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Abstract
The discrete Fourier transform of the greatest common divisor

�id[a](m) =
m�

k=1

gcd(k,m)αka
m ,

with αm a primitive m-th root of unity, is a multiplicative function that generalizes
both the gcd-sum function and Euler’s totient function. On the one hand it is
the Dirichlet convolution of the identity with Ramanujan’s sum, �id[a] = id ∗ c•(a),
and on the other hand it can be written as a generalized convolution product,
�id[a] = id ∗a φ. We show that �id[a](m) counts the number of elements in the set of
ordered pairs (i, j) such that i · j ≡ a mod m. Furthermore we generalize a dozen
known identities for the totient function, to identities which involve the discrete
Fourier transform of the greatest common divisor, including its partial sums, and
its Lambert series.

1. Introduction

In [15] discrete Fourier transforms of functions of the greatest common divisor were
studied, i.e.,

�h[a](m) :=
m�

k=1

h(gcd(k,m))αka
m ,

where αm is a primitive m-th root of unity. The main result in that paper is the
identity1 �h[a] = h ∗ c•(a), where

cm(a) :=
m�

k=1
gcd(k,m)=1

αka
m (1)

1Similar results in the context of r-even function were obtained earlier; see [10] for details.
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is Ramanujan’s sum, and ∗ denotes Dirichlet convolution, i.e.,

�h[a](m) =
�

d|m

h
�m

d

�
cd(a). (2)

Ramanujan’s sum generalizes both Euler’s totient function φ = c•(0) and the
Möbius function µ = c•(1). Thus, identity (2) generalizes the formula

m�

k=1

h(gcd(k,m)) = (h ∗ φ)(m), (3)

already known to Cesàro in 1885. The formula (2) shows that �h[a] is multiplica-
tive if h is multiplicative (because c•(a) is multiplicative and Dirichlet convolution
preserves multiplicativity).

Here we will take h = id to be the identity function (of the greatest common
divisor) and study its Fourier transform. Obviously, as id(n) := n is multiplicative,
the function �id[a] is multiplicative, for all a. Two special cases are well-known.
Taking a = 0 we have �id[0] = P, where

P(m) :=
m�

k=1

gcd(k,m) (4)

is known as Pillai’s arithmetical function or the gcd-sum function [4]. Secondly, by
taking a = 1 in (2), we find that �id[1] = id ∗ µ equals φ, by Möbius inversion of
Euler’s identity φ∗u = id, where u = µ−1 is the unit function defined by u(m) := 1.

Let Fm
a denote the set of ordered pairs of congruence classes (i, j) such that

i · j ≡ a mod m, the set of factorizations of a modulo m. We claim that �id[a](m)
counts its number of elements. Let us first consider two special cases.

a = 0 For given i ∈ {1, 2, . . . ,m} the congruence i · j ≡ 0 mod m yields

i

gcd(i,m)
j ≡ 0 mod

m

gcd(i,m)
,

which has a unique solution modulo m/gcd(i,m), and so there are gcd(i,m)
solutions modulo m. Hence, the total number of elements in Fm

0 is P(m).

a = 1 The totient function φ(m) counts the number of invertible congruence classes
modulo m. As for every invertible congruence class i modulo m there is a
unique j = i−1 mod m such that i · j ≡ 1 mod m, it counts the number of
elements in the set Fm

1 .

To prove the general case we employ a Kluyver-like formula for �id[a], that is, a
formula similar to the formula for the Ramanujan sum function:

ck(a) =
�

d|gcd(a,k)

dµ

�
k

d

�
. (5)
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attributed to Kluyver [8]. Together the identities (2) and (5) imply, cf. Section 3,

�id[a](m) =
�

d|gcd(a,m)

dφ
�m

d

�
, (6)

and we will show, in the next section, that the number #Fm
a of factorizations of

a mod m is given by the same sum.
The right-hand sides of (5) and (6) are particular instances of so-called gener-

alized Ramanujan sums [1], and both formulas follow as consequence of a general
formula for the Fourier coefficients of such sums [2, 3]. In Section 3 we provide sim-
ple proofs for some of the nice properties of these sums. In particular we interpret
the sums as a generalization of Dirichlet convolution. This interpretation lies at the
heart of many of the generalized totient identities we establish in Section 4.

2. The Number of Factorizations of a mod m

We are after the number of pairs (i, j) of congruence classes modulo m such that

i · j ≡ a mod m. (7)

For given i,m ∈ N, let g denote gcd(i,m). If the congruence i · j ≡ a mod m has
a solution j, then g | a and j ≡ i−1a/g is unique mod m/g, so mod m there are g
solutions. This yields

#Fm
a =

m�

i=1
gcd(i,m)|a

gcd(i,m),

which can be written as

#Fm
a =

�

d|a

m�

i=1
gcd(i,m)=d

d. (8)

If d � m then the sum
m�

i=1
gcd(i,m)=d

1

is empty. Now let d | m. The only integers i which contribute to the sum are
the multiples of d, kd, where gcd(k,m/d) = 1. There are exactly φ(m/d) of them.
Therefore the right-hand sides of formulae (6) and (8) agree, and hence #Fm

a =
�id[a](m).
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3. A Historical Remark and Generalized Ramanujan Sums

It is well-known that Ramanujan was not the first who considered the sum cm(a).
Kluyver proved his formula (5) in 1906, twelve years before Ramanujan published
the novel idea of expressing arithmetical functions in the form of a series

�
s ascs(n)

[11]. It is not well-known that Kluyver actually showed that cm(a) equals Von
Sterneck’s function, introduced in [13], i.e.,

cm(a) =
µ
� m

gcd(a,m)

�
φ(m)

φ
� m

gcd(a,m)

� . (9)

This relation is referred to in the literature as Hölder’s relation, cf. the remark
on page 213 in [1]. However, Hölder published this relation (9) thirty years after
Kluyver [7]. We refer to [1, Theorem 2], or [2, Theorem 8.8] for a generalization of
(9). The so-called generalized Ramanujan sums,

f ∗a g(m) :=
�

d|gcd(a,m)

f(d)g
�m

d

�
, (10)

were introduced in [1]. The notation ∗a is new, the sums are denoted S(a;m) in
[1], sm(a) in [2], and Sf,h(a,m) in [3]. In the context of r-even functions [10] the
sums are denoted Sf,g(a), and considered as sequences of m-even functions, with
argument a. We consider the sums as a sequence of functions with argument m,
labeled by a. We call f ∗a g the a-convolution of f and g.

The concept of a-convolution provides a generalization of Dirichlet convolution
as f ∗0 g = f ∗ g. As we will see below shortly, the function f ∗a g is multiplicative
(for all a) if f and g are, and the following inter-associative property holds, cf. [3,
Theorem 4]:

(f ∗a g) ∗ h = f ∗a (g ∗ h). (11)

We also adopt the notation fa := id ∗a f , and call this the Kluyver, or a-
extension of f . Thus, we have f0 = id ∗ f , f1 = f , and formulas (5) and (6)
become cm(a) = µa(m), and �id[a] = φa, respectively.

In terms of the Iverson bracket, with P a logical statement,

[P ] :=
�

1 if P,
0 if not P,

the identity function I is given by I(k) := [k = 1]. It is the identity function in
the algebra where convolution is the multiplication, i.e., I ∗ f = f ∗ I = f . Let us
consider the function f ∗a I. It is

f ∗a I(k) =
�

d|gcd(a,k)

f(d)[d = k] = [k | a]f(k).
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Since the function k → [k | a] is multiplicative, the function f ∗a I is multiplicative
if f is multiplicative. We may write, cf. [3, eq. (9)],

f ∗a g(m) =
�

d|m

[d | a]f(d)g
�m

d

�
= (f ∗a I) ∗ g(m), (12)

which shows that f ∗a g is multiplicative if f and g are. Using equation (12), the
inter-associativity property (11) follows easily from the associativity of Dirichlet
convolution.

Proof. We have (f ∗a g) ∗ h = ((f ∗a I) ∗ g) ∗ h = (f ∗a I) ∗ (g ∗ h) = f ∗a (g ∗ h).

We note that the a-convolution product is neither associative, nor commutative.
The inter-associativity and the commutativity of Dirichlet convolution imply that

fa ∗ g = (f ∗ g)a = f ∗ ga. (13)

We provide a simple proof for formula (6), which states that the Fourier transform
of the greatest common divisor is the Kluyver extension of the totient function.

Proof. Using (2), (5) and (13) we get �id[a] = id∗c•(a) = id∗µa = (id∗µ)a = φa.

Formula (6) also follows as a special case of the formula for the Fourier coefficients
of a-convolutions,

f ∗a g(m) =
m�

k=1

q[k](m)αka
m , q[k] := g ∗k

f

id
, (14)

which was given in [1, 2]. Formula (14) combines with (2) and (5) to yield a formula
for functions of the greatest common divisor, h̄[k] : m → h(gcd(k,m)), namely

h̄[k] = (h ∗ µ) ∗k u. (15)

Proof. The Fourier coefficients of �h[a](m) are h̄[k](m). But �h[a] = h ∗ c•(a) =
(id ∗a µ) ∗h = id ∗a (µ ∗h), and so, using (14), the Fourier coefficients are also given
by (h ∗ µ) ∗k u(m).

For a Dirichlet convolution with a Fourier transform of a function of the greatest
common divisor we have

f ∗ �g[a] = �f ∗ g[a]. (16)

Proof. We have f ∗ �g[a] = f ∗ (g ∗ µa) = (f ∗ g) ∗ µa = �f ∗ g[a].

Similarly, for an a-convolution with a Fourier transform of a function of the
greatest common divisor, we have

f ∗a �g[b] = �f ∗a g[b]. (17)

Proof. Indeed, f ∗a �g[b] = f ∗a (g ∗ µb) = (f ∗a g) ∗ µb = �f ∗a g[b].
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4. Generalized Totient Identities

The totient function is an important function in number theory, and related fields
of mathematics. It is extensively studied, connected to many other notions and
functions, and there exist numerous generalization and extensions, cf. the chapter
“The many facets of Euler’s totient” in [12]. The Kluyver extension of the totient
function is a very natural extension, and it is most surprising it has not been studied
before. In this section we generalize a dozen known identities for the totient function
φ, to identities which involve its Kluyver extension φa, a.k.a. the discrete Fourier
transform of the greatest common divisor. This includes a generalization of Euler’s
identity, the partial sums of φa, and its Lambert series.

4.1. The Value of φa at Powers of Primes

We start by providing a formula for the value of φa at powers of primes. This
depends only on the multiplicity of the prime in a. The formulae, with p prime,

P(pk) = (k + 1)pk − kpk−1, φ(pk) = pk − pk−1,

of which the first one is Theorem 2.2 in [4], generalize to

φa(pk) =
�

(pk − pk−1)(l + 1) if l < k,
(k + 1)pk − kpk−1 if l ≥ k,

(18)

where l is the largest integer, or infinity, such that pl | a.

Proof. We have

φa(pk) =
�

d|gcd(pl,pk)

dφ
�pk

d

�

=
min(l,k)�

r=0

prφ(pk−r)

=

� �l
r=0 pk − pk−1 if l < k,

(
�k−1

r=0 pk − pk−1) + pk if l ≥ k,

which equals (18).

4.2. Partial Sums of φa/id

To generalize the totient identity

n�

k=1

φ(k)
k

=
n�

k=1

µ(k)
k

�n

k

�
. (19)
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to an identity for φa we first establish

n�

k=1

f0(k)
k

=
n�

k=1

f(k)
k

�n

k

�
. (20)

Proof. Since there are �n/d� multiples of d in the range [1, n] it follows that

n�

k=1

f ∗ id(k)
k

=
n�

k=1

�

d|k

f(d)
d

=
n�

d=1

f(d)
d

�n

d

�
.

As a corollary we obtain

n�

k=1

f ∗a g0(k)
k

=
n�

k=1

f ∗a g(k)
k

�n

k

�
. (21)

Proof. Employing (11) we find

n�

k=1

f ∗a (g ∗ id)(k)
k

=
n�

k=1

(f ∗a g) ∗ id(k)
k

=
n�

k=1

f ∗a g(k)
k

�n

k

�
.

Now taking f = id and g = µ in (21) we find

n�

k=1

φa(k)
k

=
n�

k=1

ck(a)
k

�n

k

�
. (22)

4.3. Partial Sums of Pa/id Expressed in Terms of φa

Taking f = id and g = φ in (21) we find

n�

k=1

Pa(k)
k

=
n�

k=1

φa(k)
k

�n

k

�
. (23)

Note that by taking either a = 0 in (22), or a = 1 in (23), we find an identity
involving the totient function and the gcd-sum function,

n�

k=1

P(k)
k

=
n�

k=1

φ(k)
k

�n

k

�
. (24)
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4.4. Partial Sums of φa

To generalize the totient identity, with n > 0,
n�

k=1

φ(k) =
1
2

�
1 +

n�

k=1

µ(k)
�n

k

�2
�

, (25)

we first establish
n�

k=1

f0(k) =
1
2

�
n�

k=1

f(k)
�n

k

�2
+

n�

k=1

f ∗ u(k)

�
. (26)

Proof. By changing variables, k = dl, we find
n�

k=1

(2f ∗ id− f ∗ u)(k) =
n�

k=1

�

d|k

f(d)(
2k
d
− 1)

=
n�

d=1

�n/d��

l=1

f(d)(2l − 1)

=
n�

d=1

f(d)
�n

d

�2
.

Note that this gives a nice proof of (25), taking f = µ, as
�n

k=1 I(k) = [n > 0].
When f = µa, then (13) implies f ∗ id = φa, and f ∗ u = Ia, and therefore as a
special case of (26) we obtain

n�

k=1

φa(k) =
1
2




�

k|a

k[k ≤ n] +
n�

k=1

ck(a)
�n

k

�2



 . (27)

We remark that when n ≥ a we have
�

k|a k[k ≤ n] = σ(a), where σ = id ∗ u is the
sum of divisors function.

4.5. Generalization of Euler’s Identity

Euler’s identity, φ ∗ u = id, generalizes to
�

d|m

φa(d) = τ(gcd(a,m))m, (28)

where τ = u ∗ u is the number of divisors function.

Proof. We have φa ∗ u = (φ ∗ u)a = ida, where

ida(m) =
�

d|gcd(a,m)

d
m

d
= mτ(gcd(a,m)). (29)
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4.6. Partial Sums of Pa Expressed in Terms of φa (and τ)

If f = φa, then f ∗ id = Pa, and (26) becomes, using (28),

n�

k=1

Pa(k) =
1
2

� n�

k=1

τ(gcd(a, k))k +
n�

k=1

φa(k)
�n

k

�2 �
. (30)

4.7. Four Identities From Césaro

According to Dickson [5] the following three identities were obtained by Césaro:
�

d|n

dφ
�n

d

�
= P(n), (31)

�

d|n

d

n
φ(d) =

n�

j=1

1
gcd(j, n)

, (32)

�

d|n

φ(d)φ
�n

d

�
=

n�

j=1

φ(gcd(j, n)). (33)

Identity (31), which is Theorem 2.3 in [4], is obtained by taking a = 0 in (6), or
h = id in (3). It generalizes to

�

d|n

dφa

�n

d

�
= Pa(n). (34)

Proof. Take f = φ and g = id in (13).

Identity (32) is obtained by taking h = 1/id in (3) and generalizes to

�

d|n

d

n
φa(d) =

n�

j=1

�

d|gcd(a,n)

1

gcd
�
j,

n

d

� . (35)

Proof. Take f = φ and g = 1/id in (13).

Identity (33) is also a special case of (3), with h = φ. It generalizes to

�

d|n

φa(d)φb

�n

d

�
=

n�

j=1

�

d|gcd(a,n)

φb

�
gcd

�
j,

n

d

��
. (36)

Proof. We have

(id ∗a φ) ∗ (id ∗b φ) = id ∗a (id ∗b (φ ∗ φ)) = id ∗a (id ∗b
�φ[0]) = id ∗a

�φb[0],
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and evaluation at m yields

�

d|gcd(a,m)

d

m/d�

j=1

φb

�
gcd

�
j,

m

d

��
=

�

d|gcd(a,m)

m�

j=1

φb

�
gcd

�
j,

m

d

��
.

The more general identity (3) generalizes to
m�

k=1

ha(gcd(k,m)) = h ∗ φa(m). (37)

4.8. Three Identities From Liouville

Dickson [5, p.285-286] states, amongst many others identities that were presented
by Liouville in the series [9], the following identities:

�

d|m

φ(d)τ
�m

d

�
= σ(m), (38)

�

d|m

φ(d)σ[n + 1]
�m

d

�
= mσ[n](m), (39)

�

d|m

φ(d)τ
�m2

d2

�
=

�

d|m

dθ
�m

d

�
, (40)

where σ[n] = id[n] ∗ u, id[n](m) := mn, and θ(m) is the number of decompositions
of m into two relatively prime factors. All three are of the form φ ∗ f = g and
therefore they gain significance due to (3), though Liouville might not have been
aware of this. For example, (3) and (38) combine to yield

m�

k=1

τ(gcd(k,m)) = σ(m).

The three identities are easily proven by substituting τ = u ∗ u, σ[n] = id[n] ∗ u,
τ ◦ id[2] = θ ∗ u, φ = µ ∗ id, and using µ ∗ u = I. They generalize to

�

d|m

φa(d)τ
�m

d

�
= σa(m), (41)

�

d|m

φa(d)σ[n + 1]
�m

d

�
= mu ∗a σ[n](m), (42)

�

d|m

φa(d)τ
�m2

d2

�
=

�

d|m

dτ(gcd(a, d))θ
�m

d

�
. (43)

These generalizations are proven using the same substitutions, together with (13),
or for the latter identity, (11) and (29). We note that n need not be integer valued
in (39) and (42).
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4.9. One Identity from Dirichlet

Dickson [5] writes that Dirichlet [6], by taking partial sums on both sides of Euler’s
identity, obtained

n�

k=1

�n

k

�
φ(k) =

�
n + 1

2

�
.

By taking partial sums on both sides of equation (28) we obtain

n�

k=1

�n

k

�
φa(k) =

�

d|a

d

��
n
d

�
+ 1

2

�
. (44)

Proof. Summing the left-hand side of (28) over m yields

n�

m=1

�

d|m

φa(d) =
n�

d=1

�n

d

�
φa(d)

and summing the right-hand side of (28) over m yields

n�

m=1

τ(gcd(a,m))m =
n�

m=1

�

d|gcd(a,m)

m =
�

d|a

�n/d��

k=1

dk =
�

d|a

d
�n

d

�� �n

d

�
+ 1

�
/2.

4.10. The Lambert Series of φa

As shown by Liouville [9], cf. [5, p.120], the Lambert series of the totient function
is given by

∞�

m=1

φ(m)
xm

1− xm
=

x

(1− x)2
.

The Lambert series for φa is given by

∞�

m=1

φa(m)
xm

1− xm
= p[a](x)

x

(1− xa)2
, (45)

where the coefficients of p[a](x) =
�2a

k=1 c[a](k)xk−1 are given by c[a] = ida ◦ t[a],
and t[a] is the piece-wise linear function t[a](n) = a− |n− a|.

Proof. Cesàro proved

∞�

n=1

f(n)
xn

1− xn
=

∞�

n=1

xn
�

d|n

f(d),
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cf. [5] and exercise 31 to chapter 2 in [14]. By substituting (28) in this formula we
find

∞�

n=1

φa(n)
xn

1− xn
=

∞�

n=1

xnτ(gcd(a, n))n.

Multiplying the right-hand side by (1− 2xa + x2a) yields

(
∞�

n=1

xnτ(gcd(a, n))n)− 2(
∞�

n=a+1

xnτ(gcd(a, n))(n− a))

+ (
∞�

n=1+2a

xnτ(gcd(a, n))(n− 2a)) =
∞�

n=1

c[a](n)xn,

where

c[a](n) =






τ(gcd(a, n))n 0 < n ≤ a,
τ(gcd(a, n))(n− 2(n− a)) = τ(gcd(a, n))(2a− n) a < n ≤ 2a,
τ(gcd(a, n))(n− 2(n− a) + n− 2a) = 0 n > 2a.

Rewriting, using (29), the fact that gcd(a, a + k) = gcd(a, a − k), and dividing by
x, yields the result.

The polynomials p[a] seem to be irreducible over Z and their zeros are in some
sense close to the a-th roots of unity; see Figures 4.10 and 4.10.

Figure 1: The roots of p[37] are depicted as crosses and the 37th roots of unity as
points. This figure shows that when a is prime the roots of p[a] that are close to 1
are closer to ath roots of unity.
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Figure 2: The roots of p[35] are depicted as crosses and the 35th roots of unity
as points. This figure shows that roots of p[a] are closest to primitive ath roots of
unity.

4.11. A Series Related to the Lambert Series of φa

Liouville [9] also showed
∞�

m=1

φ(m)
xm

1 + xm
= (1 + x2)

x

(1− x2)2
.

We show that
∞�

m=1

φa(m)
xm

1 + xm
= q[a](x)

x

(1− x2a)2
, (46)

where q[a](x) =
�4a

k=1 b[a](k)xk−1, with b[a] = h[a] ◦ t[2a], and h[a](k) = ida(k) −
2[2 | k]ida(k/2).

Proof. As the left-hand side of (46) is obtained from the left-hand side of (45) by
subtracting twice the same series with x replaced by x2, the same is true for the
right-hand side. Thus it follows that q[a](x) = p[a](x)(1 + xa)2 − 2p[a](x2)x, and
hence, that

b[a](k) =






ida(k)− 2[2 | k]ida(k/2) k ≤ a,
ida(2a− k) + 2ida(k − a)− 2[2 | k]ida(k/2) a < k ≤ 2a,
2ida(3a− k) + ida(k − 2a)− 2[2 | k]ida(2a− k/2) 2a < k ≤ 3a,
ida(4a− k)− 2[2 | k]ida(2a− k/2) 3a < k ≤ 4a.

The result follows due to the identities

ida(2a− k) + 2ida(k − a) = ida(k), 2ida(3a− k) + ida(k − 2a) = ida(4a− k),

which are easily verified using (29).
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We can express the functions b[a] and h[a] in terms of an interesting fractal
function. Let a function κ of two variables be defined recursively by

κ[a](n) =






0 2 | n, 2 � a, or n = 0,
κ[a/2](n/2) 2 | n, 2 | a,
τ(gcd(a, n)) 2 � n.

(47)

The following properties are easily verified using the definition. We have

κ[a](2a + n) = κ[a](2a− n), (48)

and, with gcd(a, b) = 1,

κ[an](bn) =
�

0 2 | b,
α(n) 2 � b,

(49)

where α denotes the number of odd divisors function, i.e., for all k and odd m

α(2km) = τ(m). (50)

Property (49) is a quite remarkable fractal property; from the origin in every direc-
tion we see either the zero sequence, or α, at different scales.

We claim that
h[a] = κ[a]id (51)

follows from (47), (50), and (29). From (51) and (48) we obtain

b[a] = κ[a]t[2a]. (52)

We now prove that 1 + x2 divides q[a] when a is odd.

Proof. Noting that b[a](2a + k) = b[a](2a − k) and, when 2 � a, b[a](2k) = 0, we
therefore have

q[a](x) =
2a�

n=1

b[a](2n− 1)x2n−2

=
a�

m=1

b[a](2a− 2m + 1)x2a−2m + b[a](2a + 2m− 1)x2a+2m−2

=
a�

m=1

b[a](2a− 2m + 1)x2a−2m(1 + x4m−2),

which vanishes at the points where x2 = −1.

Apart from the factor 1 + x2 when a is odd, the polynomial q[a] seems to be
irreducible over Z and its zeros are in some sense close to the (2a)th roots of −1 or,
to the (a + 1)st roots of unity, see Figure 4.11.
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Figure 3: The roots of q[19] are depicted as boxes, the 38th roots of −1 as points,
and the 20th roots of unity as crosses.

4.12. A Perfect Square

Our last identity generalizes the faint fact that φ(1) = 1. We have

n�

a=1

φa(n) = n2. (53)

Proof. For any lattice point (i, j) in the square [1, n]× [1, n] the product i · j mod n
is congruent to some a in the range [1, n].
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