standard) symmetry switch σ̄ : (x, y) → (y, x), 
the map ρ = σ̄ ◦ ι1 = ι2 ◦ σ̄ is the square root of τ . It is called the QRT root of the symmetric 
QRT map in [5], but commonly known as the symmetric QRT map. A rational formula for the 
(12-parameter) symmetric QRT-map is (x, y) → (y, y′) where

y′ =
f1(y)− xf2(y)
f2(y)− xf3(y)

with f = Av × Bv, where vT = (x2, x, 1), and A and B are symmetric 3 × 3 matrices.

2.3. Manin transformation

Let p be a base point of a pencil of cubic curves αFa(x) + βFb(x) = 0, i.e. we have 
Fa(p) = Fb(p) = 0. A Manin involution, ιp, maps a point r to the point s = ιp(r) uniquely 
given by the third intersection of the line pr and the curve of the pencil that contains r [5, 
12]. We call ιp a p-switch, and the point p its involution point. A Manin transformation is the 
composition of two Manin involutions, see e.g. example 6 in [10].

2.4. Generalised Manin transformation

A generalised Manin involution [10] preserves a pencil of degree N , where N  is not necessar-
ily 3. When N = 2 the involution point p can be chosen arbitrarily, for N > 3 the degree N  
pencil should have a base point which is a singular point of multiplicity N − 2. It was shown 
in [10] that it suffices to consider pencils of degree N < 5 and that a generalised Manin trans-
formation can be written in QRT-form by a projective collineation.

2.5. Root of a generalised Manin transformation

A transformation σ is called a symmetry switch of the pencil P = 0 if σ is a symmetry of P  
and it is an involution. The following result was proven in [10]. Let σ be a symmetry switch of 
a pencil P = 0 which maps lines to lines (so it is a projective collineation). Then

τp = ισ(p) ◦ ιp = ρ2
p, with ρp = σ ◦ ιp = ισ(p) ◦ σ.

The map ρp is called the root of τp.
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3. Concomitants of linear and quadratic forms

We define linear and quadratic forms

L = L(x) := ax + by, Q = Q(x) := cx2 + 2dxy + ey2.

The three classes of quadratic vector fields we consider are of the form (1) with ϕ(x) = L2−i 
and H(x) = Li−1Q and i = 1, 2, 3. All relevant quantities, e.g. modified Hamiltonian for the 
Kahan map and involution point for the Manin involutions will be given in terms of the con-
comitants (i.e. invariants, covariants, symmetry) defined here, see [6, page 252].

Let η be an element of SL(2) acting on x. This induces an action of SL(2) on the coefficients 
a, b, c, d, e which we denote by η′. The discriminant of Q,

D := ce − d2

and the eliminant (resultant of L and Q),

E := 2abd − a2e − b2c,

are invariants, and (half of) the Jacobian determinant ∂(L, Q)/∂(x, y),

G = G(x) := (ad − bc)x + (ae − bd)y,

(which is the harmonic conjugate of L with respect to Q) is covariant, i.e.

η′(D) = D, η′(E) = E, η′(G) = η(G).

In terms of

v := (b,−a), w := (ad − bc, ae − bd)

we have G = x · w and E = G(v).
A particular linear symmetry switch, introduced in [10], is relevant here. We define

σa,b,c,d,e : x → x − 2G(x)
E

v. (5)

A special case of σ is σa,a,c,d,c(x) = (y, x) and the matrices of σa,a,c,d,c and σa,b,c,d,e are con-
jugate. In the sequel we will omit the index a,b,c,d,e. Geometrically, the linear transformation 
σ given by (5) is a reflection in the line through (0, 0) perpendicular to w  along a line with 
direction v, i.e. we have

σ(v) = −v, σ(Jw) = Jw.

Importantly, σ (5) leaves the forms L and Q invariant (and it also negates the linear form G), 
that is

L(σ(x)) = L(x), Q(σ(x)) = Q(x), G(σ(x)) = −G(x).

4. A quadratic Hamiltonian

Consider the 2-dimensional ODE (1) where ϕ(x) = L , and the homogeneous Hamiltonian has 
the form H = H(x) = Q. The Kahan map for this system is explicitly given by

κ1(x) =
x − h(Gx − LJ∇H)

1 − hG + 2h2DL2 . (6)
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It preserves the modified Hamiltonian H̃(x) = Q/T  with T = T(x) = 1 + h2DL2, see [3, 
equation (18)], and it is measure preserving with density

1
LQ

, (7)

see [3, equation (17)].

Theorem 1. The map (6) can be written as a composition κ1 = σ ◦ ιb, where σ is given by 
(5) and

ιb(x) = x +

(
1 +

1 + hG
1 + hG − 2T

)
(b − x)

where

b =
v

hE
. (8)

The projective collineation

π : (x, y) → (u, v) =
(

1 + hG
L

,
1 − hG

L

)
 (9)

brings the map κ1 into QRT form

κ1 = σ ◦ ι1 : (u, v) →
(

v,
v2 + k

u

)
, (10)

where σ(u, v) = (v, u) and k = 4h2D. The modified Hamiltonian transforms into the integral 
of (10),

Q/T =
(u − v)2 + k
(u + v)2 + k

,

Proof. This is verified by direct calculation. The map ιb is the generalised Manin involution 
with involution point b, see [10, equation (2)] with N = 2 and Fa = Q and Fb = T . The point 
b is the intersection point of the lines L = 0 and 1 − hG = 0, and we have σ(b) = −b. The 
projective collineation π brings the point b to the point at infinity (∞, 0). Hence the b-switch 
is transformed into the horizontal switch

ιb = π ◦ ιb ◦ π−1 = ι1 : (u, v) →
(

v2 + k
u

, v
)

.

Moreover, the symmetry switch σ is transformed into the standard symmetry switch 
σ : (u, v) → (v, u), and thus π brings the map κ1 into symmetric QRT form. □ 

4.1. Example, 2D Suslov system

We take a = 1
2, b = d = 0, c = 1, and e = α. Then L = 1

2 x  and Q = x2 + αy2,

H̃ =
Q
T

=
x2 + αy2

1 + α
( hx

2

)2 ,

P H van der Kamp et alJ. Phys. A: Math. Theor. 52 (2019) 045204



6

and

κ1(x) =
(

x(2 + αhy)
2 + αh(hx2 − y)

,
2y − h(2x2 + αy2)

2 + αh(hx2 − y)

)
.

The symmetry switch is σ(x) = (x,−y). Taking α = −1 the curves Q = 0 and T = 0 intersect 
in four points, namely (± 2

h ,± 2
h ). The involution point is b = (0,− 2

h ), which is not one of the 
base points. We choose h = 2 and have drawn three level sets of the modified Hamiltonian in 
figure 1. We have also plotted the points (

√
2, 2), (

√
2, 0) and (2, 2), together with their images 

under the Manin involution

ιb(x) = σ ◦ κ1(x) =
(

x(y − 1)
2x2 − y − 1

,−2x2 − y(y + 1)
2x2 − y − 1

)
.

Note that the point (
√

2, 2) is a fixed point of ιb.

5. A cubic Hamiltonian

Next we consider the 2-dimensional ODE (1) where ϕ(x) = 1, and the homogeneous 
Hamiltonian has the form H = H(x) = LQ. The Kahan map for this system,

κ2(x) =
x + hJ∇H

R
, R = R(x) = 1 + h2(3DL2 − G2), (11)

is measure preserving with density (7), and it preserves the modified Hamiltonian H̃ = H/R 
[3, equation (4)].

Theorem 2. The map (11) can be written as a composition κ2 = σ ◦ ιb, where σ is given by 
(5) and ιb is the Manin transformation

ιb = x +

(
1 − 1 + 2hG

R

)
(b − x)

Figure 1. The curves H̃ = 2, H̃ = −2, H̃ = 0, in resp. green, red and blue. Here h = 2 
and α = −1.

P H van der Kamp et alJ. Phys. A: Math. Theor. 52 (2019) 045204
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where b is given by (8). The projective collineation π given by (9) brings the map (11) in QRT 
form,

κ2 : (u, v) →
(

v,
(u + v)v + 3k

3u − v

)
,

where k = 4h2D. The QRT-invariant is

H/R =
(u − v)2 + k

(u + v)(2uv + 3
2 k)

.

Proof. The expression for ιb can be obtained from [10, equation (2)], taking N = 3 and 
Fa = LQ and Fb = R. Note that here the involution point b is a base point, of the pencil 
αH + βR = 0, as it is the intersection of the lines L = 0 and hG = 1. □ 

5.1. Example, tetrahedrally symmetric Nahm equations

We take a = 0, b = 1
3, c = 3, d = 0, and e = −1. Then H = y(x2 − 1

3 y2),

H̃ =
H
R

=
y(x2 − 1

3 y2)

1 − h2(x2 + y2)
,

and

κ2(x) =
(

x + h2(x2 − y2)

1 − h2(x2 + y2)
,

y(1 − 2hx)
1 + h2(x2 + y2))

)
.

The symmetry switch is σ(x) = (−x, y). The involution point is b = (−1/h, 0). Choosing 
h = 1 the curves H = 0 and R = 0 intersect in six points on the unit circle (±1, 0) and 
1
2 (±1,±

√
3). We have drawn three level sets of the modified Hamiltonian in figure 2, where 

we have also indicated the images of (
√

3
6 ,− 1

2 +
√

3), ( 1
2 ,− 3

10 ) and (1, 3
2 −

√
21
2 ) under the 

Manin involution ιb = σ ◦ κ2. Note that the image of the point ( 1
2 ,− 3

10 ) is b.

6. A quartic Hamiltonian

Consider the 2-dimensional ODE (1) where ϕ(x) = 1
L, and the homogeneous Hamiltonian has 

the form H(x) = L2Q. Then the Kahan map for this system,

κ3(x) =
x + h(Gx + L−1J∇H)

(1 − hG)(1 + 2hG) + 4h2DL2 (12)

preserves the modified Hamiltonian H̃(x) = H
S  with  S = S(x) = (1 − h2G2)(1 + h2(8DL2−

G2)) and it is measure preserving with density (7), see [1, section 2].

Theorem 3. The map (12) can be written as a composition κ3 = σ ◦ ιb, where σ is given by 
(5) and ιb is the Manin involution, with involution point b given by (8),

ιb = x +

(
1 − 1 + 3hG

(1 − hG)(1 + 2hG) + 4h2DL2

)
(b − x).

P H van der Kamp et alJ. Phys. A: Math. Theor. 52 (2019) 045204
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The projective collineation π given by (9) brings the map (12) in QRT form,

κ3 : (u, v) →
(

v,
uv + 2k
2u − v

)
,

where k = 4h2D. The QRT-invariant is

H/S =
(u − v)2 + k
4uv(uv + 2k)

.

Proof. By direct calculation. The expression for ιb agrees with [10, equation (2)] taking 
N = 4 and Fa = L2Q and Fb = S. The involution point b is a double base point, as b is also 
on the curve h2EQ = 1. □ 

6.1. Example, octahedrally symmetric Nahm equations

Taking a = −b = d = 1, c = 0 and e = 3 yields H = (x − y)2(2xy + 3y2),

H̃ =
H
S

=
(x − y)2(2xy + 3y2)

(1 − h2(x + 4y)2)(1 − h2(8(x − y)2 + (x + 4y)2))
,

and

κ3(x) =
(

x + h(3x3 + 4xy − 12y2)

1 + h(x + 4y)− 2h2(3x2 + 4xy + 18y2)
,

y(1 − 5hx)
1 + h(x + 4y)− 2h2(3x2 + 4xy + 18y2)

)
.

The symmetry switch is σ(x) = 1
5 (3x − 8y,−2x − 3y), and b = 1

5h (1, 1). Taking h = 1
5, the 

curves H = 0 and S = 0 intersect in ten real points,

± (5, 0) , ±
(

5
3

, 0
)

, ± (1, 1) , ± (3,−2) , ±
(

1,−2
3

)
.

Figure 2. The curves H̃ =
√

3
2 , H̃ = − 1

10, H̃ = 1, in resp. green, red and blue. Here 
h = 1.

P H van der Kamp et alJ. Phys. A: Math. Theor. 52 (2019) 045204
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We have drawn three level sets of the modified Hamiltonian in figure 3, as well as the points 
(−1, 192

103 ), (−3,− 4
3 ), (1,− 256

179 ) and their images under the Manin involution ιb = σ ◦ κ3.

7. Summary

We have shown that the Kahan discretisation of the ODE (1) with ϕ(x) = L2−i and 
H(x) = Li−1Q for each i = 1, 2, 3 takes the form κ = σ ◦ ιb where ιb is the b-switch with 
involution point b = v/(hE), and σ is both a linear map and a symmetry of the preserved pen-
cil which has degree i + 1. Therefore, in each case the Kahan map is the root of the generalised 
Manin transformation τb = ισ(b) ◦ ιb. According to [10] a generalised Manin involution ιp 
which preserves a pencil αFa(x) + βFb(x) = 0 of degree 2 � N � 4 is measure preserving 
with density LN−3/Fa, where L is any line through p. This implies, as we have Fa = H , that 
the density of the measure preserved by the Kahan map is the same for each i, namely 1/(LQ). 
For each Kahan map we have provided its symmetric QRT form.

Acknowledgment

This work was supported by the Australian Research Council, by the Research Council of 
Norway, by the Marsden Fund of the Royal Society of New Zealand, and by the European 
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 691070.

ORCID iDs

Peter H van der Kamp  https://orcid.org/0000-0002-2963-3528
Elena Celledoni  https://orcid.org/0000-0002-2863-2603
Robert I McLachlan  https://orcid.org/0000-0003-0392-4957
David I McLaren  https://orcid.org/0000-0003-2559-5066
Brynjulf Owren  https://orcid.org/0000-0002-6662-9704
G R W Quispel  https://orcid.org/0000-0002-6433-1576

Figure 3. The curves H̃ = 25, H̃ = 125
16 , H̃ = −100, in resp. green, red and blue. Here 

h = 1
5.

P H van der Kamp et alJ. Phys. A: Math. Theor. 52 (2019) 045204



10

References

	 [1]	 Celledoni  E, McLachlan  R  I, McLaren  D  I, Owren  B and Quispel  G  R  W 2017 Two classes 
of quadratic vector fields for which the Kahan discretization is integrable MI Lecture Notes  
74 60–2

	 [2]	 Celledoni E, McLachlan R I, Owren B and Quispel G R W 2013 Geometric properties of Kahan’s 
method J. Phys. A: Math. Theor. 46 025001

	 [3]	 Celledoni  E, McLachlan  R  I, McLaren  D  I, Owren  B and Quispel  G  R  W 2014 Integrability 
properties of Kahan’s method J. Phys. A: Math. Theor. 47 365202

	 [4]	 Celledoni E, McLachlan R I, McLaren D I, Owren B and Quispel G R W 2015 Discretization of 
polynomial vector fields by polarisation Proc. R. Soc. A 471 20150390

	 [5]	 Duistermaat J J 2010 QRT Maps and Elliptic Surfaces (Berlin: Springer)
	 [6]	 Elliott E 1895 An Introduction to the Algebra of Quantics (Oxford: Oxford University Press)
	 [7]	 Hitchin N J, Manton N S and Murray M K 1995 Symmetric monopoles Nonlinearity 8 661–92
	 [8]	 Hone  A and Petrera  M 2009 Three-dimensional discrete systems of Hirota–Kimura type and 

deformed Lie–Poisson algebras J. Geom. Mech. 1 55–85
	 [9]	 Kahan W 1993 Unconventional numerical methods for trajectory calculations (unpublished lecture 

notes)
	[10]	 van der Kamp P H, McLaren D I and Quispel G R W 2018 Generalised Manin transformations and 

QRT maps (arXiv:1806.05340 [nlin.SI])
	[11]	 Kimura K and Hirota R 2000 Discretization of the Lagrange top J. Phys. Soc. Japan 69 3193–9
	[12]	 Manin  Y  I 1964 The Tate height of points on an Abelian variety; its variants and applications  

Izv. Akad. Nauk SSSR Ser. Mat. 28 1363–90
  Manin  Y  I 1966 The Tate height of points on an Abelian variety; its variants and applications  

AMS Transl. Ser. 2 59 82–110 (engl. transl.)
	[13]	 Quispel G R W, Roberts J A G and Thompson C J 1988 Integrable mappings and soliton equations 

Phys. Lett. A 126 419–21
	[14]	 Quispel G R W, Roberts J A G and Thompson C J 1989 Integrable mappings and soliton equations II 

Phys. D: Nonlinear Phenom. 34 183–92
	[15]	 Petrera M and Suris Y B 2010 On the Hamiltonian structure of Hirota–Kimura discretization of the 

Euler top Math. Nachr. 283 1654–63
	[16]	 Petrera  M and Suris  Y  B 2012 SV Kovalevskaya system, its generalization and discretization 

Frontiers Math. China 8 1047–65
	[17]	 Petrera M and Suris Y B 2014 Spherical geometry and integrable systems Geometriae Dedicata 

169 83–98
	[18]	 Petrera M, Pfadler A and Suris Y B 2011 On integrability of Hirota–Kimura type discretizations 

Regular Chaotic Dyn. 16 245–89
	[19]	 Petrera M and Zander R 2017 New classes of quadratic vector fields admitting integral-preserving 

Kahan–Hirota–Kimura discretizations J. Phys. A: Math. Theor. 50 205203
	[20]	 Suslov G 1946 Theoretical Mechanics (Moscow-Leningrad: Gostekhizdat)
	[21]	 Tsuda T 2004 Integrable mappings via rational elliptic surfaces J. Phys. A: Math. Gen. 37 2721–30

P H van der Kamp et alJ. Phys. A: Math. Theor. 52 (2019) 045204


