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1 Introduction

The original Lax pair [11] was a duo of commuting linear differential operators repre-
senting the integrable Korteweg–de Vries (KdV) equation. Lax’s idea was to replace
a nonlinear partial differential equation (PDE), such as the KdV equation, by a pair
of linear PDEs of high-order (in an auxiliary eigenfunction) whose compatibility re-
quires that the nonlinear PDE holds. One can write these high-order linear PDEs as
a system of PDEs of first order; hence, replacing the Lax operators with a pair of
matrices. The Lax equation to be satisfied by these matrices is commonly referred
to as the zero-curvature representation [34] of the nonlinear PDE. The discovery of
Lax pairs was crucial for the further development of the inverse scattering transform
(IST) method, which had been introduced in [8].

For partial difference equations (P�Es) Lax pairs first appeared in the work of
Ablowitz and Ladik [1, 2], and subsequently in [16] for other equations. The funda-
mental characterization of integrable P�Es as being multi-dimensionally consistent
[6, 14] is intimately related to the existence of a Lax pair.

Lax pairs for P�Es are not only crucial for applying the IST, they can be used
to construct integrals for mappings and correspondences obtained as periodic reduc-
tions, using the so-called staircase method. This method was developed in [18] and
extended in [19] to cover more general reductions. Essential to the staircase method is
the construction of a product of Lax matrices (the monodromy matrix) whose charac-
teristic polynomial is an invariant of the evolution. In fact, the monodromy matrix can
be interpreted as one of the Lax matrices for the reduced mapping [20–22]. Through
expansion of the characteristic equation of the monodromy matrix in the spectral pa-
rameters a number of functionally independent invariants can be obtained. A recent
investigation [27] supports the idea that the staircase method provides sufficiently
many integrals for the periodic reductions to be completely integrable (in the sense
of Liouville–Arnold).

Finding a Lax pair for a given nonlinear equation, whether continuous or discrete,
is generally a difficult task. For PDEs the theory of pseudo potentials [28] might lead
to a Lax pair, but it only works in certain cases. The most powerful method to find
Lax pairs is the dressing method developed by Zakharov and Shabat in 1974 (see, e.g.,
[33]). Building on the key idea of the dressing method, there exists a straightforward,
algorithmic approach to derive a Lax pair [6, 14] for scalar P�Es that are consistent
around the cube (CAC). That approach is reviewed in Sect. 2.1. In Sect. 3, it is applied
to systems of lattice equations, as was done in [24, 29] for the case of the Boussinesq
system.

We are currently developing MATHEMATICA software for the symbolic computa-
tion of Lax pairs for lattice equations [7, 9]. Section 4 outlines the implementation
strategy for the verification of the CAC property and the computation (and subse-
quent verification) of the Lax pair. With the exception of the Q4 equation whose Lax
pair was given in [14], the software has been used to produce Lax pairs of the ABS
equations [3] and the (α,β)-equation. The latter is also known as the NQC equation
after Nijhoff, Quispel, and Capel [16] and its Lax pair was first reported in [25].

With respect to lattice systems, we computed Lax pairs of the Boussinesq and
Toda-modified Boussinesq systems [15], as well as the Schwarzian Boussinesq [13]
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and modified Boussinesq [32] systems. Using the code, we also computed Lax pairs
for the two-component potential KdV and nonlinear Schrödinger systems [12, 31].
Details of the calculations, and alternative Lax pairs, are given in Sect. 5. We obtained
new Lax pairs for the two- and three-component Hietarinta systems [10]. In contrast
to the 4 × 4 Lax matrices for the Hietarinta systems [10] obtained (independently) in
[35], the Lax matrices presented in this paper are 3 × 3 matrices.

2 Scalar Partial Difference Equations

2.1 Consistency Around the Cube for Scalar P�Es

The concept of multi-dimensional consistency was introduced independently in [6,
17]. The key idea is to embed the equation consistently into a multi-dimensional
lattice by imposing copies of the same equation, albeit with different lattice parame-
ters in different directions. The consistency for embedding a two-dimensional lattice
equation, defined on an elementary quadrilateral, into a three-dimensional lattice on a
cube is commonly referred to as consistency around the cube (CAC). For multi-affine
nonlinear P�Es with the CAC property there is an algorithmic way of deriving a Lax
pair.

In this paper we consider P�Es,

F (x, x1, x2, x12;p,q) = 0, (1)

which are defined on a two-dimensional quad-graph as shown in Fig. 1. The field
variable x = xn,m depends on lattice variables n and m. A shift of x in the horizon-
tal direction (the 1-direction) is denoted by x1 ≡ xn+1,m. A shift in the vertical or
2-direction by x2 ≡ xn,m+1 and a shift in both directions by x12 ≡ xn+1,m+1. Further-
more, F depends on the lattice parameters p and q which correspond to the edges
of the quadrilateral. Alternate notations are used in the literature. For instance, many
authors denote (x, x1, x2, x12) by (x, x̃, x̂, ˆ̃x) while others use (x00, x10, x01, x11).

In this paper, we assume that the initial values (indicated by solid circles) for x, x1

and x2 can be specified and that the value of x12 (indicated by an open circle) can
be uniquely determined by (1). To have single-valued maps, we assume that F is
multi-affine [6], which is sometimes called multi-linear. Atkinson [4] and Atkinson
and Nieszporksi [5] have recently given examples of P�Es that are multi-quadratic
and multi-dimensionally consistent.

Fig. 1 The P�E is defined on
the simplest quadrilateral
(a square)
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Fig. 2 The P�E holds on each
face of the cube.

In the simplest case, F is a scalar relation between values of a single dependent
variable x and its shifts (located at the vertices of an elementary square). Nonlin-
ear lattice equations of type (1) arise, for example, as the permutability condition
for Bäcklund transformations associated with integrable partial differential equations
(PDEs).

In more complicated cases, F is a nonlinear vector function of the vector x with
several components. In that case, (1) represents a system of P�Es. These systems are
called multi-component lattice equations. In such systems some equations might only
be defined on the edges of the square while others are defined on the whole square.
The vector case will be considered in Sect. 3.

To arrive at a cube, the planar quadrilateral is extended into the third dimension
as shown in Fig. 2, where parameter k is the lattice parameter in the third direction.
Although not explicitly shown in Fig. 2, all parallel edges carry the same lattice pa-
rameters.

A key assumption is that the original equation(s) holds on all faces of the cube.
These equations can therefore be generated by changes of variables and parameters,
or shifts of the original P�E. On the cube, they can be visualized as either trans-
lations, or rotations of the faces. For example, the equation on the left face can be
obtained via a rotation of the front face along the vertical axis connecting x and x2.
This amounts to applying to (1) the substitutions

x1 → x3, x12 → x23, and p → k, (2)

yielding F (x, x3, x2, x23; k, q) = 0. The equation on the back face of the cube can be
generated via a shift of (1) in the third direction, letting

x → x3, x1 → x13, x2 → x23, and x12 → x123, (3)

which yields F (x3, x13, x23, x123;p,q) = 0.
The equations on the back, right, and top faces of the cube all involve the unknown

x123 (indicated by the double open circle). Solving them yields three expressions
for x123. Consistency around the cube of the P�E requires that one can uniquely
determine x123 and that all three expressions coincide. As discussed in [23], this
three-dimensional consistency establishes integrability.

The consistency property does not depend on the actual mappings used to generate
the P�Es on the various faces of the cube. Mappings such as (2) and (3), which
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express the symmetries of the P�Es are merely a tool for generating the needed
P�Es quickly.

Example 1 Consider the lattice modified KdV (mKdV) equation [23] (also classified
as H3 with δ = 0 as listed in Table 1),

p(xx1 + x2x12) − q(xx2 + x1x12) = 0. (4)

This equation is defined on the front face of the cube. To verify CAC, variations of
the original P�E on the left and bottom faces of the cube are generated. Hence, (4) is
supplemented with two additional equations:

p(xx3 + x2x23) − q(xx2 + x3x23) = 0, (5a)

p(xx1 + x3x13) − q(xx3 + x1x13) = 0, (5b)

which yield solutions for x12, x13, and x23:

x12 = x(px1 − qx2)

qx1 − px2
, (6a)

x13 = x(px1 − kx3)

kx1 − px3
, (6b)

x23 = x(qx2 − kx3)

kx2 − qx3
. (6c)

Equations for the remaining faces (i.e., back, right and top) are then generated:

p(x3x13 + x23x123) − q(x3x23 + x13x123) = 0, (7a)

p(x1x13 + x12x123) − q(x1x12 + x13x123) = 0, (7b)

p(x2x12 + x23x123) − q(x2x23 + x12x123) = 0. (7c)

Each of these reference x123 and thus yield three distinct solutions for x123,

x123 = x3(px13 − qx23)

qx13 − px23
, (8a)

x123 = x2(px12 − kx23)

kx12 − px23
, (8b)

x123 = x1(qx12 − kx13)

kx12 − qx13
. (8c)

Remarkably, after substitution of (6a)–(6c) into (8a)–(8c) one arrives at the same
expression for x123, namely,

x123 = −px2x3(k
2 − q2) + qx1x3(p

2 − k2) + kx1x2(q
2 − p2)

px1(k2 − q2) + qx2(p2 − k2) + kx3(q2 − p2)
. (9)
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Fig. 3 Commuting scheme
resulting in the Lax equation.
M1 denotes the shift of M in the
1-direction (horizontally). L2
denotes the shift of L in the
2-direction (vertically)

Thus, (4) is consistent around the cube. The consistency is apparent from the fol-
lowing symmetry of the right hand side of (9). If we replace the lattice parameters
(p, q, k) by (l1, l2, l3) the expression would be invariant under any permutation of the
indices {1,2,3}.

Additionally, (9) does not reference x. This independence is referred to as the
tetrahedron property. Indeed, through (9), the top of a tetrahedron (located at x123) is
connected to the base of the tetrahedron with corners at x1, x2 and x3.

2.2 Computation of Lax Pairs for Scalar P�Es

In analogy with the definition of Lax pairs (in matrix form) for PDEs, a Lax pair for a
P�E is a pair of matrices, (L,M), such that the compatibility of the linear equations,
for an auxiliary vector function ψ ,

ψ1 = Lψ, (10a)

ψ2 = Mψ, (10b)

is equivalent to the P�E. The crux is to find suitable matrices L and M so that the
nonlinear P�E can be replaced by (10a)–(10b). To avoid trivial cases, the compati-
bility of (10a) and (10b) should only hold on solutions of the given nonlinear P�E.

The compatibility of (10a) and (10b) can be readily expressed as follows. Shift
(10a) in the 2-direction, i.e., ψ12 = L2ψ2 = L2Mψ . Shift (10b) in the 1-direction,
i.e., ψ21 = ψ12 = M1ψ1 = M1Lψ , and equate the results. Hence, L2Mψ = M1Lψ

must hold on solutions of the P�E. The compatibility is visualized in Fig. 3, where
commutation of the scheme indeed requires that L2M = M1L. The corresponding
Lax equation is thus

L2M − M1L
.= 0, (11)

where
.= denotes that the equation holds for solutions of the P�E.

As is the case for completely integrable PDEs, Lax pairs of P�Es are not unique
for they are equivalent under gauge transformations. Specifically, if (L,M) is a Lax
pair then so is (L, M) where

L = G1LG−1, M = G2MG−1, (12)

for any arbitrary non-singular matrix G . Indeed, (L, M) satisfy L2 M − M1 L =̇ 0,
which follows from (11) by pre-multiplication by G12 and post-multiplication by G−1.
Alternatively, φ1 = Lφ and φ2 = Mφ, provided φ = Gψ . The Lax pairs (L,M) and
(L, M) are said to be gauge equivalent.
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Returning to Example 1, we show that the CAC property implicitly determines the
Lax pair of a P�E. Indeed, observe that, as a consequence of the multi-affine structure
of the original P�E, the numerator and denominator of x13 in (6b) are linear in x3.
In analogy with the linearization of Riccati equations, substitute x3 = f

F
into (6b),

yielding

x13 = f1

F1
= f kx − Fpxx1

fp − Fkx1
. (13)

Hence,

f1 = t (f kx − Fpxx1) (14)

and

F1 = t (fp − Fkx1), (15)

where t (x, x1;p,k) is a function still to be determined. Defining ψ = [
f

F

]
, system

(14)–(15) can be written in matrix form (10a) where L = tLc and the “core” of the
Lax matrix L is given by

Lc =
[
kx −pxx1
p −kx1

]
. (16)

Using (6c), the computation of the Lax matrix M proceeds analogously. Indeed,

x23 = f2

F2
= f kx − Fqxx2

f q − Fkx2
(17)

holds if f2 = s(f kx − Fqxx2) and F2 = s(f q − Fkx2) where s(x, x2;q, k) is a
common factor to be determined. Thus, we obtain (10b) where M = sMc with

Mc =
[
kx −qxx2
q −kx2

]
. (18)

Note that x23 can be obtained from x13, and hence Mc from Lc, by replacing x1 → x2
(or simply, 1 → 2) and p → q . The final step is to compute s and t .

2.3 Determination of the Scalar Factors for Scalar P�Es

Specific values for s and t can be computed using (11). Substituting L = tLc and
M = sMc yields

st2(Lc)2Mc − ts1(Mc)1Lc
.= 0. (19)

All elements in the matrix on the left hand side must vanish. Remarkably, this yields
a unique expression for the ratio st2

ts1
.

For Example 1, using (16) and (18), Eq. (19) reduces to(
xx1ts1 − xx2st2

px2 − qx1

)

×
[
(k2 − p2)qx1 − (k2 − q2)px2 k(p2 − q2)x1x2

−k(p2 − q2) (k2 − p2)qx1 − (k2 − q2)px2

]
=

[
0 0
0 0

]
.

(20)
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This requires that

st2

ts1

.= x1

x2
, (21)

which has an infinite family of solutions. Indeed, the left hand side of (21) is invariant
under the change

t → a1

a
t, s → a2

a
s, (22)

where a(x) is arbitrary. Consistent with the notations in Sect. 2, a1 and a2 denote the
shifts of a in the 1- and 2-direction, respectively. By inspection,

t = s = 1

x
(23)

and

t = 1

x1
, s = 1

x2
; (24)

both satisfy (21). Note that (23) can be mapped into (24) by taking a = 1/x.
Avoiding guess work, t and s can be computed by taking the determinant of (19).

If Lc and Mc are n × n matrices, then

(st2)
ndet (Lc)2 detMc = (ts1)

ndet (Mc)1 detLc, (25)

yielding

st2

ts1
= n

√
det(Mc)1 detLc

det(Lc)2 detMc

, (26)

which is satisfied by

t = 1
n
√

detLc

, s = 1
n
√

detMc

. (27)

For Example 1, i.e., Eq. (4), by substituting (16) and (18) into (26), one then obtains

t = 1√
(p2 − k2)xx1

, s = 1√
(q2 − k2)xx2

. (28)

The constant factors involving p,q and k are irrelevant. Therefore, (28) can be re-
placed by

t = 1√
xx1

, s = 1√
xx2

. (29)

Thus, using the determinant method, a Lax pair for (4) is

L = 1√
xx1

[
kx −pxx1
p −kx1

]
, M = 1√

xx2

[
kx −qxx2
q −kx2

]
. (30)

The irrational t and s in (29) can be transformed into (23), by taking a = √
x, or into

(24), by a = 1√
x

, both yielding rational Lax pairs.
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3 Systems of Partial Difference Equations

Section 2 dealt with single (scalar) P�Es, i.e., equations involving only one field
variable (denoted by x). This section covers systems of P�Es defined on quadri-
laterals involving multiple field variables. Here we will consider examples involv-
ing three field variables x, y, and z. Figures 1 and 2 still apply provided we replace
the scalar x by vector x ≡ (x, y, z). Hence, x1 = (x1, y1, z1),x2 = (x2, y2, z2),x12 =
(x12, y12, z12), etc.

3.1 Consistency Around the Cube for Systems of P�Es

To apply the algorithm in Sect. 2.2 to systems of P�Es, it is necessary to maintain
consistency for all equations on all six faces of the cube, handle the edge equations
in an appropriate way, and ultimately arrive at the same expressions for x123, as well
as for y123 and z123.

Example 2 Consider the lattice Schwarzian Boussinesq system [13]:

x1y − z1 + z = 0, (31a)

x2y − z2 + z = 0, (31b)

xy12(y1 − y2) − y(px1y2 − qx2y1) = 0. (31c)

Equations (31a) and (31b) are defined along a single edge of the square while (31c)
is defined on the whole square. The edge equations, unlike the face equation, can be
shifted in the 1- or 2-directions while still remaining on the square. Then, (31a)–(31c)
is augmented with additional shifted edge equations,

x12y2 − z12 + z2 = 0, (32a)

x12y1 − z12 + z1 = 0, (32b)

obtained from (31a) and (31b), respectively. Solving for the variables x12 =
(x12, y12, z12) referenced in the augmented system (i.e., (31a)–(31c) augmented with
(32a), (32b)) gives

x12 = z2 − z1

y1 − y2
, (33a)

y12 = y(px1y2 − qx2y1)

x(y1 − y2)
, (33b)

z12 = y1z2 − y2z1

y1 − y2
. (33c)

Continuing as before by generating the variations of (31a)–(31c) on the faces of the
cube and solving for the variables with double subscripts yields x13 and x23. Indeed,
from the equations on the bottom face (not shown) one gets x13 with components

x13 = z3 − z1

y1 − y3
, (34a)
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y13 = y(px1y3 − kx3y1)

x(y1 − y3)
, (34b)

z13 = y1z3 − y3z1

y1 − y3
, (34c)

which readily follow from (33a)–(33c) by replacing x2 → x3,x12 → x13, and q → k.
Or simpler, 2 → 3 and q → k. Similarly, the equations on the left face of the cube
determine x23 with components

x23 = z2 − z3

y3 − y2
, (35a)

y23 = y(kx3y2 − qx2y3)

x(y3 − y2)
, (35b)

z23 = y3z2 − y2z3

y3 − y2
, (35c)

easily obtained by a change of labels and parameters, namely, 1 → 2,p → q,2 → 3,
and q → k. Likewise, the equations on the back face (not shown) determine x123 with
components

x123 = z23 − z13

y13 − y23
, (36a)

y123 = y3(px13y23 − qx23y13)

x3(y13 − y23)
, (36b)

z123 = y13z23 − y23z13

y13 − y23
, (36c)

which follow from (33a)–(33c) by applying the shift in the third direction. This
amounts to “adding” a label 3 to all variables. Similarly, the equations on the right
face (suppressed) yield x123 with components

x123 = z12 − z13

y13 − y12
, (37a)

y123 = y1(kx13y12 − qx12y13)

x1(y13 − y12)
, (37b)

z123 = y13z23 − y12z13

y13 − y12
, (37c)

which follow from (35a)–(35c) by applying a shift in the 1-direction. Finally, the
equations on the top face (suppressed) yield

x123 = z23 − z12

y12 − y23
, (38a)

y123 = y2(px12y23 − kx23y12)

x2(y12 − y23)
, (38b)
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z123 = y12z23 − y23z12

y12 − y23
, (38c)

obtained from (34a)–(34c) by a shift in the 2-direction.
Using (33a)–(35c) to evaluate the expressions (36a)–(38c) yields the same x123

with

x123 = x(x1 − x2)(y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2))

(z1 − z2)(px1(y3 − y2) + qx2(y1 − y3) + kx3(y2 − y1))
, (39a)

y123 = q(z2 − z1)(kx3y1 − px1y3) + k(z3 − z1)(px1y2 − qx2y1)

x1(px1(y3 − y2) + qx2(y1 − y3) + kx3(y2 − y1))
, (39b)

z123 = px1(y3z2 − y2z3) + qx2(y1z3 − y3z1) + kx3(y2z1 − y1z2)

px1(y3 − y2) + qx2(y1 − y3) + kx3(y2 − y1)
. (39c)

Thus, (31a)–(31c) is multi-dimensionally consistent around the cube, i.e., the systems
of P�Es is consistent around the cube with respect to each component of x, i.e., x, y

and z.
The expressions for x123 and y123 can be written in more symmetric form by

eliminating z1, z2, and z3. To do so, we use the edge equations

x3y − z3 + z = 0, (40a)

x2y − z2 + z = 0, (40b)

defined on the left face of the cube. Subtracting (31a) from (31b) and (40a) from
(40b) yields

z2 − z1

x2 − x1
= z3 − z2

x3 − x2
= z3 − z1

x3 − x1
= y. (41)

Using the above ratios, (39a) and (39b) can be replaced by

x123 = x(y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2))

px1(y3 − y2) + qx2(y1 − y3) + kx3(y2 − y1)
, (42a)

y123 = y(kqy1(x2 − x3) + kpy2(x3 − x1) + pqy3(x1 − x2))

px1(y3 − y2) + qx2(y1 − y3) + kx3(y2 − y1)
. (42b)

Before continuing with the calculations of a Lax pair, it is worth noting that (31a)–
(31c) does not satisfy the tetrahedron property because x explicitly appears in the
right hand side of (39a). The impact of not having the tetrahedron property remains
unclear but does not affect the computation of a Lax pair.

3.2 Computation of a Lax Pair for Systems of P�Es

Both the numerators and denominators of the components of x13 and x23 (in (34a)–
(34c) and (35a)–(35c), respectively), are affine linear in the components of x. Due
to their linearity in x3, y3 and z3, substitution of fractional expressions for x3, y3
and z3 will allow one to compute Lax matrices. In contrast to the scalar case, the
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computations are more subtle because the edge equations on the left face of the cube
introduce constraints between x3 and z3.

Continuing with Example 2, solving (40a) for x3 yields

x3 = z3 − z

y
. (43)

Therefore, setting

z3 = f

F
(44a)

and

y3 = g

G
(44b)

determines

x3 = z3 − z

y
= f − Fz

Fy
. (44c)

Substituting (44a)–(44c) into (34a)–(34c) then yields

x13 = G(Fz1 − f )

F (g − Gy1)
, (45a)

y13 = Gf ky1 − Fgx1y − FGky1z

Fx(g − Gy1)
, (45b)

z13 = Fgz1 − Gfy1

F(g − Gy1)
, (45c)

which are not yet linear in f , g, F , and G. Additional constraints between f , g, F

and G will achieve this goal. Indeed, setting G = F simplifies (45a)–(45c) into

x13 = f − Fz1

Fy1 − g
, (46a)

y13 = gpx1y − f ky1 + Fky1z

x(Fy1 − g)
, (46b)

z13 = fy1 − gz1

Fy1 − g
. (46c)

Simultaneously, (44a)–(44c) reduces to

z3 = f

F
, (47a)

y3 = g

F
, (47b)

x3 = f − Fz

Fy
, (47c)
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whose shifts in the 1-direction must be compatible with (46a)–(46c). Equating z13 =
f1
F1

with (46c) requires that

f1 = t (fy1 − gz1) (48)

and

F1 = t (Fy1 − g). (49)

Next, equating y13 = g1
F1

with (46b) gives

g1 = t
1

x
(gpx1y − f ky1 + Fky1z). (50)

Finally, one has to verify that the 1-shift of (47c),

x13 = f1 − F1z1

F1y1
, (51)

matches (46a). That is indeed the case. After substitution of f1 and F1 into (51)

x13 = t (fy1 − gz1) − t (Fy1 − g)z1

t (Fy1 − g)y1
= f − Fz1

Fy1 − g
. (52)

Defining ψ = [ g

f

F

]
, Eqs. (48)–(50) can be written in matrix form yielding (10a) with

L = t

⎡
⎣px1y

x
− ky1

x
ky1z
x−z1 y1 0

−1 0 y1

⎤
⎦ , (53)

where t (x,x1;p,k). Similarly, from (35a)–(35c) one derives

M = s

⎡
⎣ qx2y

x
− ky2

x
ky2z
x−z2 y2 0

−1 0 y2

⎤
⎦ , (54)

which can also be obtained from (53) by applying the replacement rules 1 → 2 and
p → q .

3.3 Determination of the Scalar Factors for Systems of P�Es

As discussed in Sect. 2.3, specific values for s and t may be computed algorithmically
using (27). For Example 2, this yields

t = 1

3
√

(k−p)y2
1 (z−z1)

x

, s = 1

3
√

(k−q)y2
2 (z−z2)

x

. (55)

Canceling trivial factors, a Lax pair for (31a)–(31c) is thus given by

L = 3

√
x

y2
1(z − z1)

⎡
⎣px1y

x
− ky1

x
ky1z
x−z1 y1 0

−1 0 y1

⎤
⎦ , (56a)
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M = 3

√
x

y2
2(z − z2)

⎡
⎣ qx2y

x
− ky2

x
ky2z
x−z2 y2 0

−1 0 y2

⎤
⎦ . (56b)

Unfortunately, these matrices have irrational functional factors. Using (11) we find
the following equation for the scalar factors:

st2

ts1

.= y1

y2
. (57)

One can easily verify that (57) is satisfied by

t = s = 1

y
and t = 1

y1
, s = 1

y2
, (58)

which both yield rational Lax pairs. The factors t, s in (58) are related to those in
(55). Using (31a), t in (55) can be written as

t = 3

√
x

(p − k)y2
1yx1

. (59)

After applying (22) with a = 3
√

x/y, one can simplify the cube root to find t = 1/y1,
where the trivial factor 1/ 3

√
p − k has been canceled. A further application of (22)

with a = y then yields t = 1/y. The connections between the choices for s are similar.
An alternate form of a Lax pair is possible. Had the original constraint given by

(40a) been expressed as

z3 = x3y + z, (60)

the substitutions would become

x3 = f̃

F̃
, (61a)

y3 = g̃

F̃
, (61b)

z3 = f̃ y + F̃ z

F̃
. (61c)

With φ = [ f̃

g̃

F̃

]
, L would then be given by

L = t

⎡
⎣px1y

x
− kyy1

x
0

0 y z − z1
−1 0 y1

⎤
⎦ . (62)

Note that the matrices (53) and (62) are gauge equivalent as defined in (12) with

G =
⎡
⎣1 0 0

0 1/y −z/y

0 0 1

⎤
⎦ . (63)
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4 Implementation

4.1 Consistency Around the Cube

The CAC property has been used to identify integrable P�Es [3, 10]. As shown in
both examples, the information gained from the process of verifying CAC is also
crucial to the computation of the corresponding Lax pair. In some sense the lattice
equation is its own Lax pair, cf. the discussion in [14].

For scalar P�Es, CAC is a simple concept that can be verified by hand or (inter-
actively) with a computer algebra system (CAS) such as MATHEMATICA or MAPLE.
Hereman [9] designed software to compute Lax pairs of scalar P�Es defined on a
quadrilateral. For systems of P�Es with edge equations the verification of the CAC
property can be tricky and the order in which substitutions are carried out is impor-
tant. Designing a symbolic manipulation package that fully automates the steps is
quite a challenge [7].

Naively, one could first generate the comprehensive system that represents the
P�Es on each face of the cube and then ask a CAS to solve it. To be consistent
around the cube, that system should have a unique solution for x123. Wolf [30] dis-
cusses the computational challenges of verifying the CAC property for scalar P�Es in
three dimensions [26] due to the astronomical size of the overdetermined system that
has to be solved. Even for P�Es in two dimensions, in particular, those involving
edge equations, automatically solving such a system often exceeds the capabilities
of current symbolic software packages. It is therefore necessary to verify CAC in a
more systematic way like one would do with pen on paper. Computer code [7] for
automated verification of the CAC property carries out the following steps:

1. Solve the initial P�E for x12. Solve the equations on the bottom and left faces for
x13 and x23, respectively. Generate the equations for the back, right and top equa-
tions and solve each for x123. This produces three expressions for the components
of x123.

2. Evaluate and simplify the solutions x123 using x12,x13, and x23. Use the con-
straints between the components of x,x1,x2, and x3 arising from the edge equa-
tions to check consistency at every level of the computation.

3. Finally, verify if the three expressions for the components of x123 are indeed equal.
If so, the system of P�Es is consistent around the cube and one can proceed with
the computation of the Lax matrices.

4.2 Computation of a Lax Pair

Assuming the given P�E is CAC, the following steps are then taken to calculate a
Lax pair:

1. Introduce fractional expressions (e.g., f
F

,
g
G

, etc.) for the various components of
x3 in order to linearize the numerators and denominators of the expressions for
x13 in terms of f,F,g,G, etc.

2. Further simplify the components of x3 using the edge equations (if present in the
given P�E).
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3. Substitute the simplified expressions for x3 into x13 and again examine if the nu-
merators and denominators are linear in f,F,g,G, etc.

4. If x13 is not yet “linearized”, reduce the degree of freedom (e.g., by setting G =
F , etc.) and repeat this procedure until the numerators and denominators of the
components of x13 are linear in f,F,g, etc.

5. Use the fractional linear expressions of x13 to generate the “core” Lax matrix Lc.
6. Use the determinant method (see (27)) to compute a possible scaling factor t .
7. The Lax matrix is then L = tLc. The matrix M = sMc follows from L by replac-

ing p by q and x1 by x2.

4.3 Verification of the Lax Pair

Finally, verify the Lax pair by substitution into the Lax equation (11). Unfortunately,
the determinant method gives s and t in irrational form, introducing, e.g., square or
cubic roots into the symbolic computations. In general, symbolic software is limited
in simplification of expressions involving radicals. The impact of the presence of
radical expressions can be reduced by careful simplification. Notice that (19) can be
written as

(st2)

(ts1)
(Lc)2Mc − (Mc)1Lc

.= 0. (64a)

Bringing all common factors from the matrix products up front gives

(
st2

ts1

CFL2M

CFM1L

)
L̃2M̃ − M̃1L̃

.= 0, (64b)

where CFX stands for a common factor of all the entries of a matrix X. Hence,
CFL2ML̃2M̃ = (Lc)2Mc and CFM1LM̃1L̃ = (Mc)1Lc. The computed Lax pair is cor-
rect if (

st2

ts1

CFL2M

CFM1L

)
.= ±1 (65a)

and thus

±L̃2M̃ − M̃1L̃
.= 0. (65b)

To illustrate the verification procedure, consider Example 2 with t and s in (55).
Here,

st2

ts1
=

3
√

x

(k−q)y2
2 (z−z2)

3

√
x2(y2−y1)

3(z−z2)

(k−p)yy2(py2(z1−z)+qy1(z−z2))
2(z1−z2)

3
√

x

(k−p)y2
1 (z−z1)

3

√
x2(y2−y1)

3(z−z1)

(k−q)yy1(py2(z1−z)+qy1(z−z2))
2(z1−z2)

, (66a)

CFL2M = y2

x(y1 − y2)
and CFM1L = y1

x(y1 − y2)
. (66b)
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The matrix L̃2M̃ (which equals M̃1L̃) is

⎡
⎢⎢⎢⎢⎢⎢⎣

−pqy(z1 − z2) ky(qy1 − py2) ky(py2z1 − qy1z2)

pz2(z − z1) + qz1(z2 − z)
k(y1z2 − y2z1)

+ py2(z1 − z) + qy1(z − z2)
kz(y2z1 − y1z2)

p(z − z1) + q(z2 − z) k(y1 − y2)
kz(y2 − y1) + py2(z1 − z)

+ qy1(z − z2)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(67)
Note that

CFL2M

CFM1L

= y2

y1
. (68)

After multiplying (68) with (66a), the resulting expression can be simplified1 into 1.
Thus, both (65a) and (65b) are satisfied for the plus sign.

5 Results

The algorithm discussed in this paper is being implemented in MATHEMATICA and
preliminary versions of the software [7, 9] are being verified against many known
P�Es. The Lax matrices L, including those for Examples 1 and 2 in the paper, are
presented in Tables 1 through 5. The matrix M follows from the matrix L by the
replacements x1 → x2 and p → q .

5.1 Scalar P�Es

The scalar P�Es given in Tables 1 and 2 are referenced by the names given in the
classification by Adler, Bobenko, and Suris [3]. Each of these P�Es involves the
scalar field variable x and its shifts. The substitution used in the computation of a
Lax pair is

x3 = f

F
. (69)

Thus, the linear equations have the form (10a)–(10b), in which

ψ =
[
f

F

]
. (70)

Scaling factors can be computed with the determinant method but they are often
irrational. If for scalar P�Es the ratio st2

ts1
can be factored, i.e.,

st2

ts1
= P (x, x1;p,q)Q(x, x1;p,q)

P (x, x2;q,p)Q(x, x2;q,p)
, (71)

1Use the MATHEMATICA function POWEREXPAND or simply cube the expression.
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then potential candidates for the scaling factors are

t = 1

P (x, x1;p,q)
, s = 1

P (x, x2;q,p)
and

(72)

t = 1

Q(x, x1;p,q)
, s = 1

Q(x, x2;q,p)
.

To verify that the candidate scaling factors actually work, L = tLc and M = sMc

must satisfy (11). If they do work, such t and s are rational and preferred over the
irrational scaling factors computed by the determinant method. The alternative ratio-
nal scaling factors, obtained in this way, are listed for Q1 and the (α,β)-equation in
Table 2. The Lax pair for the (α,β)-equation was first presented in [25].

A similar situation happens with Q3 when δ = 0 where in addition to the irrational
expression of t one has two rational alternatives, namely, t = 1/(px − x1) and t =
1/(px1 − x) which both satisfy

st2

ts1

.= (q2 − 1)(px − x1)(px1 − x)

(p2 − 1)(qx − x2)(qx2 − x)
. (73)

For the equations A1 and A2 in Table 1, the ratio st2
ts1

is also of the form (71) but
the choices (72) are not valid. The irrational forms of t and s as listed in Table 1 have
to be used.

The Lax pair for Example 1, i.e., (4), follows from the one for H3 by setting δ = 0.
However, when δ = 0, the factors t and s can be taken rational (see (23) and (24)).

Further alternate rational factors are obtained using (22) for the Schwarzian, mod-
ified, Toda-modified Boussinesq equations as well as the Hietarinta systems.

5.2 Systems of P�Es

5.2.1 Boussinesq Systems

For the Boussinesq system [15] in Table 3, ψ = [ F
f
g

]
. Substitution of

x3 = f

F
, y3 = g

F
, and z3 = f x − Fy

F
(74)

yields the Lax matrix given in Table 3.
Representing the edge constraint as x3 = z3+y

x
requires

x3 = f̃ + F̃ y

F̃ x
, y3 = g̃

F̃
, and z3 = f̃

F̃
. (75)

For φ = [ F̃

f̃

g̃

]
, a resulting gauge equivalent L matrix is then

L = 1

x

⎡
⎣ xx1 − y −1 0

yy1 y1 −xx1

x(k − p + xy1) − z(xx1 − y) z −x2

⎤
⎦ , (76)
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where the gauge matrix, cf. (12), is given by

G =
⎡
⎣ 1 0 0

y/x 1/x 0
0 0 1

⎤
⎦ . (77)

5.2.2 Hietarinta Systems

For each system given in Table 4, ψ = [ f
g

G

]
. However, the substitutions are impacted

by the edge equations in the systems. For system A-2, the edge constraint was repre-
sented as x3 = x+y3

z
resulting in substitutions of

x3 = g + Gx

Gz
, y3 = g

G
, and z3 = f

G
. (78)

Writing the edge constraint as y3 = x + x3z requires one to work with

x3 = g̃

G̃
, y3 = G̃x − g̃z

G̃
, and z3 = f̃

G̃
. (79)

Setting φ = [ f̃

g̃

G̃

]
, the resulting gauge equivalent L matrix is given by

L =
⎡
⎢⎣

y
x

k
x

−px1+yz1
x

0 1 −x1
1 0 −z1

⎤
⎥⎦ , (80)

where L and L are connected as shown in (12) with

G =
⎡
⎣1 0 0

0 1/z x/z

0 0 1

⎤
⎦ . (81)

For system B-2, the edge constraint was represented as x3 = z+y3
x

, resulting in

x3 = g + Gz

Gx
, y3 = g

G
, and z3 = f

G
. (82)

Representing the edge constraint as y3 = z + x3x yields

x3 = g̃

G̃
, y3 = g̃x − G̃z

G̃
, and z3 = f̃

G̃
. (83)

With φ = [ f̃

g̃

G̃

]
the resulting gauge equivalent L matrix is given by

L =
⎡
⎣δ + x −(xδ + y) k − p + x1(xδ + y) − z1(δ + x)

1 0 −z1
0 1 −x1

⎤
⎦ , (84)
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where L and L are connected (cf. (12)) by

G =
⎡
⎣1 0 0

0 1/x z/x

0 0 1

⎤
⎦ . (85)

For system C-3, the edge constraint was represented as x3 = x + zy3 and

x3 = Gx + gz

Gx
, y3 = g

G
, and z3 = f

G
. (86)

Representing the edge constraint as y3 = x3−x
z

requires

x3 = g̃

G̃
, y3 = g̃ − G̃x

G̃z
, and z3 = f̃

G̃
. (87)

Letting φ = [ f̃

g̃

G̃

]
, a gauge equivalent L matrix is

L = 1

z

⎡
⎣ δ1+xδ2−pzy1

y
kz1
y

− (δ1+xδ2+kx)z1
y

x1 −z1 0
1 0 −z1

⎤
⎦ , (88)

with gauge matrix

G =
⎡
⎣1 0 0

0 z x

0 0 1

⎤
⎦ . (89)

For system C-4, the edge constraint was represented as x3 = x + zy3. Hence,

x3 = Gx + gz

Gx
, y3 = g

G
, and z3 = f

G
. (90)

Representing the edge constraint as y3 = x3−x
z

requires

x3 = g̃

G̃
, y3 = g̃ − G̃x

G̃z
, and z3 = f̃

G̃
. (91)

With φ = [ f̃

g̃

G̃

]
, a resulting gauge equivalent L matrix is

L = 1

z

⎡
⎣ δ1+xx1−pzy1

y
(k−x)z1

y
− (δ1+kx)z1

y

x1 −z1 0
1 0 −z1

⎤
⎦ , (92)

with gauge matrix

G =
⎡
⎣1 0 0

0 z x

0 0 1

⎤
⎦ . (93)
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5.2.3 Two-Component pKdV and NLS Lattices

In finding a Lax pair for the two-component pKdV system [31] given in Table 5, the
initial substitutions are

x3 = f

F
and y3 = g

G
, (94)

which lead to the proper form of the components of x13. Thus, the resulting Lax pair
comprises 4 × 4 matrices, as the linear equations involve the auxiliary vector

ψ =

⎡
⎢⎢⎣

f

F

g

G

⎤
⎥⎥⎦ . (95)

Also, an additional scaling factor is introduced by the disparate substitutions. In this
case, the constraints on the scaling factors become

tT = 1√
detLc

= 1

p − k
. (96)

Hence, one can take t = T = 1.
For the lattice NLS system [31] given in Table 5, one is only able to solve for

x13 and x23 despite having equations referencing y. Thus, the substitution of x3 = f
F

suffices to linearize the components of x13. The resulting Lax matrices, L and M , are
2 × 2 matrices and

ψ =
[
f

F

]
. (97)

6 Conclusion

We gave a detailed review of a three-step method [6, 14] to compute Lax pairs for
scalar P�Es defined on quadrilaterals and subsequently applied the method to sys-
tems of P�Es. It was shown that for systems involving edge equations the derivation
of Lax pairs can be quite tricky.

The paper also serves as a repository of Lax pairs, not only for the scalar integrable
P�Es classified by Adler, Bobenko, and Suris [3], but for systems of P�Es includ-
ing the discrete potential KdV equation, as well as various nonlinear Schrödinger
and Boussinesq-type lattices. Previously unknown Lax pairs are presented for P�Es
recently derived by Hietarinta [10].

Preliminary software [9] is available to compute Lax pairs of scalar P�Es defined
on quadrilaterals. The extension of the code to systems of P�Es is a nontrivial exer-
cise. In the near future we hope to release a fully automated MATHEMATICA package
[7] for the computation (and verification) of Lax pairs of two-dimensional P�Es sys-
tems defined on quadrilaterals.
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