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Abstract
In this communication, we present a sufficient number of first integrals for the
Lyness equation of arbitrary order. We first use the staircase method (Quispel
et al 1991 Physica A 173 243–66) to construct integrals of a derivative equation
of the Lyness equation. Closed-form expressions for the integrals are given
based on a non-commutative Vieta expansion. The integrals of the Lyness
equation then follow directly from these integrals. Previously found integrals
for the Lyness equation arise as special cases of our new set of integrals.

PACS number: 02.30.Ik

1. Introduction

We consider the pth-order Lyness equation or the p-dimensional Lyness mapping

unun+p = a + un+1 + un+2 + · · · + un+p−1. (1)

This equation is a generalization of the equation which was first written by Lyness in 1942 [15]
where p = 2 and a = 1. Recently, equation (1) and its particular cases have been studied by
several authors [2, 3, 5–8, 13]. One important aspect in the study of the Lyness equation (1),
or difference equations in general, is finding its integrals (invariants). Up to now, only three
integrals of the pth-order Lyness equation have been found. The first invariant was given in
[7, 11, 12]. The second and the third invariants were discovered in 2004 by Gao et al with
the help of computer algebra [8], as well as fourth invariants for the seventh- and eighth-order
Lyness equations. The authors conjectured that the pth-order Lyness equation has up to
�(p +1)/2� integrals, which is a sufficient number of integrals for complete integrability in the
sense of Liouville–Arnold (a 2N -dimensional symplectic map has N functionally independent
integrals which are in involution with respect to the symplectic structure [4, 25]).

In a recent paper [9], Grammaticos et al have pointed out that the Lyness equation (1)
satisfies two criteria of integrability namely having singularity confinement and polynomial
growth. This means that the Lyness equation is a good candidate for integrability in the
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sense of Liouville–Arnold. The authors of [9] also bilinearized the following consequence of
equation (1), which is equation (1) minus its upshifted version:

un+p(1 + un) = un+1(1 + un+p+1). (2)

We will call equation (2) the derivative Lyness equation. In [9], it was shown that the associated
bilinear equation is a reduction of the integrable Hirota–Miwa equation. However, this does
not allow us to calculate first integrals of the derivative equation.

There exists a method, called the staircase method, to construct integrals for a certain class
of ordinary difference equations. This method was introduced in [16, 17] and generalised in
[20, 23, 24]. Integrals were obtained for ordinary difference equations (O�Es), derived as
travelling wave reductions of integrable partial difference equations (P�Es), i.e. P�Es which
exhibit a Lax pair. A so-called monodromy matrix is constructed by taking a product of Lax
matrices (L,M) along a one-period segment of the periodic staircase. By expanding the trace
of the monodromy matrix in powers of the spectral parameter, one will obtain integrals for
the corresponding O�E. To give closed-form expressions for integrals, in [22] we used this
method in conjunction with a non-commutative Vieta expansion and a certain way of splitting
Lax matrices. In that paper, integrals for reductions of ABS equations [1] were expressed in
terms of multi-sums of products, �.

In this communication, we observe that the derivative Lyness equation (2) is a travelling
wave reduction of a certain two-dimensional integrable P�E. It turns out therefore that one can
use the staircase method to obtain integrals for the derivative Lyness equation. Moreover, we
will show that the Lax matrix L for equation (2) fits in the framework of [22], i.e. we obtain the
integrals of the derivative Lyness equation in closed form. Integrals of the pth-order Lyness
equation (1) are then obtained directly from those of the derivative Lyness equation. This
settles the conjecture given in [8] in the affirmative. Furthermore, this result indicates that the
Lyness equation is a good candidate for complete integrability in the Liouville–Arnold sense.

The communication is organized as follows. In section 2, we will recall the staircase
method for (p,−1)-travelling wave reductions. In section 3, we will give a Lax pair for the
partial difference equation associated with equation (2). This Lax pair is derived from a Lax
pair for equation (26) in [14] and a gauge transformation. Then, we will give closed-form
expressions for integrals of the derivative Lyness equation (2). Once again, these integrals
can be expressed in terms of multi-sums of products, �, introduced in [22]. We will derive
integrals of the original equation (1) from the integrals of the derivative Lyness equation in
section 5. One will see that all three integrals given in [8] can be derived as special cases from
our closed-form expressions. Finally, we give some relations between the integrals and we
discuss the functional independence of the integrals.

2. Staircase method for (p, −1)-travelling wave reductions

In this section, we recall the staircase method which was introduced in [16, 17]. We consider
a two-dimensional P�E with field variable u,

f (ul,m, ul+1,m, ul,m+1, ul+1,m+1;α) = 0, (3)

and parameters α = (α1, α2, . . . , αk). An (s1, s2)-reduction can be performed to find solutions
that satisfy the periodicity condition ul,m = ul+s1,m+s2 [20, 23, 24]. For our purpose here, we
take s1 = p and s2 = −1. We introduce a similarity variable n = l + mp. Then, ul,m satisfies
the periodicity ul,m = ul+p,m−1, and the P�E reduces to the O�E

fn = f (un, un+1, un+p, un+p+1;α) = 0. (4)
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We suppose that equation (3) arises as the compatibility condition of two linear equations, that
is it has a Lax pair. A Lax pair Ll,m,Ml,m for a P�E (3) is a pair of matrices that satisfies, cf
[18],

Ll,mM−1
l,m − M−1

l+1,mLl,m+1 = 0, (5)

for solutions of the equation. Similarly, an O�E has a Lax pair if there are non-singular
matrices Ln,Mn that satisfy

MnLn − Ln+1Mn = 0. (6)

The monodromy matrix Ln for the (p,−1)-reduction is given by, cf [17],

Ln = M−1
n

�

p−1∏
i=0

Li+n, (7)

where the inversely ordered product is
�

b∏
i=a

Li := LbLb−1 . . . La+1La. (8)

Taking Mn = Ln, we obtain a Lax pair Ln,Mn for the reduced O�E (4) from the Lax pair
of the corresponding P�E (3). This was first observed in [18]. Lax pairs for O�Es obtained
from general (s1, s2)-reductions have been studied in [20].

It follows from equation (6) that the trace of Ln is invariant under the map obtained from
an O�E. Since the Lax matrices generally depend on a spectral parameter, integrals for the
O�E (4) are obtained by expanding the trace of the monodromy matrix (or powers there of,
or its determinant) in powers of the spectral parameter.

3. Lax pair for the derivative Lyness equation

The derivative Lyness equation (2) is a (p,−1)-travelling reduction of the following P�E:

ul,m+1(1 + ul,m) = ul+1,m(1 + ul+1,m+1). (9)

This equation is known as the ‘discrete Lotka–Voltera equation of type I’ [10], and is a discrete
form of KdV [19]. A Lax pair for a generalisation of this equation has been given in [14].

It is easy to see that equation (9) is equivalent to the equation(
ul,m − 1

2

) (
ul+1,m + 1

2

) = (
ul+1,m+1 − 1

2

) (
ul,m+1 + 1

2

)
, (10)

using the transformation ul,m �→ −um,l − 1/2 and interchanging l and m, which equals
equation (31) in [14], taking αj = 1/2. Using the Lax pair given in [14] for equation (10), we
find the following Lax pair for equation (9):

Ll,m =
⎛⎝ λ −ul+1,m

1

ul+1,m + 1

λul+1,m

ul+1,m + 1

⎞⎠ , Ml,m =
(

λ −(ul,m + 1)ul,m+1

1 0

)
. (11)

Now we will use a gauge transformation to obtain a more suitable form of a Lax pair for this
equation. Recall that if a P�E has a Lax pair (Ll,m,Ml,m), then a gauge matrix Gl,m, which
can depend on dependent/independent variables and on the spectral parameter, will give us a
new Lax pair (L̃l,m, M̃l,m) where

L̃l,m = Gl+1,mLl,mG−1
l,m, M̃l,m = Gl,m+1Ml,mG−1

l,m. (12)
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Applying the gauge

Gl,m =
(

1/λ 0
0 1

)
(13)

to the Lax pair (Ll,m/λ,Ml,m/λ), we obtain a new Lax pair for equation (9) as follows:

L̃l,m =

⎛⎜⎝ 1
−ul+1,m

λ2

1

ul+1,m + 1

ul+1,m

ul+1,m + 1

⎞⎟⎠ , M̃−1
l,m =

⎛⎝ 0 1
−λ2

ul,m+1(ul,m + 1)

λ2

ul,m+1(ul,m + 1)

⎞⎠ .

(14)

We will show in the next section that this new Lax pair does fit in the framework of [22].

4. Closed-form expressions for integrals of the derivative Lyness equation

In this section, we will give closed-form expressions for integrals of the derivative
Lyness equation (2). These integrals again can be expressed in terms of multi-sums of
products, � [22]. We also calculate the integrating factors of these integrals. Recall that
�n(un, un+1, . . . , un+p+1) is an integrating factor corresponding to an integral In = I (un, un+1,

. . . , un+p) of equation (4), fn = 0, if

In+1 − In = fn�n. (15)

Although invariance of the integrals is implied by the staircase method, we will prove it directly
by using the properties of the multi-sums of products, �, and at the same time, we obtain the
integrating factors. From now on, for our convenience, we write ui instead of un+i .

We denote k = −(λ2 + 1)/λ2, and we split the reduced L̃ matrices as we did in [22]. We
have

L̃i = kui+1

(
0 1
0 0

)
+

⎛⎝ 1 ui+1

1

ui+1 + 1

ui+1

ui+1 + 1

⎞⎠ = ri

(
kH + siA

i
i

)
, (16)

where

ri := ui+1, si := 1

ui+1(ui+1 + 1)
, H :=

(
0 1
0 0

)
, and Ai

j :=
(

ai aibj

1 bj

)
,

with ai := ui+1 + 1 and bi := ui+1. Therefore, applying lemma 8 in [22], we obtain the
following:

�

b∏
i=a

L̃i =
(

b−a+1∑
r=0

Xa,b
r kr

) b∏
i=a

ri,

with

Xa,b
r = �

a+1,b−2
r−1 HAb−1

a + �
a+2,b−1
r−1 Ab

a+1H + �
a+2,b−2
r−2 H + �a+1,b−1

r Ab
a, (17)

where ci := si(ai−1 + bi) and

�a,b
r := sa−1

( ∑
a�i1,i1+1<i2,i2+1<···<ir−1,ir−1+1<ir�b

r∏
j=1

fij

)
b+1∏
i=a

ci, (18)

with fi := si+1/(cici+1).
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By writing

(1 + k)M̃−1
0 = kH +

⎛⎝ 0 1
1

(u0 + 1)up

−1

(u0 + 1)up

⎞⎠ ,

we obtain

(k + 1) Tr(L̃0) =
�(p+1)/2�∑

r=0

krIp
r , (19)

where I
p
r is given as follows:

Ip
r =

(
u1�

1,p−3
r−1

(u01)up

+
�

2,p−2
r−1

u0 + 1
+

�
2,p−3
r−2

up(u0 + 1)
+

(u0 + u1 + 1)�
1,p−2
r

u0 + 1
+ �

1,p−2
r−1

)
p∏

i=1

ui, (20)

with

si = 1

ui+1(ui+1 + 1)
, ci = ui + ui+1 + 1

ui+1(ui+1 + 1)
, fi = ui+1(ui+1 + 1)

(ui + ui+1 + 1)(ui+1 + ui+2 + 1)
.

We also get

(k + 1)

(−k)p+1
DetL̃0 = u1u2 . . . up−1

(u0 + 1)(u1 + 1) . . . (up + 1)
=: IG, (21)

which gives us the inverse of the integral (4.1) given in [9]. Thus, we have the following
theorem.

Theorem 1. Let p > 1 and 0 � 2r � p + 1. We have the following:

(i) I
p
r given by (20) is an integral of equation (2) with the integrating factor

�p
r =

(
�

2,p−2
r−1

(u0 + 1)(up+1 + 1)
+

�
2,p−3
r−2

up(u0 + 1)(up+1 + 1)
+

u1up+1�
1,p−1
r

(u0 + 1)up

− u1�
1,p−2
r

(u0 + 1)up

)
p∏

i=2

ui.

(22)

(ii) IG given by (21) is also an integral of equation (2) with the integrating factor

�IG
= u2u3 . . . up−1

(u0 + 1)(u1 + 1) . . . (up + 1)(up+1 + 1)
. (23)

We prove this theorem directly using the following properties of � given in [22]:

�n,m
r = sm+1(am + bm+1)�

n,m−1
r + sm+1�

n,m−2
r−1 , (24)

�n,m
r = sn−1(an−1 + bn)�

n+1,m
r + sn−1�

n+2,m
r−1 . (25)

Proof.

(i) We write

S
(
Ip
r

) − Ip
r =

p∏
i=2

ui(A + B), (26)

5
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where S is a shift operator, i.e. S(ui) = ui+1 and

A =
(

u2�
2,p−2
r−1

u1 + 1
+

�
3,p−2
r−2

u1 + 1
+ up+1�

2,p−1
r−1

)
− u1

(
�

2,p−2
r−1

u0 + 1
+

�
2,p−3
r−2

up(u0 + 1)
+ �

1,p−2
r−1

)
,

B = up+1

(
�

3,p−1
r−1

u1 + 1
+

(u1 + u2 + 1)�
2,p−1
r

u1 + 1

)
− u1

(
u1�

1,p−3
r−1

(u0 + 1)up

+
(u0 + u1 + 1)�

1,p−2
r

u0 + 1

)
.

Using properties (24) and (25), we have

A =
(

u2�
2,p−2
r−1

(u1 + 1)
+

�
3,p−2
r−2

(u1 + 1)
+

(up + up+1 + 1)�
2,p−2
r−1

up+1 + 1
+

�
2,p−3
r−2

up+1 + 1

)

− u1

(
�

2,p−2
r−1

u0 + 1
+

�
2,p−3
r−2

up(u0 + 1)
+

(u1 + u2 + 1)�
2,p−2
r−1

u1(u1 + 1)
+

�
3,p−2
r−2

u1(u1 + 1)

)

= (up(u0 + 1) − u1(up+1 + 1))

(
�

2,p−2
r−1

(u0 + 1)(up+1 + 1)
+

�
2,p−3
r−2

up(u0 + 1)(up+1 + 1)

)
.

Similarly, we get

B = (up(u0 + 1) − u1(up+1 + 1))

(
u1up+1�

1,p−1
r

(u0 + 1)up

− u1�
1,p−2
r

(u0 + 1)up

)
.

Therefore, we obtain an integrating factor as given in (22).
(ii) By direct calculation, one obtains the integrating factor �IG

given by (23). �

5. Integrals of the pth-order Lyness equation

In this section, we construct integrals of the original Lyness equation from the corresponding
derivative Lyness equation. We also show that the integrals given by Gao et al in [8] can be
derived as a special case from the integrals obtained from our closed-form expressions.

Let us assume that I (u0, u1, . . . , up) is an integral of the derivative Lyness equation (2).
This means that

I (u0, u1, . . . , up) = I

(
u1, u2, . . . , up,

u0up + up − u1

u1

)
. (27)

Now we define

Q(u0, u1, . . . , up−1) = I

(
u0, u1, . . . , up−1,

a + u1 + u2 + · · · + up−1

u0

)
. (28)

Lemma 2. Q(u0, u1, . . . , up−1) is an integral of the Lyness equation (1), i.e.

Q(u0, u1, . . . , up−1) = Q

(
u1, u2, . . . , up−1,

a + u1 + u2 + · · · + up−1

u0

)
. (29)

Proof. It can be seen that

LHS (29) = I

(
u0, u1, . . . , up−1,

a + u1 + u2 + · · · + up−1

u0

)
= I

(
u1, u2, . . . , up−1,

a + u1 + u2 + · · · + up−1

u0
,
u0

a+u1+u2+···+up−1

u0
+ a+u1+u2+···+up−1

u0
− u1

u1

)
6
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= I

(
u1, u2, . . . , up−1,

a + u1 + u2 + · · · + up−1

u0
,
a + u2 + · · · up−1 + a+u1+u2+···+up−1

u0

u1

)

= Q

(
u1, u2, . . . , up−1,

a + u1 + u2 + · · · + up−1

u0

)
.

This means that Q(u0, u1, . . . , up−1) is an integral of the Lyness equation. �

Using this theorem, it is easy to see that the first invariant in [8] is derived from IG. For
the others, by writing � explicitly in terms of the variable u, one can show that the second and
third invariants in [8] are equivalent to I

p

0

/
IG and I

p

�(p+1)/2�
/
IG, respectively.

By using theorem 1 and lemma 2, we obtain closed-form expressions for integrals of
the pth-order Lyness equation. In the following corollary of theorem 1, we have exploited
property (24) to make the dependence of I

p
r on its last argument explicit.

Corollary 3. We denote T := a + u0 + u1 + · · · + up−1. Let p > 2 and 0 � 2r � p + 1. Then
integrals of the pth-order Lyness equation are given by

QIG
= u0u1 . . . up−1

(u0 + 1)(u1 + 1) . . . (up−1 + 1)T
, (30)

Qp
r =

(
u1�

1,p−3
r−1

u0 + 1
+

(T + u0up−1)�
2,p−3
r−1

T (u0 + 1)
+

u0�
2,p−4
r−2

T (u0 + 1)
+

�
2,p−3
r−2

u0 + 1
+

u0(u0 + u1 + 1)�
1,p−4
r−1

T (u0 + 1)

+
(u0 + u1 + 1)(T + u0up−1)�

1,p−3
r

T (u0 + 1)
+

(T + u0up−1)�
1,p−3
r−2

T
+

u0�
1,p−4
r−2

T

)
p−1∏
i=1

ui.

(31)

6. Some relations between the integrals

In this section, we first give some relations between the integrals I
p
r of the derivative Lyness

equation given by (20) and the integral IG given by (21). This will lead to some relations
between the integrals of the Lyness equation.

6.1. Some relations between the integrals of the derivative Lyness equation

We denote the monodromy matrix obtained by using the Lax pair (Ll,m/λ,Ml,m/λ) by L0

where (L,M) are given by (11). We have

L0 =
(

M0

λ

)−1
Lp−1

λ

Lp−2

λ
. . .

L0

λ
.

It is easy to see that L̃0 = G−1
0 L0G0, where G0 is given by (13). This implies that

Tr(L̃0) = TrL0. (32)

Recall that integrals I
p
r are obtained by expanding (k + 1) Tr L̃0 in powers of k = −1 − 1/λ2,

see equation (19). Now we expand (k + 1) TrL0 in powers of 1/λ. Equating the lowest
coefficient and the coefficient for 1/λ2, we obtain the following relations.

Proposition 4. Let p � 2, and let I
p
r and IG be given in (20) and (21), respectively. Then we

have

7
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�(p+1)/2�∑
r=0

(−1)rIp
r = −IG, (33)

�(p+1)/2�∑
r=1

(−1)r rIp
r + 1 = (u0up − u1 − u2 − · · · − up−1 − p)IG. (34)

A proof of this proposition will be given in the appendix.

Remark 5. Note that u0up −u1 −u2 −· · ·−up−1 is also an integral of the derivative Lyness
equation with integrating factor 1.

6.2. Some relations between the integrals of the Lyness equation

Using proposition 4, we obtain the following linear relations between the integrals of the
Lyness equation.

Corollary 6. Let p � 3, and let Q
p
r and QIG

be given by (31) and (30), respectively. Then
we have

�(p+1)/2�∑
r=0

(−1)rQp
r = −QIG

, (35)

�(p+1)/2�∑
r=0

(−1)r (p − a − r)Qp
r = 1. (36)

7. Conclusion

We have presented closed-form expressions for integrals of the pth-order Lyness equation and
its derivative equation. Using Maple, for p � 11, for random values ui, we have found that
the set of integrals

{
I

p

0 , I
p

1 , . . . , I
p

�(p+1)/2�
}

of the derivative Lyness equation is functionally
independent. Taking particular values for the variables, we are able to check orders that are a
bit higher. We found functional independence for p � 15 when u0 = u1 = · · · = up−1 = 1
and up = 2. For the pth-order Lyness equation, the set

{
Q

p

0 ,Q
p

1 , . . . ,Q
p

�(p+1)/2�
}

is not
functionally independent due to the linear relation (36). However, the rank of the Jacobian
matrix seems to be R = �(p+1)/2� for p � 11 and for the random value a and ui. In particular,
this is the case for p � 15 and for the random value of a when u0 = u1 = · · · = up−1 = 1. In
fact, for all p � 15 the determinant of 2 a+p

a+p−2 times the upper-left R × R part of the Jacobian
is

±3qp−1

2gp+1

a − �p/2�
a + p

, (37)

where the powers of 3 are given by quarter squares qp = �p2/4� and the powers of 2 are
generalized pentagonal numbers, cf [21],

gp =
⌊p

2

⌋ (
3
⌊p

2

⌋
− (−1)p

)/
2.

We conjecture formula (37) to be true for any p. The existence of �(p + 1)/2� functionally
independent integrals in the set our integrals for the Lyness equation would be enough for
complete integrability in the sense of Liouville–Arnold.

8
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Another problem is to see if the Lyness equation has a symplectic structure or not. One
way to approach this problem is using a Lagrangian to derive the symplectic structures [4]. We
have found a Lagrangian for a double copy of equation (2). However, to construct symplectic
structures for the Lyness mapping itself is still an open problem.
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Appendix. Proof of proposition 4

We write

Li/λ =
(

1 0
0 ui+1

ui+1+1

)
+

1

λ

(
0 −ui+1
1

ui+1+1 0

)
, (A.1)

and

(k + 1)(M0/λ)−1 =
(

0 0
0 −1

(u0+1)up

)
+

1

λ

(
0 −1
1

(u0+1)up
0

)
. (A.2)

Equalling the lowest coefficient of the following:

(k + 1) Tr(L̃0) = (k + 1)TrL0,

we obtain the first relation (33). Now equalling the coefficient of 1/λ2, we obtain

�(p+1)/2�∑
r=1

(−1)rrIp
r =

( ∑
1�r<s�p

r∏
i=1

ui

s−1∏
i=r

(1 + ui)

p∏
i=s+1

ui −
p∑

r=1

(
up

p∏
i=r+1

ui

r−1∏
i=0

(1 + ui)

+
r∏

i=1

ui

p∏
i=r

(1 + ui)

))
1

up(u0 + 1)(u1 + 1) . . . (up + 1)
. (A.3)

In this proof, we use the following identity with m < n:

n∏
i=m

(1 + ui) −
∑

m<s�n

s−1∏
i=m

(1 + ui)

n∏
i=s+1

ui = (1 + um)

n∏
i=m+1

ui. (A.4)

This identity is proved by expanding its left-hand side. We have

LHS (A.4) =
(

n∏
i=m

(1 + ui) −
n−1∏
i=m

(1 + ui)

)
−

∑
m<s�n−1

s−1∏
i=m

(1 + ui)

n∏
i=s+1

ui

=
(

n−1∏
i=m

(1 + ui) −
n−2∏
i=m

(1 + ui)

)
un −

∑
m<s�n−2

s−1∏
i=m

(1 + ui)

n∏
i=s+1

ui

...

= (1 + um)

n∏
i=m+1

ui = RHS (A.4).
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We write
�(p+1)/2�∑

r=1

(−1)rrIr + 1 = P1

P2
,

where

P1 = up

p∏
i=0

(ui + 1) +
∑

1�r<s�p

r∏
i=1

ui

s−1∏
i=r

(1 + ui)

p∏
i=s+1

ui −
p∑

r=1

up

p∏
i=r+1

ui

r−1∏
i=0

(1 + ui)

+
r∏

i=1

ui

p∏
i=r

(1 + ui),

P2 = up

p∏
i=0

(ui + 1).

Thus, we only need to show that

P1 = (u0up − u1 − u2 − · · · − up−1 − p)

p∏
i=1

ui.

We have

P1 =
(

up

p∏
i=0

(ui + 1) −
p∑

r=1

up

p∏
i=r+1

ui

r−1∏
i=0

(1 + ui)

)
+

∑
1�r<s�p−1

r∏
i=1

ui

s−1∏
i=r

(1 + ui)

p∏
i=s+1

ui

+
∑

1�r�p−1

r∏
i=1

ui

p−1∏
i=r

(1 + ui) −
p∑

r=1

r∏
i=1

ui

p∏
i=r

(1 + ui)

= up(1 + u0)

p∏
i=1

ui +
∑

1�r<s�p−1

r∏
i=1

ui

s−1∏
i=r

(1 + ui)

p∏
i=s+1

ui −
∑

1�r�p−1

r∏
i=1

ui

p−1∏
i=r

(1 + ui)up

− (1 + up)

p∏
i=1

ui

= (u0up − 1)

p∏
i=1

ui +
p−1∑
r=1

r∏
i=1

ui

( ∑
r<s�p−1

s−1∏
i=r

(1 + ui)

p−1∏
i=s+1

ui −
p−1∏
i=r

(1 + ui)

)
up

= (u0up − 1)

p∏
i=1

ui −
p−1∑
r=1

(1 + ur)

p∏
i=1

ui = (u0up − p − u1 − u2 − · · · − up−1)

p∏
i=1

ui.

This proves our statement.
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