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Abstract

We show, in full generality, that the staircase method (Papageorgiou et al
1990 Phys. Lett. A 147 106-14, Quispel et al 1991 Physica A 173 243-66)
provides integrals for mappings, and correspondences, obtained as traveling
wave reductions of (systems of) integrable partial difference equations. We
apply the staircase method to a variety of equations, including the Korteweg—
De Vries equation, the five-point Bruschi—-Calogero—Droghei equation, the
quotient-difference (QD)-algorithm and the Boussinesq system. We show
that, in all these cases, if the staircase method provides r integrals for an n-
dimensional mapping, with 2r < n, then one can introduce g < 2r variables,
which reduce the dimension of the mapping from n to q. These dimension-
reducing variables are obtained as joint invariants of k-symmetries of the
mappings. Our results support the idea that often the staircase method provides
sufficiently many integrals for the periodic reductions of integrable lattice
equations to be completely integrable. We also study reductions on other
quad-graphs than the regular Z? lattice, and we prove linear growth of the
multi-valuedness of iterates of high-dimensional correspondences obtained as
reductions of the QD-algorithm.

PACS numbers: 02.30.1k, 05.50.1k, 02.60.Dc, 05.45.Ra, 45.90.+t, 89.75.Fb

1. Introduction

The field of integrable partial difference equations emerged in the late 1970s, early 1980s [1,
11,17,23,30]. Animportant, and well-studied, class of partial difference equations is the class
of (scalar) equations that are defined on the elementary squares of a lattice. An example of an
integrable equation in this class is the lattice potential Korteweg—de Vries (pKdV) equation

(ul,m - Ml+l,m+1)(ul+1,m - ul,m+1) =, (l)
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in which the linear terms are transformed away. Such equations are part of a multi-dimensional
family of mutually consistent partial difference equations [20, 24]. A classification with respect
to multi-dimensional consistency has been achieved recently [2, 3].

For lattice equations on the square, an initial value problem can be posed on a so-called
staircase: a connected path which is nondecreasing, or nonincreasing. In [27] initial values are
given at lattice points #;; and ;.1 ; which satisfy the periodicity u; ,, = U;1p m+p. By doing so,
the partial difference equation (PAE) reduces to a multi-dimensional mapping. The authors
of [27] used the linear spectral problem (Lax pair) of the lattice pKdV equation to derive
a set of polynomial invariants for this mapping. They constructed a so-called monodromy
matrix, which is an ordered product of Lax matrices along the staircase over a one-period
distance. This method, nowadays known as the staircase method, is an important tool in
proving complete integrability in the sense of Liouville—~Arnold. Here, a 2n-dimensional
mapping is said to be completely integrable if it admits n functionally independent integrals
in involution with respect to a symplectic form [7, 42]. Thus, the number of integrals should
be at least equal to half the dimension of the mapping.

In [10, 21] the authors established the involutivity of the integrals for the mappings
they introduced in [27]. Similar results have been obtained for mappings derived from the
lattice Gel’fand—Dikii hierarchy [22] and for reductions of the time-discrete versions of the
Bogoyavlensky equations [26]. In [29] more general staircases were given, corresponding to
the s-periodicity condition':

Ulm = Ul+s) m+sy s 2)

where 51, —s; € N* are relatively prime integers. The authors also suggested considering
general 51, —s, € N*, see the third concluding remark in that paper. In recent work [33, 38] we
have provided a unified picture for s-periodic reductions, with nonzeros = (s1, s2) € ZxZ. In
[33] it was shown how, under the periodicity condition (2), any lattice equation f (u; ,,...) =0
reduces to a system of r ordinary difference equations f(v,’f, .. ) =0,p=0,....,r — 1,
where r is the greatest common divisor of s; and s,. Also it was proved that the monodromy
matrix, denoted L, is one of the Lax matrices for the reduction; that is, there exists a matrix
M such that for (periodic) solutions of the system the following holds:

LyMy = MLy 3)

In [38] a geometric description of s-reduction has been given. It was shown that for all
s there exists a well-posed, or nearly well-posed, s-periodic initial value problem, for any
given scalar lattice equation on some arbitrary stencil of lattice points. We expect something
similar to hold for systems of lattice equations, cf [34]. Combining the two results, given the
existence of a (nontrivial) periodic solution, after multiplying equation (3) by M !, we may
conclude that the trace of £ is an invariant of the mapping n + n + 1. In section 2 we provide
a direct proof, in the spirit of the original work [29], that the staircase method applies to any
given system of lattice equations, if a Lax pair and a (nearly) well-posed periodic initial value
problem are known.

Note, for equations on a square the monodromy matrix is defined on the staircase, and the
initial conditions are given at all points of the same staircase. However, for equations on other
stencils, and for systems of equations, the monodromy matrix is still given on the staircase,
but the initial conditions no longer correspond to the points on the staircase.

The trace of the monodromy matrix £ depends on a spectral parameter, arising from the
Lax representation of the PAE. By expanding in this parameter we obtain a number of integrals.
Inrelation to establishing the complete integrability of a mapping (or correspondence) obtained

1 Our notation differs from the one used in [29], where s; = z, and s, = —z;.
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by periodic reduction a first question to ask is: Does the staircase method yield sufficiently
many functionally independent integrals?

For the reductions we perform in section 3.1.1, of the Bruschi—-Calogero—Droghei (BCD)
equation [6]

Wi — 1)Uy — W1 m—1) = W — U 1) U — Wietme),

the number of integrals is exactly half the dimension of the mapping. For the one-parameter
families of reductions we perform in section 3.1.2, of the quotient-difference (QD)-system
[25]

Cl.m+l Y qi+l,m+1 = Gi+1,m + €l+1,m>» €l.m+191,m+1 = qi+1,m€l,m,

we have verified that the number of integrals is one more than half the dimension of the
mapping. In other cases, there are fewer integrals than half the dimension of the mapping
obtained by periodic reduction. For example, performing periodic reductions of the lattice
pKdV equation (1) we find (2n+1)-dimensional mappings and (2r+2)-dimensional mappings,
for which the staircase method provides only »n integrals, see section 4.2.1. It turns out that
when the dimension of the mapping is 2n + 1 it can be dimensionally reduced by 1, whereas
when the dimension is 2n + 2 it can be reduced by 3. All » integrals survive the dimensional
reduction and we can conclude that the dimensionally reduced mappings posses sufficiently
many integrals for complete integrability.

To distinguish the two kinds of reductions we say s-reduction for a periodic reduction
of a lattice equation with period s € Z x Z to a multi-dimensional mapping, and we say
d-reduction for a reduction of order which reduces the dimension of a mapping by d € N.

In section 4.3 we show how to pose s-periodic initial value problems for the Boussinesq
system [22, 35]

Wikl,m t Vim = Wi mUi+1,m;

Wi m+1 + Vi = Wl Ul m+1s
14

Wim + Vil mel = U mUielmel + .
Ul+l,m — Ul m+1

Performing s-reduction with s = (n — 1, 1) we get a 2n-dimensional mapping. For these
mappings we verified, for all n < 17, that the staircase method provides n — 1 integrals unless
3 divides n in which case it provides only n — 3 functionally independent integrals. We show,
for all n, that the mapping can be 6-reduced if 3 divides n, and that the mapping can be
2-reduced otherwise.

These examples suggest that if the staircase method provides r integrals for an n-
dimensional mapping, with 2r < n, then the mapping can be d-reduced, with d > n — 2r.
However, we do not claim that the above statement is true in general; in examples given in [34]
the staircase method gives integrals of the form JJ’ where J is a 2-integral, and it does not
produce the integral J + J'. Recall, a function J is a k-integral, or k-symmetry, of a mapping if
itis an integral, or symmetry, of the kth power of that mapping [13]. If one has one k-integral,
then one can construct k of them, or, even better, k integrals. For example, it is easy to see that
J" = J implies that both JJ" and J + J' are integrals. In all cases considered in this paper,
the d-reduction is performed by introducing n—d new variables, which can be obtained as the
joint invariants of symmetries, or k-symmetries, of the mapping, which in turn are obtained
from point-symmetries of the partial difference equation. This will be explained in section 4.

Recently, in [4], a geometric criterion was given for the well-posedness of initial value
problems on quad-graphs. In section 5 we will show that for ‘regular’ quad-graphs, those

3
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that permit periodic solutions, the staircase method can be applied. We study reductions of
equations H 35— from [2], which on a 7Z2-lattice would look like

PUL i1 + UL a1 U1 1) = G U et + Uil U1, me1)-

We will consider two different quad-graphs, namely figures 9(d) and (e) in [4]. These quad-
graphs carry more lattice parameters than the standard Z? lattice, and these parameters do all
appear in the reduced mapping. In the second case the lattice parameters are interchanged by
the shift on the quad-graph, and we find the reduction to be an alternating mapping, cf [28].

For certain s-reductions the periodic solutions are given by multi-valued mappings, or
correspondences, see [38]. The staircase method applies equally well in such cases; see section
4.3.1, where we perform (3,0)-reduction for the pKdV equation, and section 3.2.1, where we
(n,0)-reduce the QD-system. Here, another question arises: What is the multi-valuedness of
the iterates of the correspondence?

In general, the number of image points of the nth iterate of an m-valued correspondence
would be m”". However, it has been shown that for completely integrable correspondences
the number of images under the iterates grows polynomially, rather than exponentially [41].
In section 6 we show that for the correspondences obtained in sections 4.3.1 and 3.2.1 the
multi-valuedness of their nth iterate is # + 1 and 2n, respectively.

2. The staircase method, general theory

Let u be a multi-component field on the square lattice Z* and let f[u] be a multi-component
function of u and finitely many shifts of u. We call a lattice equation f[u] = 0 integrable if it
arises as the compatibility condition of two linear equations w = Ly and w M. Here,

~ denotes the horizontal shift / +> [ + 1 and ™ denotes the vertical shift m +> m + 1. Thus we
have

IM=ML mod f, €]

which is called the Lax equation, or zero-curvature condition. The matrices L and M are called
Lax matrices.

As pointed out by Calogero and Nucci [9] in the continuum case, see also [12], the mere
existence of a Lax pair is not sufficient for integrability; the Lax pair has to be a good Lax pair.
In the discrete setting one has to be equally careful; see chapter 6 in the thesis of Mike Hay
[14]. From this point of view one could argue that the staircase method tests whether a Lax
pair is ‘good’. The Lax pair would be called good (and hence the lattice equation integrable),
if it can be used to produce a sufficient number of integrals for periodic reductions.

We say that a lattice equation flu] = 0 admits a well-posed initial value problem if
from a set of generic initial points a solution can be constructed in a unique way. An initial
value problem is called nearly well posed if from a set of generic initial points, solutions
can be constructed, which can take only finitely many values at each lattice point. We
consider periodic initial value problems. In the first case the solution is obtained by iterating
a (finite-dimensional) mapping. In the second case the solutions are obtained by iterating a
correspondence. We note that if the initial value problem is well posed the periodicity of the
solution is implied by the periodicity of the initial values, whereas when in the case of nearly
well-posedness the periodicity of the solutions is imposed.

Theorem 1. Let a, s be elements of 7 x Z. Suppose an integrable equation f[u] = 0 allows a
s-periodic initial value problem which is well posed, or nearly well posed. Then, with L being
an inversely ordered product of Lax matrices over a connected path, e.g. a staircase, from a
to a+s, the trace of L' is invariant under any shift on the lattice, Vi € N.

4



J. Phys. A: Math. Theor. 43 (2010) 465207 P H van der Kamp and G R W Quispel

Proof. Leta, b be two points on the lattice. Define £, p, to be the inversely ordered product of
Lax matrices along a connected path from a to b. We have to show that £, j, does not depend
on the path from a to b. This follows from the fact that every square can be passed in two
ways: if L, M are the Lax matrices at a € 7?* (and Lisalax matrix ata = a + (1, 0)), then
from (4) it follows that LM = ML = L,z is well defined for solutions of flu] = 0. We have

‘Cﬁ,i; = £b,i;£a,b£§,a = begﬁa,bﬁ;é,

Because the initial value problem is well posed, or nearly well posed, there exists an s-periodic
solution. Now letb = a +is (i € N), so that the values of the solution at a and b coincide.
Then Lop = L. Also, L5 = Laz. If we denote I = Tr(L'), it is clear that we have T1=1
and, similarly T=1. (|

The mapping, or correspondence, which generates the s-periodic solution is defined by
updating a set of initial values through a shift on the lattice. Therefore, an invariant for it
is given by the trace of (an integer power of) £. If the Lax matrices depend on a spectral
parameter, say k, one can expand the trace Tr(£') in powers of k. Each coefficient then
provides an integral for the mapping, or for the correspondence. However, these integrals are
not all functionally independent.

By the Cayley—Hamilton theorem, any matrix £ satisfies its own characteristic equation
P(A) = Det(LI — L), i.e. we have P(L) = 0. Therefore, given that £ is a n X n matrix, it
suffices to consider traces of £/, with i < n. Even better, there are certain combinations of
Tr(L"), which, generally, yield a nicer basis of functionally independent integrals. These are
provided by the coefficients in P(A) = 0. For example, if n = 2 we have

P(X) = A% — ATr(L) + (Tr(L)> — Tr(L?)) /2. (3)

Note that the coefficient of A coincides with the determinant of L.
For general n, the coefficients can be obtained using Newton’s identities

ney =y (=1)e,ipi, ©6)
i=1

where the power sums py are given by p; = x{‘ + x§ +--- 4 x"; and the elementary symmetric
polynomials e are given by

DD 32

1<y i <iy i1 <ig iy <q j=1

and appear as coefficients in the (Vieta) expansion

q q
[T —x) =D (=Diea™. ™)
i=l1 i=0

If we denote the g eigenvalues of the matrix £ by x;, the characteristic polynomial equals
the left-hand side of equation (7). Using Newton’s identities (6) the right-hand side can be
expanded recursively in terms of p; = Tr(£F). Taking k = 1,2 in (6) we find familiar
coefficients ey = py, e; = ( pf — p2)/2, see equation (5). Taking k = 3, 4 Newton’s identities
yield e3 = (p? —3pip2+ 2p3)/6, and e = (p‘lt — 6p12p2 + 3p§ +8pi1p3 — 6p4)/24.

For scalar equations that are defined on elementary squares, initial values are given on
staircases. So the dimension of the initial value problem is |s;| + |s2|. A so-called standard
staircase, cf [30, 33, 38], gives rise to a particularly simple mapping. In fact, any mapping,
defined by a shift on the lattice, is equivalent to a certain iterate of this basic one.
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Figure 1. (5,3)-periodic initial value problem for equations defined on elementary squares.

To illustrate this, we have presented the standard (5, 3)-staircase in figure 1. The standard
staircase is the path through the points between the two lines, the black dots. They are the
points where initial values are given. The standard mapping will be the shift u; ,, — /42 m+1-
Note that by this shift almost all black dots are shifted to another black dot. The one black
dot which is closest to the dotted line is shifted to the black diamond, whose value can be
calculated using the equation on the square.

We can also see that the mapping defined by the shift u; ,, — u;41,, is given as the third
power of the standard one. To evaluate the monodromy matrix £, one would take the product
of matrices along the same staircase on which the initial values are given. Since for this type
of equations the matrices L, M depend on (u, i), (u, u), respectively, the matrix £ is then
automatically expressed in terms of the initial values. We note that one can just as well take
the product over any other one-period long path. For example, assuming thats € N x N, one
could consider the product

-~ -
sp—1 sp-1

[,(l, m) = l_[ Ml+sl,m+j 1_[ Ll+i,m-
j=0 i=0
Then, one first has to calculate the points on the corresponding path to be able to evaluate L.
In the example given in figure 1, we would need to calculate the values of the field at the white
diamonds, which amounts to iterating the mapping eight times.

For equations, or systems, that are not defined on elementary squares the initial value
problem does, in general, not lie on a staircase. Depending on the type of stencil and on the
particular periodicity condition, there could either be more, or less than |s; |+ |s,| initial values.
In [38] it was shown how to write down, for a given scalar equation on an arbitrary stencil,
a piece-wise linear expression (as a function of s) for the dimension of an s-periodic initial
value problem.

Note that the monodromy matrix is still a product of |s;| + |s»| matrices (if the product is
taken over a staircase, which is the sensible thing to do). Also note that, in general, the Lax
matrices depend on u and a number of shifts of u. Therefore, for certain choices of s, one
needs to determine a number of points, by iterations of the mapping, or correspondence, in
order to evaluate the monodromy matrix in terms of the initial values. It might be possible to
avoid this by using the equation to change the [u]-dependence of the Lax matrices. However,
that would have to be adjusted to the particular choice of s.

3. The staircase method, applications

In this section we will apply the staircase method to a variety of different equations and
different reductions. Firstly, we consider a five-point equation, i.e. an equation which is not

6
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o

Figure 2. The stencil of the BCD equation.

defined on the square. Second, we calculate integrals for reductions of a two-component
system of equations. We first perform reductions which give rise to mappings and then we
also perform reductions that yield correspondences.

3.1. Mappings with a sufficient number of integrals

3.1.1. The Bruschi-Calogero—Droghei equation. In [6] one finds the five-point equation
E(u,u,u,u,u) =0, where

E=(u—w)u—1)— (u—0)u—u); ®)

see ([6], equation (4a)) in which we have set «”) = 0. The equation is defined on the stencil
given in figure 2. The two recursive formulas ([6], equations (1a), (6)), with coefficients ([6],
equations (5), (7)), yield the following Lax pair:

k+u—u (u—u)(u—u) )

L(u,u,u,u)=
1 0

R 1 U —u)
MW=\ @-w™" 1-Gk+u-w@-w" |

Here we have denoted the spectral parameter (x in [6]) by k, which we do throughout this
paper. The method laid out in [38] tells us how to pose well-defined s-periodic initial value
problems for this equation. This can be done for all s = (sy, s7) such that s,(s; — 2s1) # 0.
The dimension of the periodic solutions is given by the following piecewise-linear function:

2max{|sy — sil, |s1l}-

We apply the staircase method to a few reductions, in the different regions distinguished by
this function, see figure 10 in [38].

(0,3)-reduction. 'We assign initial values as in figure 3. They are indicated by the black dots.
We update them using the right-shift; the values of X5, x4, Xs can be determined using the
equations indicated by the zig-zags. We get a six-dimensional mapping

X2 X6+X3X4—X3X6—X4X6

X1 X2 X2 Xo—*s
X3 X4 — X4 X2X5+xz§i:);iX47XSXG
Xs  Xe X6 x|X4+xzf::,;sz—x4x(,
The monodromy matrix, which we take from x, upward to x;, is £L = M(x¢, X2, Xs5)

M (x4, X6, x3) M (x2, x4, x1). Three functionally independent integrals for this mapping can
be obtained from the coefficients in its characteristic polynomial (5). They are (x; — x4) (x2 —
Xs5)(x3 — X6), (X1 — x6) (X2 — x3) (x4 — x5) and (x1 — x5)(x2 — x4) + (x3 — x5)(xg — X¢).
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Figure 3. Initial values for the (0, 3)-periodic reduction of the BCD equation, and how to update
them, using 3 copies of the equation depicted in figure 2.

Figure 4. Initial values for the (1, 3)-periodic reduction of the BCD equation, and how to update
them.

(1,3)-reduction.  Assigning initial values as in figure 4, and updating them using the down-
shift, we get a four-dimensional mapping

(©))

X1X4 + X2X3 — X1 X3 — X3X4

(x1, X2, X3, X4) > | X2, X3, X4, :
X2 — X3

In this case we have to first calculate a few values of the field at points close to the staircase in

order to evaluate the monodromy matrix. We calculate X} by solving E (x3, x1, X3, x4, X1) = 0,

and we find x; from E(xy, X1, x2, x3, X;) = 0. Two functionally independent integrals are

obtained from the coefficients in (5) with
L= M(x2, x1, X1) M (x3, X2, $1)M (x4, X3, 1) L(X1, X4, X2, X1)-

They are J; = (x; — x2)(x3 — x4), and J = (x; — x3)(x2 — x4)/(x2 — x3).

(2,3)-reduction. ~ We assign initial values as in figure 5 and update them using the
diagonal shift u > %.  The values X», which equal ﬁ, and X3 are determined
by E(xs3, x1, X2, X4,%2) = 0, and E (x4, x2, X3, X2, x3) = 0, successively. We find
the same four-dimensional mapping as in the previous case. The monodromy matrix
M()C4,)C2,)C])M(%3,X4,X3)L(X3,’)?3,')72,)Cz)M(fz,x%)Cz)' L()Cz,}z,)u,xl) yields the same
integrals Jy, J5.

(2,-1)-reduction.  Assigning initial values as in figure 6, and updating them using the right-
shift, we get a six-dimensional mapping

x> xip1, 1€{1,2,...,5},
X1X4 + X2X4 — X1 X2 — X4X6

X6
X4 — Xg
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Figure 5. Initial values for the (2, 3)-periodic reduction of the BCD equation, and how to update
them.

Figure 6. Initial values for the (2, —1)-periodic reduction of the BCD equation, and how to update
them.

The trace of the monodromy matrix M (x4, x¢, x3) L (x5, X¢, X3, X2) L (x4, X5, X2, X1) yields
two functionally independent integrals. These are (x; — xg)(x2 — x4)(x3 — x5) and
(x2 — x6) (X3 — X5) + (X1 — x4) (X2 — Xx4) + (x3 — x4) (x4 — x5). A third functionally independent
integral, (x; —x4) (X2 —x4) (X2 — x5) (X3 — X5) (X3 — X¢), iS Obtained by taking the determinant of
the monodromy matrix. In the previous cases, the determinant does not provide a functionally
independent integral.

3.1.2. The QD-algorithm. The QD-algorithm,

g =q+7, (10a)
25 = eF, (10)

is used to construct continued fractions whose convergents form ordered sequences in a normal
Padé table [8], and to find the zeros of a polynomial [15]. Itis also called the time-discrete Toda
molecule [19]. It is an integrable two-component equation defined on the stencils depicted in
figure 7, where we associate two values, e on the left and g on the right, with every point on
the lattice.

A Lax pair for the QD-algorithm can be obtained from relations between so-called higher
adjacent orthogonal polynomials [5], cf [25], equations (3), (4):

kP = ﬁ+qP, P=P+eP.
With W' = (P, P) we have ¥ = LW and ¥ = k! MW, where

_( 4 k ~ 0 k
L(eJI)—(_q k—e)’ M(e,q,Q)—<_q k_e+/q\>'

This (small) Lax pair differs from the (big) Lax pair obtained in [25], equation (9). A big Lax
pair incorporates a particular choice of initial values and we would like to consider general
periodic initial value problems.
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o)

[e¢]

(a) (0)

Figure 7. The stencils of the QD-algorithm.

Figure 8. Distinct regions for the QD-algorithm.

In [38], it has been shown that for all s = (s, 52) € Z X Z such that s,(s, — 2s1) # 0,
there exists a well-posed s-periodic initial value problem, with dimension

2max(|s1 + s21, [s1]).

This function tells us that there are two different regions, where the dimension is given by
a different linear function of the periods (up to a sign). However, to pose the initial value
problems one has to distinguish four different regions, as depicted in figure 8.

We note that for all s, initial values can be given on (part of) a standard staircase. In the
figures that follow this will be indicated by a dotted line. We will present four examples of
families of periodic reductions, where the dimension depends on an arbitrary variable n € N,
one family in each of the different regions.

(0, n)-reduction. We take initial values (e, q)o; = (x2i—1, X2;), With x; = x, if k =
m mod 2n, see figure 9. Updating these values to the right gives a 2n-dimensional volume-
preserving mapping, withi = 1,2, ..., 2n,

X2i+3X2i+4 X2i+1X2i42
X2i—1 > X2i41 + - )
X2i+1 X2i—1

X2i41X2i42
X > ————.
X2i—1

Here we first used equation (11b) to find the images X5;, and then equation (11a) to find x5;_;.
The monodromy matrix is

L= MXop—1, Xon, X2)M (X2n-3, Xon—2, X2u) - - - M (X3, X4, X6) M (x1, X2, X4).

10
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Figure 9. Vertical initial values for the QD-algorithm, and how to update them.
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Figure 10. Initial values on part of a standard (3n, —2n)-staircase, and the image points y, z of
Xon—4, X6n—2-

We have verified up to n = 9 that the coefficients in the k-expansions of its trace and
determinant yield n + 1 functionally independent integrals. The lowest non-trivial mapping,
taking n = 2, is

X1X2 X3X4 X3X4 X3X4 X1X2 X1X2
(1, X2, X3, X4) > | X3+ - , X1+ - , ;
X3 X1 X1 X1 X3 X3

which admits the three functionally independent integrals x| + x3, X2X4, X X2 + X3X4 — X1X3.

(3n, —2n)-reduction. We pose initial values as in figure 10 and update then using a horse
jump (I, m) — (I +2, m — 1). Note that one should first update x¢; 4, before xg;14. Thus we
get a 6n-dimensional mapping, withi =0, 1,...,n — 1,

X6i+1 F> X6i+5,

X6i+7X6i+9
Xoiq2 > —————,
X6i+6

X6i+3 F> X6i+6,

1 X6i+7
X6i+4 > Xei+8 + X6i+9 - )
X6i+6

X6i+5 > X6i+8,

X6i+6 > X6i+10s
where the subscript on x is taken modulo 6n. This mapping is measure-preserving with
density (]_[7= 1 X6i73)71. We obtain integrals by expanding the trace and determinant of the

11
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Figure 11. Initial values for the (2n, —3n)-reduction of the QD-algorithm, and how to update
X4p—1 (first) and x4,_» (second).

monodromy matrix

)
n—1

-1
l_[ M ™" (X6i+7, X6i+s5 + X6i+6 — X6i+7> X6i+6) L (X6i45, X6is2 + X6isd — Xoi+5)
i=0
-1

"M~ (Xei+s, Xeiv2 + Xoira — Xoi+5, Xoi+4) L (Xoi42, Xoi43)

‘L (x6i+1, X6i—1 + X6i — X6i+1)
in powers of the spectral parameter k. We verified that, up to n = 3, 3n + 1 of them are
functionally independent. For n = 1 the mapping reads

X1X3 X1
(x1,.x2,x3,x4,x5,X6) =1 X5, x_7x67x2+-x3 1- x_ » X2, X4 ),
6 6

which admits the following four functionally independent integrals:

Xe+Xa4+x2+ X3, X3(x4 —x5)(x1 —Xg), X3(x6+Xx4 — X1) +X6(Xs +X2 — X5), X1X2X3X5.

(2n, —3n)-reduction. We choose initial values as in figure 11:

€2i,—3i = Xdi+1,  q2i+1,-3i = X4i+2,
€2i41,-3i—1 = X4i+3,  {2i+2,-3i—2 = Xdi+4,

with x; = x,,, if Kk = m mod 4n. They are updated by shifting (I, m) — (I + 1, m — 1). This
yields the 4n-dimensional mapping

X4i+1 B> X4i43,

X4i+5X4i+6
X4i42 P> ————— + Xaj+a — X4i43,
X4i+4

X4i+5X4i+6
X4j43 > ————,
X4i+4

X4i+4 > X4it6,

which is measure-preserving with the density []/_, x4;. The monodromy matrix is

)
n—1

-1 -1 -1
[ M~ Gaiss, pin xaiea) M (i, Xaivar @) L (aiss, 70 - M7 (Xaii3, 7, Xais2) L(xaisns i),
i=0

12
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Figure 12. Initial values for the (1, —1 — n)-reduction of the QD-algorithm, and how to update
X, (first) and x,, (second).

where e; = X4i45X4i46/Xairar @i = € + Xaivd — X4i43, Ti = Xairl + X442 — X4i43, Di

Zi + X4i44 — X4i+5 and z; = X4;437; /X4i+4. We verified up to n = 3 that its trace and determinant
yield 2n + 1 functionally independent integrals. For n = 1 the measure-preserving four-
dimensional mapping reads

X1X2 X1X2
('xlax2a-x3ax4)'_) (-x37_+x4_x39_7-x2>7 (11)
X4 X4
which admits the following three functionally independent integrals:
X1x3 (x1 — x4) (x2 — x3) (X3 — x4)
Xy + X4 — X3, s .
X4 X4

(1, —1 — n)-reduction. We choose initial values as in figure 12, with j = 1,2, ..., n, and

ieZ:
Ci—in+D)+j—1 = Xjs qi,—i(n+))+j = Xn+j-
Updating by the up-shift yields a 2n-dimensional mapping
Xi> X, 1€{1,2,....,2n—1}, i#n

X2Xp+1
Xp > X1+ ——— — X,
X1
X2Xn+1
x2n = ’
X1

which is measure-preserving with the density x;. The monodromy matrix is

n
_ X2 _
M ! (X1 s (xn + Xop—1 — xZn)_na xn+1> l—[ M l(xia Xn+i—1, xn+i)
1 i=2
-1 X2Xn+1 X2Xp+1 X2,
M (Xl + T — X, Xop, — ) L <X1, (%n + X201 — -x2n)_n> ,
X1 X1 X1
whose trace and determinant yield n + 1 functionally independent integrals, which we verified
up ton = 8. For n = 2 we find the mapping (11) again, under the change of variables

(X1, X2, X3, X4) > (X4, X2, X1, X3).

13
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Figure 13. Initial values and their images under the up-shift.

3.2. Correspondences with a sufficient number of integrals

There are certain lines in the (s;, 55)-plane where a periodic reduction yields a correspondence
instead of a mapping, see [38]. Here we impose the solution to be periodic, which is not implied
by the periodicity of the initial conditions. For the QD-system, we find correspondences on
lines given by s, (s, + 2s;) = 0, cf [38].

3.2.1. The QD-algorithm, (n, 0)-reduction. We consider horizontal staircases for the QD-
system. Solving the non-local (or, implicit) scheme we find rational expressions for two-valued
correspondences.

As initial conditions we take

€m,0 = X2m—1, qdm,0 = X2m,

where the index on x is taken modulo 2n, see figure 13. They are updated by the up-shift. We
assume that the image is periodic with the same period as the initial values, i.e. we also take
the index on X modulo 2.
We have the following 2n equations for the 2n unknowns x; (the reader might like to draw
a few of them into figure 13):
Xoi1X2i = Xoi_1Xis2,  Xoiol + Xoiea = Xoiel + Xois2. (12)
We first solve for the odd variables, thereby obtaining a set of n equations for the even variables:

— X2i—1X2i+2 o
Xoi—1 = ———— = X2i+1 T X2i+2 — X2i42.
X2i
We write X5;,2 = Mmoo (X2;), where

Xp—3X
mp(z) = Xp—1 + X — pa

Now Xo; must be one of the two fixed points of the Mdbius transformation

M = Mo M(k—1)M2(k—2) * * * M2(k—n+1) = M2k * = = M>k43) M2 (k4+2) M2 (k+1) -

The first fixed point of My is given by x2x—_1, as m; (x;—3) = x;—;. This gives us one way of
updating our initial values, i.e. the linear map oy,:
X2i—1 > X2i42,
i i+ (13)
X2i > X2i—1,

taking i = 1, 2, ..., n, assuming the index on x to be periodic modulo 2n.
The other fixed point of My is zx := X2(+1) Q% / Q% _o» Where

n—1 fi—1 n—1

QZ(X)=Z l_[xzj+2+k nx2j+1+k . (14)

i=1 \j=1 Jj=i

This follows from

14
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Lemma 2.

Mo (Zk—1) = -

Proof. In terms of Q the statement is

Xok—3 Q% + X242 O = (Xok—1 + X21) Q35+ (15)
From the definition (14) it follows that

n n
—1 ~1
X1 Q5+ [ [ = Qf = xa 057 + ][220 (16)
j=2 j=2
Therefore we have
Xon—10", +x40»
n+l

n—1
_ n—1 n—1
=Xou-1 | X2Q | [x2j-1 | +xa | X105 + | | x5
=1 =3

n n
n—1 n—1
=x3 | X20-1Qy  + | |x2j +x; | X405 + | |x2j71

Jj=2 Jj=2
= (x1 +x2)Qp,
which is equation (15) with k = 1. This implies that equation (15) holds for all k, as we may
shift x; — Xit2(k—1)- U

The mapping that corresponds to the fixed point z; will be denoted 1;,,:

05, 2

s X2i > Xpiv2 -
2i 0% »
Since a Mobius transformation has at most two fixed points we obtained a two-valued
correspondence (o, v). Integrals for this correspondence are given by the coefficients of
the k-expansions of the trace and determinant of the monodromy matrix:

Xoj_1 > X2 (17)

L(x24, X2n—1) - - - L(x4, x3) L(x2, x1).
For all n < 10 we found n + 1 functionally independent integrals. The lowest non-trivial case
is n = 2. Explicitly, both mappings o4:

(X1, X2, X3, X4) > (X4, X1, X2, X3),
and 14:

s A4 s A3 » X2
X1+ X2 X3 + X4 X3+ X4 X1+ X2

admit the three invariants x| + x5 + X3 + X4, X1 X3 + X2x4 and x;x2x3X4.

X3+ X4 X1+ X2 X1+ X2 X3+ X4
(x1, X2, X3, X4) = | X1 X x

4. Reduction of order

In all cases we have encountered so far, the staircase method provided a sufficient number
of integrals, that is, at least half the dimension of the mapping. Still, the dimension of those
mappings may be reduced. This can be done using a symmetry of the lattice equation. In
certain cases the number of invariants remains the same, whereas in other cases it drops.

For reductions of other equations, which we encounter in this section, the number of
integrals provided by the staircase method is not sufficient. However, in these cases, after
reduction of order the number of integrals will suffice. We observe that the number of
dimensions to be reduced varies with the period s. This can be understood by exploiting
symmetries of the PAE that give rise, for certain periods, to k-symmetries of the mappings.

15
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4.1. Mappings with sufficiently many integrals, revisited

4.1.1. The BCD equation. For the mappings obtained in section 3.1.1 the number of
functionally independent integrals is exactly half the dimension of the mapping, sufficiently
many for complete integrability. We note that the equation E = 0, cf (8), admits two Lie-point
symmetries # — u+¢€ and u — Au. This yields two symmetries for the mappings, which can be
used to reduce the dimension of the mappings by 2. The integrals we have given only admit the
first (translation) symmetry. However, certain homogeneous combinations of them also admit
the second (scaling) symmetry. Therefore, applying 2-reduction to the examples in section
3.1.1 produces two- and four-dimensional mappings with 1- and 2-integrals, respectively. For
instance, using reduced variables

X1 — X2 X2 — X3
Zl = —1 ZZ = —?
X2 — X3 X3 — X4
the four-dimensional mapping (9) reduces to
1
(z1,22) = <Zz, z_> , (18)
1

which has one integral
B @+ D@+ )
i 2122 .
Note that the fourth iterate of (18) equals the identity and hence the reduction provides an

explicit solution for the mapping (9). If the (n — 1)st iterate of the mapping (9) is denoted
(xn’ Xn+ls Xn+2, xn+3)’ then

_ n+2 n+1 n
X, = X1+ {TJ (X2 —x1) + {TJ (x3 —x2) + LzJ (x4 —x1)

N n—1/[02—x1)(xs—x3)
4 X3 — X2
where | | denotes the floor function, sending x to the largest integer below x. This solution can

be obtained similar to the solution of the (3,1)-reduction of lattice pKdV given in the appendix
of [39].

bl

4.1.2. The QD-algorithm. Asthe QD-system (11) admits 1 (scaling)-symmetry, all mappings
can be l-reduced. The reduced mapping has one integral less, as only homogeneous
combinations with scaling eigenvalue O are invariant under scaling. For example, the mapping
(11) with new variables y; = x; /x4,1 = 1, 2, 3, reduces to the three-dimensional mapping

1, ¥, ¥3) > (ﬁ,yl . _”,yl), (19)
Y2 Y2
which has invariants
I = y1Y3 ’ I = 2 —y3)(y1 — D(ys — 1)'
y2—y:+l1 (2 —y3+1)?

This mapping has a lot of periodic points. The first few are given in table 1, where a, b
are free parameters. Also, one can show that the orbit of (a, b, b) converges to the periodic
orbit of (1, ab, 1), which has length 3.

Introducing variables x = y;, y = y3 on a level set of the first invariant I, = z yields the

mapping

zy
T:(x,y) — (—,x).
xXy+zy—2

16
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Table 1. Periodic points with orbit length smaller than 6.

Orbit length Periodic points

1 (0,—1,0), (a, 1, a)

2 (0,1,2), (2,—-1,0), (0, a, 0)
3 1,a,1),(1,a,a),(a,1,1)
4 (a,b—1,b)

5 (a,b(b+1)/(a+b—1),b)

This map can be written as a composition of two involutions, namely t = i o i}, where
. : J1— fox
io : (x, y) = (y, %), i (x,y) = (—,y ,
fo— fax
with f = Av x Bv, v = (¥, y, 1)/, which has invariant

w - Av I,

w-Bv 7’

where w = (x2, x, 1). Thus, it is a special case of the 18-parameter QRT family of planar
maps [31, 32], with

Reduction of order also works for correspondences. In reduced coordinates y; = x;41/x1,
i =1, 2, 3, the four-dimensional mappings o4, 4 reduce to

1
o: (y1,y2,y3) (—, &, 2) (20)
Y3 y3 y3

and

1)? 1)2
T (y1,y2,y3) = (y; Oi+1) i+ ) 21

s+ y)? » (y3 +y2)? .
which admit the invariants
Y2+ y1)3 Y1y2Yy3
(I+yi+y2+y3)2 (I+y+y2+y3)*

4.2. Mappings with insufficiently many integrals

We will next encounter reductions whose dimension is greater than twice the number of
functionally independent integrals provided by the staircase method.

4.2.1. The pKdV equation. The matrices
(u —k—uﬁ) (u —a—k—uﬁ)
1 —u ’ 1 —u ’
form a Lax pair for the lattice pKdV equation
-0 -0 =a. (22)

17
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Figure 14. Initial values for the (n — 1, 1)-reduction of the pKdV-equation, and how to update x;,.

(n —1, 1)-reduction. We consider the initial value problem
Un—Dk+i—1,k = Xi»

withi =1,...,nand k € Z, see figure 14. We find, for all k, u,—1)ksn.k = X1 + /(X — X2).
The right-shift induces an n-dimensional mapping

o
(‘xl’XZa"'v-xn)'_) <x2»x3»"'1xn»x1+ )1 (23)
Xn — X2

which is volume-preserving when 7 is odd and anti-volume-preserving when # is even.

We have verified up to n = 17 that the trace of the monodromy matrix provides
L(n — 1)/2] functionally independent integrals. So, for the odd-dimensional mappings we
need 1-reduction, but for the even-dimensional mappings we need 2. In fact, as we shall see,
in the even case there exist 3. How to explain this? As we will see below, the KdV equation
has a Lie-point symmetry that does not depend on the lattice variables. This symmetry gives
rise to 1-reduction for both the odd- and the even-dimensional mappings. Also, there are
two symmetries that do depend on the lattice variables. These yield two 2-symmetries of the
mapping if and only if its dimension is even, giving us two more reductions.

Equation (22) has the following symmetry u + u + €. This yields a symmetry for the
mapping (23), whose infinitesimal generator is

n

0
_ 24
i 0% e
Lety, = x; — x;4 fori = 1,2,...,n — 1. The functions y; are annihilated by the vector field

(24); they form a set of n — 1 functionally independent invariants of the symmetry generated
by this vector field. Taking the y as new variables the mapping (23) reduces to
n—1
o
(yla Y25 enny )’nfl) g ()’2» Y3, eeis Yn—1, — Zyl + T) . (25)
i=1 Dica Vi
In addition, equation (1) also has the following two symmetries:

I+m —1 I+m
Upm > Uy — (—1)™e, Upm uz,me( .

Suppose now that n is even. Then the above symmetries of the PAE (22) give rise to
2-symmetries of the mapping (25), with generators

- ;9 : 9
-1 —, —1)'x;—. 26

§< o ; Vxig o (26)
It can be verified that of n — 3 functionally independent joint invariants of the above three
vector fields (24), (26) are

gi = (i — Xi2) (i1 —Xi43), I =1,...,n=3.
We will take the ¢; as reduced variables and perform the reduction. Let us define, with
k,meN,
F/in — Xl+k — X2m+3+k .
Xom+1+k — X2m+3+k

18
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The F}" satisfy the recurrence relation
(F" = 1) qomek = qomek—1 F" ", (27)

with the initial condition F Y = 1. Therefore the F;" can be expressed in the g;, withi < n—3,
whenm <n/2—1landk <n/2—2m+3. We have the following equalities:

X; :xn_1+LF(" 37072 i odd,

Xn— 2_-xn

— —4—i)/2 .
X = Xpg+ P (,y — X)) E T i even,
qn-3

which is an inverse reduction. In terms of reduced variables the mapping is

quQiHv ie{]729"'7n_4}7

Gns > —aquaFy' P e FTOR, (28)
An explicit expression for F;" in terms of g; is®
m+1 2m+1 )
=3 [T e 29)
i=1 j=2i

since this expression solves the recurrence (27) with F,? = 1. The mapping (28) is anti-
measure-preserving with the density ]_[(" Hi2 qQ2i-

At n = 4 the reduced mapping is ¢; — « — ¢y, which admits one integral, g; (o — q1).
The second iterate of this mapping equals the identity. Note that this enables one to explicitly
solve equation (23) with n = 4, cf [39]. What happened? Well, the joint invariant g; turns out
to be a 2-integral of the mapping. Let us define another set of functions

2m+1
H" i= — X1 Xome2ek — Z(_l)lxi+kxi+l+k-
i=1
They can be expressed in terms of the ¢;, withi <n —3,if m <n/2andk <n/2+4 —2m,
using the recurrence

H' = H'" "'+ g1 F{' ™, (30)
with the initial condition H,? = 0. For all n the n-dimensional mapping §,, see (23), admits
the 2-integral Hé"fz)/ * If the image of x under (23) is denoted X, then

HmZ H(n 2)/2

An explicit expression for H;" in terms of the g; is

m m+l—i2i— .

1
H' =) H Eie

i=1 j=1 I=
since this solves the initial value problem (30). At n = 6 the 3-reduced mapping is
93(q1 + ¢2) 93 )

+o .
92 92+ g3

(q1, 92, q3) — (42,43,— 3D

The staircase method provides two integrals

q1(q2 + q3) 9193 7193
993 <qz+LI3—<¥+l—), (ql+cb+—) (ql+q3—a+—>,
a2 q2 q2

2 The function F" is closely related to the function Q given by equation (14); we have F" — 1 =

k+1 ((])(H =1 q2j+m)71
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Figure 15. The stencil of the Boussinesq system (32).

of which the latter can be expressed in terms of the 2-integral HO2 =q1+q3+q193/q. We

can take the 2-integral as a variable. In terms of ¢g;, g, and p = Hén_z)/ ? the mapping (31)
becomes

(1,92, ) = (92, @2(p — q1) /(g1 + q2), &« — p)
which has integrals

q192
(P —q)(p+q2—a), pla — p).

q1+q

In general, with n > 2 even, the 3-reduced mapping can be written as

( p— Hén—4)/2 )
(@1 G2 s Gnts P) > | 20030 e — G @ =P
0

where we used (30) to solve p = Hé"_z)/ % for gn_s.
We note that all [ (n — 1)/2] functionally independent integrals we have calculated for

(n < 17)-dimensional mappings survive these reductions. Taking n = 2m+1 odd, the reduced

mapping is 2m dimensional and has m integrals. With n = 2m + 2, the reduced mapping is

2m — 1 dimensional and has m integrals.

4.3. The Boussinesq system

The Boussinesq system [22, 35]

W=uu—v (32a)

D=ui—v (32b)

W= T+ (32¢)
u—u

is defined on the square as depicted in figures 15(a),(b),(c). In figure 15(d) we have depicted
the consequence of equations (32a), (32b):

=~ ~

U — 0 =1 — 7. (32d)

From the Boussinesq system one can eliminate the variables v and w using the identity
@+w)—@+w) =@ =) + @ — )
to get a nine-point scalar equation on a 2 x 2 square, called the Boussinesq equation, cf [22],

equation 1.3.
We denote u = (u, v, w). A Lax pair for the system (34) is given by, cf [35],

—u 1 0
Ly =L, w, @7 = _5 o 1|,
uw—u—k —w u

20



J. Phys. A: Math. Theor. 43 (2010) 465207 P H van der Kamp and G R W Quispel

—u 1 0
My = M, w, 7, ) = % o 1 |. (33)
ww—vu+y —k —w u

Invariants for traveling wave reductions of the system can be obtained by expanding traces
of powers of the monodromy matrix. Since £ is a 3 x 3 matrix a full set of functionally
independent integrals can be obtained from k-expansions of the coefficients in
2 2
Det(A] — £) = A3 — A2Tr(L) + p L) — Tl
Tr(£)? — 3Tr(L)Tr(L?) + 2Tr(L?)
6 ,
cf section 2, in particular equation (7). However, due to the fact that both Lax matrices have a
constant determinant, it suffices to consider Tr(£) and Tr?(£) — Tr(£?).

The following proposition tells us how to pose initial value problems for the Boussinesq
system. The proof uses a different technique than the one used in [38], which is possible due
to the fact that for the Boussinesq system initial values can be given on staircases. However,
the staircases are not necessarily standard staircases, which they would be in the framework
of [38] (at least for equations defined on the square, such as the Boussinesq system).

We call a staircase ascending, if it goes from the lower left to the upper right; that is,
if it is a sequence of neighboring lattice sites with / and m nondecreasing. And we call a
staircase descending if it goes from the upper left to the lower right; that is, if it is a sequence
of neighboring lattice sites with / and —m nondecreasing.

(34)

Proposition 3. The following initial value problems for the Boussinesq system are well posed.

e At every point on an ascending staircase take the components u, v of the vector u as initial
values.

e On a descending staircase take u, v, w at the lower left corners, v at the upper right
corners and u, v at the other points as initial values.

Proof. The proof consists of two parts. First, we show that the values at all points of the
staircase can be obtained from the initial values. Secondly we show that any of the four vectors
u, U, U, u, can be determined from the other three.

(i) For ascending staircases the first part is easy. Going along the staircase from the lower
left to the upper right at each horizontal step the component w is obtained using equation
(32a), whereas at the vertical steps equation (32b) can be used. For a descending staircase
we can do a similar thing, except at the upper-right corners. Equation (32d) can be solved
for u;.1 u+1 and used to get the u-components at the upper-right corners. Once u has been
calculated w can be calculated in two ways, using either (32a) or (32b), leading to the
same result.

(ii) The values of U can be obtained as follows. First calculate % from (32c). Then W can be
obtained from (32b) and v from the up-shifted consequence of (32a). We can obtain 1 in
a similar way. This follows from the fact that interchanging the left-shift with the up-shift
and y + —y is a (discrete) symmetry of the system. Finally, to obtain T one uses the
consequence (32d) to calculate 7, after which w is found using a shifted version of either
(32a) or (32b), and ? is calculated using (32c¢). Finally, due to the discrete symmetry
which interchanges the up-shift with the down-shift and the left-shift with the right-shift,
together with u <> w and y +— —y, it follows that u can be obtained from given values
at the other sites.
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Figure 16. 2n initial values for the (n — 1, 1)-reduction of the Boussinesq system, and the equations
used to update them.

Table 2. Number of functionally independent integrals of ¢»,,.

n 2 3 4 5 6 7 8 9

# 1 0 3 4 3 6 7 6

O

It follows that, with s = (s1, s2) € Z X Z such that sys, # 0, the dimension of an s-periodic
reduction is 2(] s |+ $2 |).

(n-1,1)-reduction. We take s; = n — 1 positive (but n # 3), s, = 1 and we consider the
following initial value problem, withi =0, 1,...,n — 1l and!/ € Z:

Un—1)+il = X2i+1,
Vn—1)l+i,] = X2i+2,
where the index on x is taken modulo 2#, see figure 16.

Using equations (32a), (32b) and (32d), in that order, we calculate, wy—1y,-1 =
X2n—3X2n—1 — X2n—2, U(u—1)1+1,1—1 = X1 + ¥ P, and v, _1y141,6-1 = X2 + X3 P, where
1

P = . 35
Xon—1(X2p—3 — X3) — X2 + X4

The right-shift induces the 2n-dimensional mapping ¢,,:

Xi = Xiz2, i€{1,2,...,2n—2},
Xop—1 > X1 +y P, (36)

Xop > X2 + Y X3 P.
The monodromy matrix is
L= MXn—1, Wn, X1, X2) L(X2,-3, Wp—1, X2n—1, X24) - - - L(x1, w1, X3, X4),

where W1 = X1 X2n—1 — X2 and Wiyl = X2i—1X2i+1 — X2i, i = 1, 2, cee,n— 1.

The number of functionally independent integrals we have obtained for reductions with
period s = (n — 1, 1) is given in table 2. From this table it seems that we need to d-reduce
mapping ¢,, by d = 2 dimensions, or, if 3 divides n, by d = 6 dimensions.

The mapping ¢,, has two symmetries, generated by

n n

d 0 0
v = —, v = E + X1 —
— 0xai 0x2i_1 T axy
iz

i=1
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The easiest way to check that these vector fields are generators of symmetries indeed
is using the Jacobian; we have Jv = ¢,,(v) when v = (0,1,0,1,...,0,1) or v =
(1, x1, 1, x3,..., 1, x2,—1), where the Jacobian matrix of ¢,, is given by

J = 0 12t172
~\n ypPH)

where [ is the k x k identity matrix and H is the 2 x (2n — 2) matrix:

Xon—1 -1 0 -+ 0 —xpa I (3—x3x—-3 0
1/P+x3x3p-1 —x3 0 -+ 0 —x3xp—1 x3 x3(x3—x2,—3) 0 )~

The two symmetries of the mapping ¢,, correspond to the following symmetries of the original

lattice system (34):

(u,v,w) = (U, v+e€,w —e), (u,v,w) — (U+€,v+eu,w+eu). 37
It can be verified that the functions

Vi = X2i—1 — X2i41s Yn+i—1 = X2i — X242 + X2i—1 (X2i41 — X2i—1),

withi = 1, ..., n—1, arejointinvariants of the these symmetries and functionally independent.
In the reduced variables y, we get a 2(n — 1)-dimensional volume-preserving mapping

Vi v, i€{l,2,....2n—2}, i#n—1,

n—1
Yot > =Y yi—v0,
i=1
n—1

n—2 n—1
Yon—2 > — Zy;m + Yiel Z yi|—v@ Zyi,
0 i=2

= Jj=i+l

where 0 = Y17 (Ynsi + i1 Z?;,-IH ¥j)-
When n = 2 the reduced mapping is, in terms of X = —y;, Y = —y»,

X, V) (=X +y(Y — X?,-Y + X%,

which carries the invariant Y (X% — Y) + y X, cf [22], equation 5.31. Note, in [22] the case
s1 = sp was studied; in particular, the involutivity of the integrals was established in any
dimension. The authors defer the actual counting of independent integrals to a future study.
However, they also state that the investigation of lower dimensional examples (with s; = s,)
indicates that a sufficient number of invariants are functionally independent.

We have verified that all integrals we found, see table 2, survive the 2-reduction. Hence,
in those cases, except when 3 divides n, the staircase method provides enough integrals for
integrability. Next we will show that if 3 divides n, but n # 3, we can further reduce the
mapping by four dimension.

The Boussinesq system (34) has some additional symmetries, which depend on the lattice
variables (u = uy ,,):

(U, v, w) > (u, v+ w —egm),

l+m l+m+1

l+m—lu)’ (38)

where ¢ is a primitive third root of unity, that is, {2 + ¢ + 1 = 0. The generators of the
corresponding transformations acting on the initial values (16) are

- a . ad ad
§ : i § : i—1 i
= _—, = + i1,
v3 il ; BXQ,‘ v ({ 8}(2, 1 ; il 3x2,~>

i=I

u,v,w)yr—> (u+es™" v+et U, w+e€eg
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and, taking the conjugate root ¢2,

n

n
.0 . 0 . d
2i 2i+1 2i
= — = — 4 i1— ).
. ;{ 9x2 v Z<§ 0x2i—1 ¢ 133621')

i=l1

Now assume that 3 divides n. We construct real vector fields by taking the following linear
combinations, withi = 1, 2, 3:

n/3—1 9
wi =+ 3+ vs) /3= )
P 0x6j42i
n/3—1 5 9
W3y = (v2+§2lv4+§'U6)/3= Z X6j+2i—1 + s
= 0x6j42i  0X6jr2i+1
where x3,41 = x;. These vector fields are 3-symmetries of the mapping ¢,,. Let J? be

the Jacobian matrix of qbgn. Note, the vector fields w;, i # 1,4, can be obtained from
w; = J3¢,(w;_1). According to ([13], proposition 1) it suffices to verify that w; and w, are
3-symmetries. Also note that J3¢,,v; = v; fori € {1, ..., 6)}.

The following polynomials form a complete set of joint invariants of the vector fields
wi, Wy, ..., We:

7 = Xi—1 — X2ivs, L €{l,...,n =3}

Tn—3+i = X2i41(X2i—1 — X2ix5) — X2 + X2is, 1 € {1,2, 3},
Zn+i = (X2i—1 — X2i45) (X2i46 — X2i+12)

—(x2i — X2ix6) (X2i45 — X2i+11), [ € {1,2,...,n— 6}

Another joint invariant is given by P, see (35), which therefore should be expressible in terms
of z;. However, we have not found a general formula for P(z). In terms of the z-variables the
mapping ¢, reduces to
zi > ziv1, 1 €{1,2,4,5}
3> =t
5 — 2233
22

o> —4+21 20— Y ——m,
75 — 2233

and ¢,,, when 3 divides n > 4, to

Gl zie, P€(L2....2n—T), i#n—3, i%n
n/3—1
3> — ) o — Y P
i=1
Zn+1 +24(2122 — Zn—2)
Zn = — )
4
n—6 > A — j/BP,

where A = (x2,-11 — X2,-5) (X204 — X2) — (X20-10 — X24-4)(X2,—5 — X1), and B =
X3(X2n—11 — X2n—5) — X2u—10 + X2u—4 are also joint invariants of the six vector fields wj;.
All the integrals we found survive the above reduction. Thus, as one can see in table 2,
also when 3 divides n the staircase method provides a sufficient number of integrals for the
6-reduced map to be integrable.
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Tan

Figure 17. Initial values for the (n — 1, —1)-reduction of the Boussinesq system, and the equations
used to update them.

We found two functions which are 3-integrals, that is, integrals of ¢>§n. These are
n/3
i1 = Z(x6j+1 — X6j—5)(X6j—2 — X6j-3X6j—1) + X6j—1(Xej42 — X6j—4),
Jj=1
n/3
i) = Zx6j—l(x6j—5x6j—3 — Xgj—4 — X6j+1X6j+3 + Xgj42) + X6 (X6j+3 — Xgj—3).
j=1

We have the following action of ¢,, on the 3-integrals:
(ilviZ) = (iz—il‘*'% _i1+y)v (39)

whose third power is the identity. Note that by applying the map to one of the 3-integrals gives
us the other one but no third functionally independent 3-integral can be obtained in this way.
The 3-integrals admit the vector fields w; as symmetries and two of the n — 3 functionally
independent integrals found by the staircase method can be written in terms of them. For
n = 6 we have

i1 = —212223 + 2125 + 2324, ©2 = 2226 + 2324,
and two of the three functionally independent integrals found by the staircase method are
given by

i3+l —i—y), Ly =iy —ii+id),
which are both integrals of the two-dimensional map (39). An extra advantage of working

with expansion (34) instead of traces of powers of L is that the third functionally independent
integral factorizes nicely as

242526(2123 + 26) (2425 — 242223 — 222125 + 232123 + @22).

(n—1, —1)-reduction. We take s; = n — 1 positive (n # 2), s, = —1, and we consider the
following initial value problem, withi =0, 1,...,n — 2,k € Z:

Un—1)k+i,—k = X2i+1,

V(n—1)k+i,—k = X2i+2,

V(n—1)(k+1),—k = X2n—1,

W(n—1)k,~k = X2n;
see figure 17.

We right-shift the initial values x,_3 and x,, using equations (32d) and (32a), respectively.
Then we right-shift x,,_3 a second time and are able to determine the image of x,,_;, using
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equation (32c¢). Thus, we find the 2n-dimensional mapping »,:

Xi > X, ie{l,2,...,2n -3},
Xop—2 — X2

Xop—3 > ——,
Xop—3 — X1

Xon—2 > Xon—1,
(X2n—3 — x1) (X1 (X20—1 — X4) — ¥)

Xop—2 — X2 — x3(X2,-3 — X1)
Xop > —X2 + X1X3,

Xop—1 > —Xp, +

which is measure-preserving with the density x5,-3 — x; (n # 2). The mapping ¢, admits
the symmetries

9 9 n—1 9

Oxop—1  Oxzi 4= Oxai

and

n—1
d a a a
X + Con(X2n— + +Xi1— |-
o, Gon0n3) 0x2n—1 ; <3x2i—1 S 3x2i>
Hence, it can be reduced to a (2n — 2)-dimensional mapping. We have verified up ton = 7 that
the number of functionally independent integrals, obtained by k-expansion of the coefficients
in (34), with

-1
L=M (xla X215 §n (x2n—3)» xZn—l)L(xZn—Sv Wp—1, &n (x2n—3)’ xZn—l)
n—1

. 1_[ L(x2i—3, wi_1, X2i—1, X2;),
i=2
is n — 1, except when 3 divides n + 1, where the number is n — 3. Also we verified that
all these integrals admit the above vector fields as their symmetries. If 3 divides n + 1 the
symmetries (38) yield 3-symmetries of the mapping ¢»,. As in the previous example we take
linear combinations to get

~2)/3 —5)/3—1
(n—=2)/ 9 (n=5)/ 9 9 9

wy = Z » Wa = Z X6j+1 + + Xon-3 )
pars 0X6j+2 pard 0x6j+2  0Xgju3 0x2n—2

together with w; = J Som(wiy), i # 1,4. Taking n = 5 we obtain the following four-
dimensional 6-reduced mapping, in terms of y; = x7 — x[, Y2 = X¢ + X190 — X5X[, Y3 =
xXg — X3 + x3(—=x7 + x1), ya = (—=x7 + x1)(—X9 + X4 — X5X3) + X5(—xg + X2):

b Y4 Y2)3
15 y2, ¥3, ya) > (— Y3, =, yaty — —) .
V1 Y1 N
This mapping is measure-preserving with the density ylz. It has two 3-integrals, i} = y2y3/y1
and i, = y4, which satisfy
(i1, i2) > (2, =iy —i2 — ¥),

whose third power is the identity. The two functionally independent invariants found by the
staircase method can be expressed in terms of the 3-integrals as

it +iy+ijip+y (i +in), i +ix+y).
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X T X3 I

T o T3 X

Figure 18. Initial values on a horizontal staircase with periodicity u; , = uz43 -

4.3.1. The pKdV equation, (3, 0)-reduction. Consider initial values for the pKdV equation
(22): u; 0 = x; withk =1 mod 3, k € {1, 2, 3}, as in figure 18.
Updating these by shifting them upward, and imposing the image to be periodic, we have
to solve the system
(x1 = %)(x2 —X) =«
(2 =) (3 — 1) =« (40)
(3 =X — %) =«
for the image points X7, X3, X3.
In terms of reduced variables ¢; = x| —x3, g> = x» —x3 the volume-preserving two-valued
correspondence is ¢ :
(e +q2(q1 +92) + 412G +92)/2+ (q1/2 + @) R
(@ +q192) (@ = q1(q1 +q2))
a(e+qi1(q1 +92)) +0195(q1 +92)/2 — (1 + @2/ R
(@ +q192) (@ — g2(q1 + q2))

q1 — 41

9= 42

’

where

R = /403 + (q192(q1 + 92)).

This correspondence admits the integral ¢;g2(g; + g2), which can be obtained by taking the
trace of the monodromy matrix.

5. The staircase method on quad-graphs

Recently, in [4], a geometric criterion was given for the well-posedness of initial value
problems on quad-graphs. In this section we show that for ‘regular’ quad-graphs, those that
permit periodic solutions, the staircase method can be applied. We use the equation H3;—,
from [2],

Opqla,b,c,d) = p(ab+cd) —qg(ac+bd) =0, 41

on two different quad-graphs, cf figures 9(d) and (e) in [4].

We start with a brief introduction to the idea of a quad-graph. For a more thorough
treatment and references to the literature we refer the reader to [4]. A quad-graph is a planar
graph with quadrilateral faces. Fields are assigned to the vertices and parameters to its edges.
In the class considered in [4] opposite edges carry the same parameters and the (multi-linear)
equation is supposed to have D,y-symmetry (so that the equation can be defined on each face
independently of its position in the quad-graph). Due to the first property there are sequences
of adjacent quadrilaterals on which the value of the parameter is constant. These are called
characteristics. The main result in [4] states that an initial value problem P is well posed if
and only if each characteristic intersects P in exactly one edge.

An example of a well-posed initial value problem is given in figure 19: from given values
a, b, c,d one can calculate e, f, g successively; they are uniquely determined. Indeed, the
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Figure 21. Another periodic initial value problem on an irregular Z>-lattice.

three dotted lines are characteristics and they each intersect the initial value path in exactly
one edge.

In both figures 20 and 21 a finite piece of a quad-graph is given. We assume that these
quad-graphs extend periodically in both the vertical and horizontal directions. For equations on
such a doubly infinite quad-graph there exists a two-parameter family of periodic reductions,
as for equations on the regular Z>-lattice. In fact, these quad-graphs are perturbations of the
regular Z>-lattice; we call them irregular 7>-lattices.

Theorem 1 extends to the more general setting of irregular Z>-lattices. The proof is similar
as in the Z? setting: the fact that the transfer matrix £, ; does not depend on the path from a
to b follows from the Lax condition.

In figure 20 the lattice parameters are attached to the edges as follows: p to the horizontal
edges, ¢ to the vertical edges and r to the diagonal edges. From initial values a, b, c, d the
values e, f, g are determined by

Opd,a, e, b) =0,
Qqr(c.d, f,e) =0,
qu(ev bv f’ g) = O
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We update values by shifting over (2, 1). Thus, the mapping is
(a,b,c,d)— (c, f,g,b),
where
Fed ar(rb — pd) + qc(rd — pb) ’ _ rb(ga — pc) +qd(gc — ap)'
aq(+rb — pd) +rc(rd — pb) gb(ga — pc) +rd(qc — ap)

A Lax pair L, M for equation (41) is givenby L = L, ,(p), M = L, .(q), where
1 ([ ka —pab
La = - s
»(p) =~ ( b —kb )

see [16]. The monodromy matrix Ly ,(p)Lcqa(q)Lp.c(p)Lap(r) yields one integral.
We perform the following reduction: in variables x = a/c,y = b/d the mapping is
expressed as

(x,y)'—><

and its integral is

(on) oo (e ) (o0 5)
pl—-+=)—-—pr+gp)|x+y+—+—)+|xy+—)qr
y x Xy Xy

In the next example we need four lattice parameters to ensure that the two lattice parameters
on each quadrilateral differ.

Given initial values a, b, c, d, the values e, f, g, h, i can be determined by the following
equations:

p(gy+rx) —q(gxy+r) 1 p(rx+qy) —r(g +rxy) 1)
plgx +ry) —q(rxy+q) x” plgx +ry) —r(gxy+r)y)’

Qrp(ba c, ead)z()’ Qsp(aa b, fa 6)20, qu(e,d, g’a):()a
qu(f,e,h,g)zO, 0r5(g,a,h,i) =0, qu(av frodsh)=0.

The values a, b, c,d are repeated periodically on the ‘staircase’ which extends along a
‘diagonal’ of the quad-graph. The particular way of choosing lattice parameters (g, p, p, ¢,
see figure 21, and we also take r, s, s, r vertically) ensures that the periodic solution has the
same period as the initial values. It is important to note that when going one step to the
right (on the Z? part of the quad-graph) the lattice parameters p, r are interchanged with ¢, s
respectively. Therefore, we consider the mapping
(a,b,c,d,p,q,r,8) > (h,i,a,j,q,p,sr).
After the transformation x = a/c, y = b/d we are left with

1x, 1yn
x,y,p.q,r,8) > | ——, ——,q,p,s, 1],
X Xd Y Yd

with
Xy = —qsp> + pq(qs + pr)x +2ypsrq — (rq + ps)(gs + pr)yx — y’sr’q
—pq2x2r +sr(gs + pr)yzx + (pzq2 + szrz)yx2 - yzpszxzr,
Xa = Y'rqp’x — y’rq®p — y’qsx’p* + y*q’sxp + yr’s> — ypqr’x + 2yrqsx’p
—ypPsxr — yg*sxr + yq*p* — yps’xq — r’qsx’® + r’spx + rs*xq — ps’r,
Y = (szp —s(gs + pr)x — szry + (prqg + s3)yx +x2rqs — yqsxzp)
(—gqsp +q(gs + pr)x +ysrq — (srp + ) yx — ¢°x*r +x°q* py),
ya = (—qsp + (prq + sHx + ysrq — s(gs + pr)yx — x2s%r + xzszpy)
(q°p — (srp+q7)x — yg°r +q(qs + pr)yx + x*rqs — ygsx’p).
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P- P+

Figure 22. Polynomial growth of multi-valuedness of iterates.

The monodromy matrix
Ld.u (Q)Lcd (P)Lbc (r)Lu,b (S)
yields one invariant, in reduced variables,
X(1+y%)(gs + pr) + y(® + 1) (pg +sr) — (« +y))rq — (*y* + D ps.
The linear part of the mapping is easily solved by
p=ca+al=D" g=ca—al=D" r=a+al=D"  s=c—al=D",
where 7 is an integer counting the iterations of the map. Thus we may obtain an alternating
two-dimensional map with one integral, cf [28]. However, this map would take too much

space to write explicitly. For special values of the parameters and one of the initial values we
have observed that the growth of this map is quadratic, which indicates that it is integrable.

6. Multivaluedness of iterates of correspondences

We have seen two examples in which correspondences arose: (7, 0)-reductions of the QD-
system in section 3.2.1 and of the pKdV equation in section 4.3.1. In general the multi-
valuedness of the iterates of a correspondence would grow exponentially. However, for
integrable correspondences one expects the multi-valuedness to grow polynomially instead.

6.1. The pKdV (3,0)-correspondence

Generically the multi-valuedness of the [th iterate of a two-valued map would be 2'. This is
not the case here. Due to the x <> y symmetry of the system (40) the correspondence ¢ equals
its own inverse. The relations ¢3! = ¢+ imply that the /th iterate of the correspondence is
(I + 1)-valued, see figure 22. All points on the same vertical line have the same value.

6.2. The QD (n, 0)-correspondence

As one can easily verify, the mappings t, o, given by equations (20), (21) satisfy
tot =oco0 and too =o00T. 42)
Due to these relations the Ith iterate of the correspondence is 2/-valued, see figure 23.

Proposition 4. With compositions of the mappings (42), the lth iterate of the correspondence
(o, T) is 2l-valued.

Proof. Relations (42) can be used to rewrite every word in two symbols o and t of length /
into either a word that does not contain 7o or a word that only contains To at the end. There
are 2/ such words:

Tt7---177,07TT - TTT,00T - TTT,...,000 - 00T,

T1T7---170,0TT--+-TT0,00T -+ TT0,...,000 ---000.
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TO

TTTT(T/ \TTTTT

Figure 23. Graphical representation of proposition 4.

So there are at most 2/ inequivalent words of length [. To show that there are exactly 2/
inequivalent words of length [ we proceed by induction. We suppose there are exactly 2/
inequivalent words of length /. For any three words u, v, w we have uv = uw = v = w. So
if two different words of length / extend to an equivalent word of length / + 1, this word can
be written (we concatenate from the left) as u = Tv = ow. If a third word of length [ would
extend to u, then we have u = 7z or u = oz which would imply z = v or z = w respectively.
Therefore words of length [ that extend to words of length / + 1 coincide at most pairwise,
giving a lower bound of 2/ on the number of words of length / + 1. However, since there are
two words of length [ + 1 that are not equivalent to any other word, namely ttt --- 777 and
oTT - TTT, there are at least 2/ + 2 inequivalent words of length [ + 1. ]

The same relations hold in the 2n-dimensional case.

Proposition 5. The 2n-dimensional mappings t = 1, (17) and 0 = o, (13) satisfy the
relations (42).

Proof. That the second of relations (42) holds is easily established as oo, i.e. the mapping
Xy > Xg42, clearly commutes with 7.

For the first relation we solve equations (12) for the x; in terms of the X} to find the inverse
= withi =1,2,...,n:

n
s e i
2i—1 2i—1 wr ’
2i-2
n
Woi_4
X2i > X2i—2 s
Wn
2i-2

where

n—1 i—1 n—1

Wy = Z sz‘j—Hk Hx2j+2+k . (43)
=i

i=1 \j=1

One can verify that o (W}') = Qf. This implies that ot ~' is given by
n
X2im1 P> Xpip e
i— i+
Q%2
05 :
X2i F> X2i-3 Zl4, i=1,...,n
Q%2
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which equals its inverse o ~!. Multiplying 7o ~! = or~! from the left by o and from the

right by o, using oo = oo, givesus tot = ooo0. |

Remark 1. One can also directly prove that the 7! provided is the inverse of 7. This relies
on the fact that 7 (W}') = Qf, which in terms of Q amounts to the identity

n—1 n i—1 n—1 n—2

n n
[Ts =2 {TTxeir | (e | [ TT Q3502 )
i=1 i=1 \j=1 Jj=i Jj=1

which can be proved using

n—m+1
- —m—1
Qi7" Q5 =x105" " Q5+ Qs ( I1 m)
i=3
which in turn relies on a generalization of relations (16):

m+1 n—1
0y "= 05" (H x2i> + (ng l_[x2i+1> :
i=2

=m

7. Concluding remarks

We have shown that the staircase method provides integrals for mappings and correspondences
derived as s-periodic reductions of lattice equations and systems of lattice equations. We
also showed that such mappings and correspondences can be order-reduced systematically,
using symmetries of the lattice equations. In all examples encountered the staircase method
yields sufficiently many functionally independent integrals for the d-reduced mappings and
correspondences to be completely integrable. However, we know the above statement is not
true in general. In [34] periodic reductions of systems of PAEs are considered for which the
staircase method does not provide sufficiently many integrals. However, in those cases it was
observed that a certain linear combination of integrals factorizes into a product of 2-integrals,
from which another integral can be obtained.

For posing initial value problems we used the method laid out in [38]. However, for the
Boussinesq system we presented an alternative approach. We have calculated integrals for
mappings/correspondences with dimension up to say 20. Therefore we were able to check
functional independence of the integrals using the symbolic software package Maple [18].

Closed-form expressions for integrals of mappings with arbitrary dimensions
(corresponding to reductions with s, = —1) have been given in [36, 40]. There, the lattice
equations are of Adler—Bobenko—Suris type [2, 3] and the integrals are expressed in terms of
multisums of products. Their functional independence and involutivity are being investigated
[37].

It is an open problem whether such closed-form expressions can be obtained in general.
In particular, we do not know whether such expressions can be given for the BCD equation,
the QD-algorithm and the Boussinesq system presented here, except for QD in the case s; = 0.
Another question is how to obtain symplectic structures for the mappings studied in this paper.
This would enable one to conclude complete integrability.

We have obtained a few results on mappings of arbitrary dimension. These include an
explicit (2 + (—1)")-reduction of the mapping related to the (n — 1, 1)-reduction of the lattice
KdV equation, as well as an explicit expression for a 2-integral of the mapping in the case that
n is even. We proved that the (n — 1, 1)-reduction of the Boussinesq system can be d-reduced
with d = 6 if 3 divides n and with d = 2 otherwise. Also, we presented two 3-integrals for
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this mapping (expressed in terms of the original variables). For the (n — 1, —1)-reduction
of the Boussinesq system we have showed that the mapping can be d-reduced with d = 6 if
3 divides n + 1 and with d = 2 otherwise. Finally, the (n, 0)-reduction of the QD-system
yields a 2n-dimensional two-valued correspondence. We have given an explicit expression
for this correspondence and showed that its nth iterate is 2n-valued. It would be interesting to
investigate other ways of establishing such a result because one does not always have explicit
expressions at hand.
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