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1. Introduction

A rational recurrence relation is said to have the Laurent property if all of the iterates 
are Laurent polynomials in the initial values, with coefficients belonging to some ring 
(typically Z). We call such a recurrence a Laurent recurrence. The first examples of such 
recurrences were discovered by Michael Somos in the 1980s [14]. Since then many more 
have been found [1,10,13,23,24] (also cf. [9]). The Laurent property is a central feature 
of cluster algebras (see [11,12] and references).

This paper is concerned with systems of Laurent recurrences related to QRT maps. 
The QRT maps are an 18-parameter family of birational transformations of the plane, 
which were introduced in [26,27], encompassing various examples that appeared previ-
ously in a wide variety of contexts, including statistical mechanics, discrete soliton theory 
and dynamical systems. QRT maps are measure-preserving (symplectic) and have an in-
variant function (first integral), hence they provide a prototype of a discrete integrable 
system in finite dimensions. The generic level set of the first integral is a curve of genus 
one, so there is an associated elliptic fibration of the plane [29]. The rich geometry of 
QRT maps is described extensively in the monograph by Duistermaat [8]; for a terse 
overview, see subsection 6.3 below.

It is an open question as to what conditions are necessary for “Laurentification” of 
a general birational transformation, i.e. to determine whether such a transformation 
admits a lift to a Laurent recurrence or a system of such recurrences. In [17] two of the 
authors used ultradiscretization and recursive factorisation (which was employed in [30], 
but can in fact be found in earlier work by Boukraa and Maillard [4]) to derive recurrence 
relations for the divisors of iterates of homogenised discrete integrable systems. As the 
divisors are polynomials, these recurrences should possess the Laurent property, as indeed 
they do, in all cases considered. A different approach using projective coordinates has 
been taken in [32], leading to similar results.

Specifically, it was shown in [17] that two particular multiplicative symmetric QRT 
maps, namely

un+1un−1 = αun + β

u2
n

, (1a)

un+1un−1 = γun + δ

un
, (1b)

give rise via recursive factorisation to Somos-4 and Somos-5 recurrences, that is

cn−2cn+2 = αncn−1cn+1 + βnc
2
n, (2a)

dn−3dn+2 = γndn−2dn+1 + δndn−1dn, (2b)

respectively, where the coefficients αn, βn and γn, δn are periodic functions of n, with 
period 8 in the first case and period 7 in the second. The connection between the QRT 
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maps (1) and the autonomous versions of these Somos recurrences is well known (see 
e.g. [18,19]). Both equations (2) are special cases of a non-autonomous Gale–Robinson 
recurrence [14], which arise as reductions of Hirota’s bilinear (discrete KP) equation [16,
24,25,35,36]. Furthermore, it was shown in [17] that the additive QRT map

un+1 + un−1 = α− u2
n

un
, (3)

known as DTKQ-2 [6], is related by recursive factorisation to a fifth-order Laurent re-
currence, that is

en−1e
2
n−2en−5 + e2

n−1e
2
n−4 + ene

2
n−3en−4 = αe2

n−2e
2
n−3. (4)

It is worth pointing out that the Laurent property is neither necessary nor sufficient 
for integrability. To see why it is not necessary, note that a discrete integrable system, 
in the form of a birational map satisfying the conditions of Liouville’s theorem, need 
not have the Laurent property: this property is associated with a particular choice of 
coordinate system, and is easily destroyed by a birational change of coordinates, whereas 
integrability is not. As for sufficiency, it is known that large families of birational recur-
rences with the Laurent property arise from certain sequences of mutations in a cluster 
algebra [10,13] or an LP algebra [1,23], yet integrability is a rare property, and only a 
small minority of such recurrences are discrete integrable systems.

Nevertheless, in an algebraic setting, based on the evidence of a large number of ex-
amples, it appears that discrete integrable systems should always admit Laurentification. 
The advantage of having a system with the Laurent property is that it leads to a very 
direct way of calculating the sequence of degrees, so that the algebraic entropy of the 
system can be calculated as the limit limn→∞ n−1 log dn (where dn is the degree of the 
nth iterate). In the approach of Bellon and Viallet [3], discrete integrable systems are 
characterised by having zero algebraic entropy. For the case of the QRT maps consid-
ered here, which can be regularised by a finite number of blowups of the plane [8], and 
preserve a pencil of invariant curves, general arguments indicate that the degrees grow 
quadratically with n [2], and thus the entropy is zero. While a geometrical approach 
via blowups is effective for counting degrees in dimension two, it becomes increasingly 
difficult in higher dimensions, and this is our motivation for considering Laurent systems 
here, in a test case where we know the degree growth in advance.

Laurentification is not a unique procedure, and for convenience one should aim to 
find the simplest system which has the Laurent property. Recursive factorisation can 
provide a Laurent system, but not always the simplest one: in particular, as shown 
below (see also [25]), solutions to the non-autonomous Somos recurrences (2) from [17]
are related to those of their autonomous versions, which are simpler. In section 3 we 
obtain a two-component autonomous system directly from the 5-parameter multiplicative 
symmetric QRT map
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un+1un−1 = a3u
2
n + a5un + a6

a1u2
n + a2un + a3

, (5)

by writing the iterates as a ratio un = kn/ln. We prove that this is a Laurent system, 
and use the Laurent property together with ultradiscretization to derive a polynomial 
formula for the growth of degrees (quadratic in n). We also show how our autonomous 
system degenerates to the non-autonomous Somos-4 (2a) and Somos-5 (2b) in the special 
cases considered in [17].

In section 4, we Laurentify the 5-parameter additive symmetric QRT map

un+1 + un−1 = −a2u
2
n + a4un + a5

a1u2
n + a2un + a3

, (6)

which generalises (3). This gives another system of two recurrences, which degenerates to 
(4) as a special case. We show that the same quadratic formula as found for (5) describes 
the degree growth of (6).

In section 5, we recursively factorise the 12-parameter symmetric QRT map (see 
equation (35) below), and obtain a three-component system, whose Laurentness follows 
directly from factorisation properties. We describe how the additive and multiplicative 
Laurent systems obtained from (5) and (6) appear as degenerate cases, and use ultra-
discretization to show that the degree growth of the symmetric QRT map is quadratic.

In section 6, we present Somos-7 recurrences that are satisfied by the variables in the 
Laurent systems introduced in the preceding sections. We prove that the components of 
iterates of the general 18-parameter QRT map can also be written as a ratio of quantities 
that satisfy a Somos-7 relation.

Because deriving systems that are likely to possess the Laurent property can now be 
done routinely, there is a need for verifying the Laurent property routinely. An account of 
such a procedure for autonomous recurrences, found by Hickerson, was given in [14,28]. 
Another approach, built into the axiomatic framework of cluster algebras or LP algebras 
[23], is to use the Caterpillar Lemma as in [10], but this only applies to relations in 
multiplicative form (i.e. exchange relations with a product of two terms on the left-hand 
side). A straightforward generalisation of Hickerson’s method to systems of equations, 
with more general denominators, is given in Theorem 2 in the next section. For the 
multiplicative and additive Laurent systems (equations (12) and (29) below) it is easy 
to verify the conditions in the theorem, and hence to establish their Laurentness.

2. Proving the Laurent property

Sufficient conditions for equations of the form

τnτn−k = P (τn−k+1, . . . , τn−1), k ∈ N, P polynomial over R (7)

(where R is a ring of coefficients) to possess the Laurent property were found by Hick-
erson. Taking {τi}k−1

i=0 as the initial values, the iterates are written as a ratio
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τn = pn(τ0, . . . , τk−1)
qn(τ0, . . . , τk−1)

of coprime polynomials, so that the greatest common divisor (pn, qn) = 1. The Lau-
rent property means that all qn are monomials. The following is Hickerson’s result, as 
mentioned by Gale in [14] and proved by Robinson in [28].

Theorem 1. Equation (7) has the Laurent property if (pk, pk+l) = 1 for l = 1, . . . , k and 
q2k is a monomial.

Below we provide sufficient conditions for systems of equations to possess the Laurent 
property. At the same time, we generalise the form of the right-hand side of (7), by 
allowing a monomial denominator, and consider the case where the iterates are Laurent 
polynomials in a subset of the initial variables and polynomial in the rest.

Consider a system of d ordinary difference equations of order k,

τ in =
P i(τ1

n−k, . . . , τ
d
n−1)

Qi(τ1
n−k, . . . , τ

d
n−1)

, P i polynomial, Qi monomial, i = 1, . . . , d. (8)

From a set of kd initial values U = {τ jl }1≤j≤d,0≤l≤k−1, where the superscripts denote 
components (not exponents), one finds τ in as rational functions of the initial values, given 
by

τ in =
pin(τ1

0 , . . . , τ
d
k−1)

qin(τ1
0 , . . . , τ

d
k−1)

, (9)

with (pin, qin) = 1. By definition, if qin ∈ R[U ] is a monomial for all i and n ≥ 0, then 
(8) has the Laurent property, meaning that each τ in belongs to the ring R[U±1] :=
R[(τ1

0 )±1, . . . , (τdk−1)±1]. The form of (8) guarantees that all components qin are mono-
mials for 0 ≤ n ≤ k. Suppose these monomials depend on a subset of the initial values 
V ⊂ U , specified by a set of superscripts I ⊂ {1, . . . , d}. The following conditions guar-
antee that qin are monomials for all i and n ≥ 0.

Theorem 2. Suppose that qik is a monomial in R[V ] for 1 ≤ i ≤ d. If pik is coprime 
to pjk+l for all i, j ∈ I ⊂ {1, . . . , d}, l = 1, . . . , k, and qim ∈ R[V ] is a monomial for 
1 ≤ i ≤ d, k + 1 ≤ m ≤ 2k, then (8) has the Laurent property: all iterates are Laurent 
polynomials in the variables from V and they are polynomial in the remaining variables 
from W = U \ V .

Proof. The proof is by induction in n. If we regard {τ jl }1≤j≤d,1≤l≤k as initial data, then 
from (9) we may write

τ in =
pin−1(τ1

1 , . . . , τ
d
k )

qin−1(τ1
1 , . . . , τ

d
k )

, (10)



K. Hamad et al. / Advances in Applied Mathematics 96 (2018) 216–248 221
while on the other hand, by taking {τ jl }1≤j≤d,k+1≤l≤2k as initial values, we find

τ in =
pin−k−1(τ1

k+1, . . . , τ
d
2k)

qin−k−1(τ1
k+1, . . . , τ

d
2k)

. (11)

Then by using (9) again, the arguments τ jm for m = k, . . . , 2k can be expressed as 
Laurent polynomials in the variables from V with coefficients in R[W ]. Thus for each 
i the denominator of (10) becomes a monomial in the variables from V , multiplied by 
powers of the polynomials pjk for j ∈ I. On the other hand, the denominator of (11)
becomes a monomial in variables from V only, multiplied by powers of pjk+l for j ∈ I

and l = 1, . . . , k. By the coprimality assumption, the only way that these two expressions 
can be equal is if all the powers of polynomials pjm for j ∈ I appearing in a denominator 
cancel with the numerator in each case, to leave a reduced expression for τ in as a Laurent 
polynomial in the ring R[W ][V ±1]. �

The preceding result can be modified to include the case where the coefficients in 
system (8) are periodic functions, e.g. as in (2), but we will not need this in the sequel. 
However, when discussing ultradiscretization it will be convenient to describe periodic 
sequences using the following notation.

Notation 3. A periodic function fn such that fn+m = fn is defined by m values: we write 
fmod m = [v1, . . . , vm] to mean fn = vn mod m.

3. The multiplicative symmetric QRT map

In this section, we show how to “Laurentify” the multiplicative symmetric QRT map, 
i.e. produce a corresponding Laurent system of recurrences, by applying homogenisation. 
We then use ultradiscretization to derive the degree growth of the map. We also show 
how the Laurent system reduces to the Somos-4 and Somos-5 equations with periodic 
coefficients that were found in [17].

3.1. Laurentification of the multiplicative symmetric QRT map

By taking un = kn

ln
in (5) and identifying the numerators and denominators on both 

sides, we obtain a system that generates sequences (kn) and (ln), that is

kn+1kn−1 = a3k
2
n + a5knln + a6l

2
n, (12a)

ln+1ln−1 = a1k
2
n + a2knln + a3l

2
n. (12b)

Without loss of generality one can choose (k0, k1, l0, l1) = (u0, u1, 1, 1) as initial values 
for (12). Observe that the system (12) is homogeneous of degree 2: it is a Hirota bilinear 
form for (5).
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Proposition 4. The system (12) has the Laurent property. Any four adjacent iterates kn, 
ln, kn+1, ln+1 are pairwise coprime Laurent polynomials in the ring R[k±1

0 , k±1
1 , l±1

0 , l±1
1 ], 

where R = Z[a1, a2, a3, a5, a6] is the ring of coefficients.

Proof. The Laurent property can be verified directly by applying Theorem 2 in the 
case that the dimension d = 2 and the order k = 2. For the coprimality, observe that 
when n = 0 this is trivially true, and proceed by induction in n. If a non-constant 
Laurent polynomial P ∈ R[k±1

0 , k±1
1 , l±1

0 , l±1
1 ] is a common factor of kn+1 and kn, then 

it divides the right-hand side of (12a), hence P |ln, which contradicts (kn, ln) = 1. Thus 
(kn+1, kn) = (kn+1, ln) = 1, and similarly from (12b) we have (ln+1, kn) = (ln+1, ln) = 1. 
Now let P be a common factor of kn+1 and ln+1,

=⇒ Shn = P vn,

where S =

⎛
⎜⎝
a3 a5 a6 0
0 a3 a5 a6
a1 a2 a3 0
0 a1 a2 a3

⎞
⎟⎠ , hn =

⎛
⎜⎜⎜⎝

k3
n

k2
nln

knl
2
n

l3n

⎞
⎟⎟⎟⎠ , P vn =

⎛
⎜⎜⎜⎝

knkn+1kn−1
kn+1kn−1ln
knln+1ln−1
ln+1ln−1ln

⎞
⎟⎟⎟⎠ .

Multiplying the above equation by the adjugate of the Sylvester matrix S yields

R hn = P Sadjvn,

where the resultant R = det S is a non-zero element of the coefficient ring R, namely

R = a2
1a

2
6 − a1a2a5a6 − 2a1a

2
3a6 + a1a3a

2
5 + a2

2a3a6 − a2a
2
3a5 + a4

3 �= 0. (13)

Hence P divides each component of the vector hn, contradicting (kn, ln) = 1. �
Remark 5. The latter result remains true for numerical values ai such that a1a3a6R �= 0.

The Laurent property implies that, in general, the iterates of (12) can be written in 
the form

kn = Nn(k)
kdn

, ln = N̂n(k)
ken

, (14)

where Nn, N̂n are polynomials in k = (k0, k1, l0, l1) that are not divisible by any of these 
four variables, while the denominators are Laurent monomials, i.e.

kdn = k
d(1)
n

0 k
d(2)
n

1 l
d(3)
n

0 l
d(4)
n

1 , dn = (d(1)
n , d(2)

n , d(3)
n , d(4)

n )T

and similarly for ken , where the exponents appearing in the denominator vectors dn and 
en are integers. The initial vectors are
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d0 =

⎛
⎜⎜⎜⎝

−1
0
0
0

⎞
⎟⎟⎟⎠ , d1 =

⎛
⎜⎜⎜⎝

0
−1
0
0

⎞
⎟⎟⎟⎠ , e0 =

⎛
⎜⎜⎜⎝

0
0
−1
0

⎞
⎟⎟⎟⎠ , e1 =

⎛
⎜⎜⎜⎝

0
0
0
−1

⎞
⎟⎟⎟⎠ . (15)

3.2. Growth of degrees of the multiplicative symmetric QRT map

In order to measure the growth of degrees of the map (5), we consider the growth of 
the degrees of the Laurent polynomials that are generated by the system (12). From the 
form of this system, it is clear that kn, ln are homogeneous rational functions of degree 1 
in the initial values k = (k0, k1, l0, l1), which implies that

degk(Nn(k)) = 1 + degk(kdn) = 1 +
4∑

j=1
d(j)
n ,

degk(N̂n(k)) = 1 + degk(ken) = 1 +
4∑

j=1
e(j)
n ,

(16)

where degk denotes the total degree in these variables. Furthermore, from the form of 
(12), kn, ln are also subtraction-free rational expressions in the initial values, meaning 
that a standard argument which is used in the theory of cluster algebras can be applied 
(cf. equation (7.7) in [11], or Lemma 8.3 in [12]), and hence the denominator vectors 
dn, en satisfy a tropical version of the Laurent system, given by the max-plus ultradis-
cretization2

dn+1 + dn−1 = max(2dn,dn + en, 2en),

en+1 + en−1 = max(2dn,dn + en, 2en),
(17)

where the max applies componentwise on the right-hand side.
Due to the symmetrical form of the tropical system (17) and the initial vectors (15), 

the solution of this ultradiscrete vector system can be written as

dn = (dn, dn−1, en, en−1)T , en = (en, en−1, dn, dn−1)T ,

in terms of a pair of sequences (dn), (en) which satisfy the scalar version of (17), that is

dn+1 + dn−1 = max(2dn, dn + en, 2en),

en+1 + en−1 = max(2dn, dn + en, 2en),
(18)

with the initial values d0 = −1, d1 = e0 = e1 = 0. If we introduce the sums and 
differences

2 Here, and in the sequel, when going from a discrete equation (recurrence) to an ultradiscrete one, we 
assume the parameters ai are generic; in particular, for (12) we assume non-zero ai such that (13) holds.
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Σn = dn + en, Δn = dn − en,

and note the fact that max(Δ, 0, −Δ) = |Δ|, then the scalar system (18) becomes

Σn+2 − 2Σn+1 + Σn = 2|Δn+1|,
Δn+2 + Δn = 0,

(19)

with initial values

Σ0 = Δ0 = −1, Σ1 = Δ1 = 0. (20)

The decoupled equation for Δn implies that this quantity has period 4, and from the 
initial values it is clear that

Δ mod 4 = [0, 1, 0,−1], (21)

so the right-hand side of the first equation in (19) has period 2, which gives the homo-
geneous linear equation

(S2 − 1)(S − 1)2Σn = 0,

where S denotes the shift operator such that SΣn = Σn+1. Using the fact that Σn takes 
the sequence of values −1, 0, 1, 4 for n = 0, 1, 2, 3, this fourth-order recurrence is readily 
solved.

Lemma 6. The solution of the system (19) with initial values (20) is given by

Σn = 1
2n

2 − 3
4 − (−1)n

4

together with (21).

Now if we substitute in the initial values (k0, k1, l0, l1) = (u0, u1, 1, 1) then the nu-
merators in (16) become a pair of polynomials in u0, u1, denoted Nn(u), N̂n(u), and we 
find

un = kn
ln

= Nn(u)
uΔn

0 u
Δn−1
1 N̂n(u)

. (22)

For generic non-zero coefficients such that (13) holds, the polynomials Nn(u) and N̂n(u)
are coprime, and from the form of the recurrence they always contain a term of highest 
possible total degree in u0, u1. Thus, by (16) and the result of Lemma 6, we have

degu(Nn(u)) = degk(Nn(k)) = Σn−1 + Σn + 1 = n2 − n,
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and the same formula holds for degu(N̂n(u)). From the periodic sequence (21) it is clear 
that the Laurent monomial factor in (22) cycles in the pattern u0, u1, u

−1
0 , u−1

1 , so the 
degree of the numerator is one more than the degree of the denominator, or vice versa. 
Hence degu(un) = 1 + degu(Nn(u)) = 1 + degu(N̂n(u)), which yields an exact formula 
for this degree.

Theorem 7. As a rational function of the initial values u0, u1, the nth iterate un of the 
multiplicative QRT map (5) has degree n2 − n + 1.

3.3. Degeneration to Somos recurrences

In this subsection, we demonstrate that the Somos-4 and Somos-5 recurrences (2), 
with periodic coefficients of periods 8 and 7 respectively, arise as special cases of the 
Laurent system (12).

In [17] the initial data for (1a) were taken as u1, u2, while here we use u0, u1 instead; 
mutatis mutandis, the periodic coefficients found in [17] are defined as follows.

Definition 8. The Somos-4 equation with periodic coefficients which generates the divisors 
of the QRT map (1a) is given by (2a) with αn = αu

pn+2
0 u

pn−1
1 , βn = βu

qn+2
0 u

qn−1
1 , and

pmod 8 = [0, 1, 0, 0, 1, 0, 0, 1] and qmod 8 = [2, 0, 0, 1, 0, 1, 0, 0]. (23)

Theorem 9. In the degenerate case a1 = 1, a2 = a3 = 0, a5 = α and a6 = β the quantities 
kn and ln can be expressed in terms of solutions to (2a) as

kn = u
2ζn+2+qn+1−pn+1
0 u

2ζn−1+qn−2−pn−2
1 cn−2cn, ln = u

2ζn+2
0 u

2ζn−1
1 c2n−1, (24)

where ζn satisfies

(S − 1)2 ζn = pn − qn. (25)

Proof. Taking a1 = 1 and a2 = a3 = 0, a5 = α and a6 = β in equation (12), it is 
easy to see that kn = τn−2τn, ln = τ2

n−1 is a solution of (12) whenever τn satisfies the 
autonomous Somos-4 recurrence

τn+2τn−2 = ατn+1τn−1 + βτ2
n. (26)

Moreover, for this degenerate choice of coefficients, every solution of (12) can be written 
in this way, e.g. by taking τ−2 = k0/

√
l1, τ−1 =

√
l0, τ0 =

√
l1, τ1 = k1/

√
l0 as initial 

values for (26). Now one can make a gauge transformation between τn and cn, which is 
required to satisfy (2a):

τn = u
ζn+3
0 uζn

1 cn =⇒ (S2 − 1)2ζn = −qn+1,
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a fourth-order recurrence for ζn, and also (25) must hold. But the form of the 8-periodic 
coefficients (23) implies that (S + 1)2(pn − qn) = −qn+1, so the fourth-order relation is 
a consequence of (25), which completely determines the sequence of exponents (ζn), up 
to a suitable choice of ζ0, ζ1. �
Definition 10. The Somos-5 equation with periodic coefficients which generates the divi-
sors of the QRT map (1b) is given by (2b), where

γn = γu
pn+1
0 u

pn−3
1 and δn = δu

qn+1
0 u

qn−3
1 ,

with pmod 7 = [1, 0, 0, 0, 1, 0, 0] and qmod 7 = [0, 0, 1, 0, 0, 1, 1].

Theorem 11. In the degenerate case a1 = a3 = 0, a2 = 1, a5 = γ and a6 = δ, kn and ln
are expressed in terms of solutions to (2b) as

kn = u
ηn+3+ηn

0 u
ηn−1+ηn−4
1 dndn−3, ln = u

ηn+2+ηn+1
0 u

ηn−2+ηn−3
1 dn−1dn−2, (27)

where

(S3 − S2 − S + 1)ηn = pn − qn. (28)

Proof. This is similar to the proof of Theorem 9. The autonomous Somos-5 relation

τn−3τn+2 = γτn−2τn+1 + δτn−1τn

solves this degenerate case of (12) by taking kn = τn−3τn, ln = τn−2τn−1, and then a 
gauge transformation τn = u

ηn+3
0 u

ηn−1
1 dn gives a corresponding solution of (2b), provided 

ηn satisfies the third-order linear relation (28) above. �
4. The additive symmetric QRT map

The aim of this section is to Laurentify the additive QRT map (also called the Mc-
Millan map), and to establish a formula for the growth of degrees.

4.1. Laurentification of the additive symmetric QRT map

Substituting un = kn

ln
into (6), and identifying quadratic numerators and denomina-

tors on each side leads to the following associated Laurent system.

Proposition 12. The system

kn+1ln−1 = −(kn−1ln+1 + a2 kn
2 + a4 knln + a5 ln

2),

ln+1ln−1 = a1 kn
2 + a2 knln + a3 ln

2 (29)



K. Hamad et al. / Advances in Applied Mathematics 96 (2018) 216–248 227
has the Laurent property. Any four adjacent iterates kn, ln, kn+1, ln+1 are pairwise co-
prime Laurent polynomials in the ring R[k0, k1, l

±1
0 , l±1

1 ], where R = Z[a1, a2, a3, a4, a5].

Proof. This follows from Theorem 2 and a coprimality argument analogous to the proof 
of Proposition 4. �

It is straightforward to check that the equation (4), obtained from (3) in [17], corre-
sponds to a degenerate case of (29).

Proposition 13. In the degenerate case a1 = a3 = a4 = 0, a2 = 1 and a5 = −α, 
the solution of (29) is given by kn = en+1en−2 and ln = enen−1, where en satisfies 
equation (4).

4.2. Growth of degrees of the additive QRT map

Just as in the multiplicative case, the Laurent property means that the iterates of (29)
can be factored as in (14), in terms of a general set of initial values k = (k0, k1, l0, l1), 
with initial denominator vectors (15), where (for generic parameter values) Nn and N̂n

are coprime. Observe that the system is also bilinear (homogeneous of degree 2), so the 
relations (16) hold, and the second equations in (12) and (29) are identical. Note also 
that, due to the minus sign in the first equation, the system (29) does not generate 
subtraction-free rational expressions in k. Nevertheless, by considering the dependence 
on k0, k1, it is not hard to show that cancellations cannot occur in the highest degree 
terms appearing in the numerator on the right-hand side, and arrive at the following

Lemma 14. The denominator vectors satisfy the max-plus tropical version of (29), namely

dn+1 + en−1 = max(dn−1 + en+1, 2dn,dn + en, 2en),

en+1 + en−1 = max(2dn,dn + en, 2en).
(30)

Proof. By Proposition 12, the iterates of (29) can be written in the form (14), where now 
the (Laurent) monomial denominators are just monomials in l0, l1 for all n ≥ 2. Then, 
by explicitly considering how the numerators depend on k0, k1, N2(k) = −a1k0k

2
1 + . . . , 

N̂2(k) = a1k
2
1 + . . . , and it can be shown by induction that for all n ≥ 2, Nn(k) =

monomial in k0, k1 of degree δn + lower order terms, and N̂n(k) = monomial in k0, k1 of 
degree δ̂n + lower order terms, where δn, ̂δn denote the respective total degrees of these 
numerators. To perform the induction, it should be assumed also that δn > δ̂n as part 
of the inductive hypothesis; clearly this holds for n = 2, and n = 3 is easily checked as 
well. Now suppose the hypothesis holds up to n, and consider the right-hand side of the 
second equation in (29): in terms of k0, k1, the term of highest degree in the numerator 
comes from k2

n, and all other terms are of lower degree, so there can be no cancellation 
between the numerator and denominator (which only depends on l0, l1); thus, comparing 
with the numerator of the left-hand side, this implies
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δ̂n+1 + δ̂n−1 = 2δn, (31)

and the numerator N̂n+1(k) is of the required form. Similarly, on the right-hand side of 
the first equation in (29), the term with numerator of largest possible degree can only 
be kn−1ln+1 or k2

n, but the first term has degree δn−1 + δ̂n+1 = 2δn + δn−1 − δ̂n−1 > 2δn, 
using (31) and the inductive hypothesis, which implies that the numerator of kn−1ln+1

is of largest degree; so again there can be no cancellation, the numerator Nn+1(k) is of 
the required form, and comparing with the left-hand side yields

δn+1 + δ̂n−1 = δ̂n+1 + δn−1, (32)

and hence δn+1 − δ̂n+1 = δn−1 − δ̂n−1 > 0, which gives the other part of the hypothe-
sis. �

From the form of the initial data (15), the solution of the ultradiscrete system (30) is 
written as

dn = (dn, dn−1, d̃n, d̃n−1)T , en = (en, en−1, ẽn, ẽn−1)T ,

in terms of two pairs of sequences (dn, en), (d̃n, ̃en), each of which satisfies the scalar 
version of (30). Upon introducing the difference vector

Δn = dn − en = (Δn,Δn−1, Δ̃n, Δ̃n−1)T ,

the system is equivalent to

Δn+1 = max(Δn−1, 0),

en+1 − 2en + en−1 = max(2Δn, 0).
(33)

For the first sequence pair (dn, en), the initial data give Δ0 = −1, Δ1 = 0, which implies 
Δn = 0 for n ≥ 1, while for the pair (d̃n, ̃en) with Δ̃0 = 1, Δ̃1 = 0, the first equation 
above gives Δ̃ mod 2 = [0, 1]. For the second equation in (33), the solution en is then 
found to be specified by

ẽn = 1
2n

2 − 3
4 − (−1)n

4 and en = 0 ∀n ≥ 0 =⇒ dn = 0 ∀n ≥ 1,

so k0, k1 never appear in the denominator of any Laurent polynomials, as is obvious from 
(29).

Finally, from (16) we see that, consistent with (31) and (32),

degk(Nn(k)) = Δn + Δn−1 + Δ̃n + Δ̃n−1 + degk(N̂n(k)) = 1 + degk(N̂n(k)) for n ≥ 2
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and degk(N̂n(k)) = 1 + en + en−1 + ẽn + ẽn−1 = n2 − n. By setting k = (u0, u1, 1, 1) to 
find un = kn/ln = Nn(u)/N̂n(u) for n ≥ 2, and noting that the total degrees of Nn and 
N̂n remain the same after substitution, this yields the same quadratic expression for the 
degree growth as for (5).

Theorem 15. As a rational function of the initial values u0, u1, the nth iterate un of the 
additive QRT map (6) has degree n2 − n + 1.

5. The 12-parameter symmetric QRT map

The symmetric QRT map [26,27] is constructed as follows. We start with two sym-
metric 3 × 3 matrices,

A =
(
a00 a01 a02
a01 a11 a12
a02 a12 a22

)
, B =

(
b00 b01 b02
b01 b11 b12
b02 b12 b22

)
, (34)

and introduce the vectors

V(u, v) =

⎛
⎝u2

uv
v2

⎞
⎠ , f(u) = AV(u, 1) × BV(u, 1),

with the components of f denoted by f (i), i = 1, 2, 3. The map of the plane defined by

ϕsym : (un−1, un) 
→ (un, un+1), with un+1 = f (1)(un) − un−1f
(2)(un)

f (2)(un) − un−1f (3)(un)
, (35)

is the general form of the symmetric QRT map, which admits the invariant

J = V(un−1, 1)TAV(un, 1)
V(un−1, 1)TBV(un, 1) . (36)

5.1. Recursive factorisation of the symmetric QRT map

Let us homogenise the map ϕsym. Taking un = pn/qn gives

pn+1

qn+1
=

qn−1f
(1)(pn

qn
) − pn−1f

(2)(pn

qn
)

qn−1f (2)(pn

qn
) − pn−1f (3)(pn

qn
)
,

from which we obtain the polynomial system

pn+1 = qn−1F
(1)
n − pn−1F

(2)
n , qn+1 = qn−1F

(2)
n − pn−1F

(3)
n , (37)
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with F (i)
n = q4

nf
(i)(pn

qn
). Slightly more explicitly, in terms of the vectors An :=

AV(pn, qn), Bn := BV(pn, qn), with components denoted A(i)
n , B(i)

n respectively, we 
set Fn = An × Bn, and then the system (37) can be written as

pn+1 = B(3)
n (pn−1A

(1)
n + qn−1A

(2)
n ) −A(3)

n (pn−1B
(1)
n + qn−1B

(2)
n ),

qn+1 = B(1)
n (pn−1A

(2)
n + qn−1A

(3)
n ) −A(1)

n (pn−1B
(2)
n + qn−1B

(3)
n ),

(38)

which is equivalent to the vector equation

(qn−1qn+1,−pn−1qn+1 − qn−1pn+1, pn−1pn+1)T = Wn, (39)

where Wn = Fn × Vn−1, Vn = V(pn, qn). The map (38) generates polynomials when 
iterated forwards, but not backwards, as the inverse does not have the Laurent property 
(this is analogous to the fact that a generic polynomial map does not have a polynomial 
inverse); it leaves the ratio of polynomials Nn/Dn invariant, where

Nn = Vn · An−1 = Vn−1 · An, Dn = Vn · Bn−1 = Vn−1 · Bn,

since the matrices A, B are symmetric. The invariance implies that Nn divides Nn+1
and Dn divides Dn+1. We can describe the factorisations as follows.

Lemma 16. We have Nn+1 = NnQn and Dn+1 = DnQn where Qn = (F (2)
n )2 −F

(1)
n F

(3)
n .

Proof. Using F = A ×B, hence F ·A = 0, W = F ×V = (A ·V)B − (B ·V)A, we get

Nn+1 = Vn+1 · An

= pn+1(qn−1F
(1)
n − pn−1F

(2)
n )A(1)

n + (qn−1F
(2)
n − pn−1F

(3)
n )(pn+1A

(2)
n + qn+1A

(3)
n )

= W (3)(−F (2)
n A(1)

n − F (3)
n A(2)

n ) + W (2)F (3)
n A(3)

n + W (1)F (2)
n A(3)

n

= An · Vn−1

(
Fn

2 (A(3)
n B(1)

n −A(1)
n B(3)

n ) − F (3)
n (A(2)

n B(3)
n −A(3)

n B(2)
n )

)
= NnQn. �

Iterating the map one more time, the quotient Qn arises as a common divisor of pn+2
and qn+2. This can be seen from

pn+2 = B
(3)
n+1(pnA

(1)
n+1 + qnA

(2)
n+1) −A

(3)
n+1(pnB

(1)
n+1 + qnB

(2)
n+1)

=
B

(3)
n+1(p2

nA
(1)
n+1 + pnqnA

(2)
n+1 + p2

nA
(3)
n+1)

pn
−

A
(3)
n+1(p2

nB
(1)
n+1 + pnqnB

(2)
n+1 + p2

nB
(3)
n+1)

pn

=
B

(3)
n+1Nn+1 −A

(3)
n+1Dn+1

pn
= Qn

(
B

(3)
n+1Nn −A

(3)
n+1Dn

pn

)
. (40)
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The second term in (40) is polynomial, which can be seen directly from the factorisation

B
(3)
n+1A

(3)
n−1 −A

(3)
n+1B

(3)
n−1 = (pn−1qn+1 − pn+1qn−1)(Fn × Vn−1) · P,

where P = (a02, a12, a22)T ×(b02, b12, b22)T , and the observation that Fn ≡ Pq4
n mod pn. 

For qn+2 we find the similar expression

qn+2 = Qn

(
B

(1)
n+1Nn −A

(1)
n+1Dn

qn

)
. (41)

Theorem 17. The polynomial Qn is a divisor of Qn+1.

Proof. The proof is by direct computation. We write

Qn =
8∑

i=0
dip

8−i
n qin = Q(pn, qn). (42)

Considering the three components of Fn as variables, we substitute equation (37) into 
Qn+1 and reduce the result modulo Qn = (F (2)

n )2 −F
(1)
n F

(3)
n using a total degree order-

ing. We denote the coefficients of the resulting polynomial in pn−1, qn−1 by ei, so that 
Qn+1 |Eq. (37)≡

∑8
i=0 eip

8−i
n−1q

i
n−1 mod Qn. There appear to be two non-trivial com-

mon factors, namely X = gcd(e0, e2, e4, e6, e8), Y = gcd(e1, e3, e5, e7), and we have 
Qn | Y − XFn

2 . Thus it suffices to establish that Qn is a divisor of X. Curiously, 
we have the following expression, modulo Qn: X(F (1)

n )4 ≡
∑8

i=0 di(F
(1)
n )8−i(F (2)

n )i =
Q(F (1)

n , F (2)
n ). Finally, with computer algebra (e.g. Maple) it can be verified that Qn

divides Q(F (1)
n , F (2)

n ). �
From (38), an ultradiscrete system of recurrences for a lower bound on the multiplic-

ities is given as follows:

m
p
n+1 = m

q
n+1 = min

r∈{p,q},i+j=4,i,j≥0

(
mr

n−1 + imp
n + jmq

n

)
. (43)

So a lower bound on the growth of the multiplicity of divisors is mp
n+1 = m

q
n+1 = mn+1

with

mn+1 = 4mn + mn−1, (44)

where m0 = 0 and m1 = 1. We are interested in primitive divisors. Therefore, according 
to Theorem 17 we want to divide Qn by Qn−1. But there is much more to divide out. 
As Qn−2 divides gcd(pn, qn) and Qn is homogeneous in pn, qn of degree 8, Qn is also 
divisible by (Qn−2)8, and by (Qn−3)32, and so on. We can recursively define a polynomial 
rn by r1 = 1 and
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Qn =
n−2∏
k=2

r
8mk−1
n−k rn−1rn =⇒ rn =

n−2∏
j=0

(Qn−j)1−2j2 .

In terms of rn, a common divisor of pn and qn is given by

gn =
n−2∏
k=2

r
mn−k−1
k =⇒ gn+1 = rn−1gn−1g

4
n. (45)

As every divisor is a common divisor, we define the quotients sn, tn by

pn = gnsn and qn = gntn. (46)

To find a closed system of equations we need to involve rn and find out how it relates to 
sn, tn. Using Qn = Q(pn, qn) = g8

nQ(sn, tn) it can be verified that rnrn−1 = Q(sn, tn). 
Substituting (46) into (37), and using (45), we arrive at the system

rnrn−1 = Q(sn, tn),

sn+1rn−1 = tn−1F
(1)(sn, tn) − sn−1F

(2)(sn, tn),

tn+1rn−1 = tn−1F
(2)(sn, tn) − sn−1F

(3)(sn, tn),

(47)

with F(sn, tn) = g−4
n Fn. Up to shifting indices, initial values can be chosen as s0 = u0, 

s1 = u1, t0 = t1 = r0 = 1. The ratio un = sn
tn

is an iterate of the symmetric QRT map 
(35).

Theorem 18. The system (47) has the Laurent property: rn, sn, tn ∈ R̂ := R[r±1
0 , s0, s1,

t0, t1], where R is the ring of polynomials in the parameters aij , bij over Z.

Proof. Upon noting that Q(s, t) and F (j)(s, t) are homogeneous with weights 8 and 4 
respectively, we see that the system (47) is weighted homogeneous, where rn has degree 
4 and sn, tn have degree 1. This allows us to show by induction that the iterates can be 
written in terms of r = (r0, s0, s1, t0, t1) in a similar fashion to (14), as

rn = N∗
n(s0, s1, t0, t1)

r0cn
, sn = Nn(s0, s1, t0, t1)

r0dn
, tn = N̂n(s0, s1, t0, t1)

r0en
, (48)

where N∗
n, Nn, N̂n are homogeneous polynomials in s0, s1, t0, t1. The system (47) only 

involves division by rn−1 at each iteration, and since it is of second order in sn, tn and 
only first order in rn, it is slightly more general than the conditions in Theorem 2, but 
Hickerson’s method still extends to this situation. Clearly the 5 initial values as well as 
r1, s2, t2 belong to R̂, while from Theorem 17 it follows that Q(s1, t1)|Q(s2, t2), which 
implies r2 ∈ R̂, and the same computations that yield (40) and (41) also give s3, t3 ∈ R̂. 
It can also be verified with computer algebra that r1 and r2 are coprime; it is sufficient to 
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check that this is so for some particular numerical choice of coefficients aij, bij , in which 
case it must hold when the coefficients are variables. Then from the inductive hypothesis 
we can write the new iterate produced by the first equation in (47) as

rn =
N∗

n−1(s1, s2, t1, t2)
r1cn−1

=
N∗

n−2(s2, s3, t2, t3)
r2cn−2

.

By substituting for r1, r2, s2, s3, t2, t3 as Laurent polynomials in R̂ and using (r1, r2) = 1, 
it follows from the equality of the latter two expressions above that rn ∈ R̂, and the 
same argument shows that sn+1, tn+1 ∈ R̂. �

In an appendix, we also prove the following result.

Lemma 19. The Laurent polynomials sn and tn generated by (47) are coprime in R̂ for 
all n ≥ 0.

As before, no cancellations occur in the numerators when the Laurent polynomials 
are substituted into the right-hand sides of the system (47), so we can immediately write 
down the ultradiscrete system for the denominator exponents cn, dn, en in (48), that is

cn + cn−1 = max
(
(8 − i)dn + ien

)
i=0,...,8

,

dn+1 + cn−1 = max(dn−1, en−1) + Mn,

en+1 + cn−1 = max(dn−1, en−1) + Mn, Mn := max
(
(4 − i)dn + ien

)
i=0,...,4

Subtracting the last two equations above implies that dn = en for all n ≥ 2, and hence

cn + cn−1 = 8dn, dn+1 + cn−1 = 4dn + dn−1 =⇒ (S − 1)3dn = 0.

Therefore dn and en both grow quadratically with n, as do the degrees of Nn, N̂n, and 
(by Lemma 19 and its proof – see Appendix A) these are coprime and their degrees 
remain the same after substituting r = (1, u0, u1, 1, 1) into un = Nn/N̂n. This yields an 
exact formula for the degree growth of (35). To be precise, for n ≥ 2 we find dn = en =
(n2 − n)/2 =⇒ degu(Nn) = degu(N̂n) = degu(un) = 2n2 − 2n + 1, using the fact that 
degr(Nn) = 4dn + 1 by the weighted homogeneity of (47).

Theorem 20. As a rational function of the initial values u0, u1, the nth iterate un of the 
symmetric QRT map (35) has degree 2n2 − 2n + 1.

5.2. Degeneration to the Laurentified multiplicative/additive QRT maps

In this subsection, we show how the Laurentified multiplicative and additive QRT 
maps arise as special cases of the three-component system (47).
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Theorem 21. In the degenerate case b11 = 1 and all other bij = 0, the polynomials rn, 
sn and tn can be expressed in terms of the solution to (12) as

rn = kn+1ln+1knln, sn = kn, tn = ln. (49)

Proof. By substituting b11 = 1 and no other non-zero bij in (47), we find

rnrn−1 = s2
nt

2
nRnSn, sn+1rn−1 = tn−1tnsnSn, tn+1rn−1 = sn−1sntnRn, (50)

where Rn = a1sn
2 + a2sntn + a3tn

2 and Sn = a3sn
2 + a5sntn + a6tn

2. With the sub-
stitutions (49), the second and third equations in (50) correspond to the two equations 
(12), while the first one is a consequence of them. �
Theorem 22. In the degenerate case b22 = 1 and all other bij = 0, rn, sn and tn are 
expressed in terms of solutions to (29) as

rn = −l2nl
2
n+1, sn = kn, tn = ln. (51)

Proof. Setting all bij = 0 apart from b22 = 1 in (47) gives

rnrn−1 = t4nR
2
n, sn+1rn−1 = t2n(sn−1Rn + tn−1Sn), tn+1rn−1 = −tn−1t

2
nRn,

(52)

where Rn = a1s
2
n + a2tnsn + a3t

2
n, Sn = a2s

2
n + a4sntn + a5t

2
n. The first and third 

equations above follow from the second equation in (29). The second equation in (52) is 
a consequence of the first equation of the system (29). �
6. Somos recurrences

In this section we show that the components of the Laurent systems we have derived 
satisfy Somos-7 recurrence relations. We start with the multiplicative case, and from 
this we will obtain the additive case, before proceeding to obtain the Somos-7 relations 
corresponding to the general symmetric QRT map as a corollary of a broader result for 
asymmetric QRT.

6.1. The multiplicative case

Let

I = a1u
2
0u

2
1 + a2u0u1(u0 + u1) + a3(u2

0 + u2
1) + a5(u0 + u1) + a6

u0u1
, (53)

be the invariant of (5) considered as a map on the plane of initial values (u0, u1). We 
will prove the following theorem.
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Theorem 23. The variables kn, ln in (12) each satisfy the same Somos-7 recurrence,

xn+7xn = Axn+6xn+1 + Bxn+5xn+2 + Cxn+4xn+3, (54)

with coefficients given by

A = −(α3 + αβγ + β2), B = (β2 −A)α2, C = A(A− β2), (55)

with

α = a2a5 + a2
3 − a1a6 + a3I,

β = (a1a5 − 2a2a3)a5 + a2
2a6 + (a1a6 − a2

3)I,

γ = 4a3 + I.

(56)

The coefficients may be found using computer algebra as follows. If xn, yn satisfy the 
same Somos-7 recurrence, then

det

⎛
⎜⎝
x5x−2 x4x−1 x3x0 x2x1
x6x−1 x5x0 x4x1 x3x2
y5y−2 y4y−1 y3y0 y2y1
y6y−1 y5y0 y4y1 y3y2

⎞
⎟⎠ = 0

for all initial values (where, in each row of the matrix, the indices can be shifted by 
an arbitrary amount). The coefficients of the Somos-7 recurrence are then found by 
calculating a constant vector (independent of n) that spans the one-dimensional kernel 
of the above matrix – see [20] for an introduction to this method.

However, it is more instructive to prove the result by considering the form of the 
solution. As an added benefit, this provides more succinct expressions for the coefficients. 
We first show that kn, ln can be written in the form of products

kn = τn τ
∗
n, ln = τ̃n τ̃

∗
n, (57)

where each of τn, τ∗n, ̃τn, ̃τ∗n, satisfy a Somos-5 recurrence (in fact, the same Somos-5 
recurrence, with identical coefficients and a first integral taking the same value); then we 
use the fact that products of this kind provide special solutions of Somos-7 recurrences.

The general Somos-7 recurrence, of the form (54), arises as a reduction of the bilinear 
discrete BKP equation, a partial difference equation which is also known as the cube 
recurrence [10]. It is possible to obtain a general analytic solution in terms of genus two 
sigma functions, corresponding to a translation on a two-dimensional Jacobian variety, 
which we intend to present elsewhere. Nevertheless, Somos-7 also admits special solutions 
given by products of elliptic sigma functions, which are described as follows.

Proposition 24. Let τn satisfy the Somos-5 recurrence

τn+5τn = ατn+4τn+1 + βτn+3τn+2, (58)
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with coefficients α, β, and let τ∗n satisfy the same recurrence but with coefficients α∗, β∗. 
Then whenever the constraint

A = ψ4ψ
∗
2ψ

∗
5

ψ2ψ∗
4

= ψ∗
4ψ2ψ5

ψ∗
2ψ4

(59)

holds, the product kn = τn τ
∗
n satisfies a Somos-7 recurrence of the form (54) with A

given by (59),

B = ψ3ψ4ψ
∗
3ψ

∗
4

ψ2ψ∗
2

−Aψ3ψ
∗
3 , C = ψ5ψ

∗
5 −A

ψ4ψ
∗
4

ψ2ψ∗
2
, (60)

where ψn, ψ∗
n denotes the companion elliptic divisibility sequence associated with τn, τ∗n

respectively.

Proof. For later use, we record analytic formulae from [19,21] concerning the solution 
of (58), and its companion elliptic divisibility sequence (EDS). From the proof of Corol-
lary 2.12 in [19], the general analytic solution of (58) can be written in the form

τn = A±B
[n2 ]
± μ[n2 ]2σ(z0 + nκ), B+

B−
= −μ−1 = σ(κ)4, (61)

with the ± signs selected according to the parity of n, where σ(z) = σ(z; g2, g3) is the 
Weierstrass sigma function corresponding to the elliptic curve E in the (x, y) plane given 
by

E : y2 = 4x3 − g2x− g3, (62)

and its companion EDS is given by ψn = σ(nκ)/σ(κ)n2−1. The coefficients in (58) can 
be expressed in terms of the companion EDS, as

α = ψ3, β = −ψ4

ψ2
, (63)

and the terms of the sequence τn satisfy a particular Somos-7 recurrence as well, namely

τn+7τn = ψ3ψ4

ψ2
τn+5τn+2 − ψ5 τn+4τn+3, ψ5 = ψ3

2ψ4 − ψ3
3 (64)

(see also [31]). Upon substituting k̄n = τn τ
∗
n into (54) and using (58), (64) and the 

corresponding equations (with asterisks) for τ∗n to eliminate products with shifts of width 
5 and 7, one obtains a linear equation in the products XX∗, Y Y ∗, XY ∗, Y X∗, where 
X = τn+5τn+2, Y = τn+4τn+3, and similarly for X∗, Y ∗. Since this expression must 
vanish for all n, it is required that the coefficients of each of these four products should 
be zero, leading to the two different equations for A in (59), which have to be consistent, 
as well as the equations (60) for B, C. �
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Corollary 25. If the sequences τn, τ∗n satisfy the Somos-5 recurrence (58) with the same 
coefficients α, β and have the same value of the invariant

γ = τn+1τn+4

τn+2τn+3
+ τn+1τn+2

τnτn+3
+ α

(
τn+1τn+4

τn+2τn+3
+ τnτn+3

τn+1τn+2

)
+ β

τ2
n+2

τnτn+4
, (65)

then kn = τn τ
∗
n satisfies the Somos-7 recurrence (54) with coefficients

A = ψ5, B = (D −A)ψ2
3 , C = A(A−D), where D =

(
ψ4

ψ2

)2

. (66)

Proof of Corollary. The fact that α, β, γ are the same for both sequences implies that 
they have the same companion EDS ψn. This means that the constraint (59) is trivially 
satisfied, and the expressions for the coefficients A, B, C simplify dramatically. �
Theorem 26. The solution of the bilinear system (12) can be written in the form (57), 
where τn, τ∗n, ̃τn, ̃τ

∗
n all satisfy a Somos-5 recurrence with the same coefficients α, β and 

the same value of the invariant γ given by (65).

Proof. By Proposition 2.5 in [19], the solution of the multiplicative QRT map (5) can 
be written as un = f(z0 + nκ) where f = f(z) is an elliptic function of its argument i.e. 
periodic with respect to the period lattice Λ defined by an elliptic curve E as in (62). 
The function f(z) provides a uniformization of the curve C in the (u0, u1) plane defined 
by fixing the value of the invariant I for the map, and this curve is isomorphic to E . 
Also, projecting onto the first coordinate, (u0, u1) 
→ u0, defines a 2 : 1 map C → P

1, 
so the function f is an elliptic function of order 2. Hence f has two zeros and two poles 
in any period parallelogram for Λ, and so, by a standard result in the theory of elliptic 
functions (see e.g. §20·53 in [34]), up to a shift in z,

f(z) = K
σ(z − Z)σ(z + Z)
σ(z − P )σ(z + P )

for some constants Z, P, K. Thus

un = kn
ln

= K
σ(zn − Z)σ(zn + Z)
σ(zn − P )σ(zn + P ) , zn = z0 + nκ, (67)

and it remains to check that by inserting suitable n-dependent prefactors as in (61) the 
numerator kn and denominator ln can each be written as a product of two Somos-5 
sequences. To be more precise, the general solution of the bilinear system (12) can be 
written as

kn = a±b[n2 ]
± μ2[n2 ]2σ(zn − Z)σ(zn + Z),

ln = ã±b[n2 ]
± μ2[n2 ]2σ(zn − P )σ(zn + P ),

(68)
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where the ± signs are chosen with the parity of n, and the prefactors are taken to satisfy 
the relations

μ = −σ(κ)−4,
a+

ã+
= a−

ã−
= K,

b−
b+

= μ2, b+b− =
(

a−
a+

)4

.

Subject to the above, the solution (68) is completely determined by the 9 parameters a+, 
a−, ã+, z0, κ, Z, P , g2, g3, which fix the 4 initial values and 5 coefficients a1, a2, a3, a5, a6
in (12). Then from the formula for kn in (68) there is a factorisation kn = τn τ

∗
n, with τn

given by (61) with z0 replaced by z0 − Z, and

τ∗n = A∗
±B

∗ [n2 ]
± μ[n2 ]2σ(z0 + Z + nκ),

B∗
+

B∗
−

= −μ−1 = σ(κ)4,

where A±A
∗
± = a±, B±B

∗
± = b±,

so that τn and τ∗n satisfy the same Somos-5 recurrence with the same value of the invari-
ant γ. By making an analogous factorisation, the right-hand side of the formula for ln in 
(68) can be written as a product τ̃n τ̃∗n for another pair of such Somos-5 sequences. �

It is worth explaining the nature of the factorisation (57) in more detail. First of 
all, by Proposition 4, each of the terms kn, ln is a Laurent polynomial in the ring 
R[k±1

0 , k±1
1 , l±1

0 , l±1
1 ], and can be factored as a product of a polynomial with a Lau-

rent monomial, but the factorisation (57) is not of this kind: it leads to τn, τ∗n, etc. which 
are algebraic functions of the coefficients and initial data for (12). Secondly, the factori-
sation (57) is not unique: there is a 6-parameter family of gauge transformations that 
preserve it, given by

τn → A±B
n
τn, τ∗n → (A±)−1B

−n
τ∗n, τ̃n → Â±B̂

nτ̃n, τ̃∗n → (Â±)−1B̂−nτ̃∗n, (69)

where A±, Â± vary with the parity of n, for arbitrary non-zero A+, A−, Â+, Â−, B, B̂. 
The above theorem guarantees that Somos-5 sequences τn, τ∗n, τ̃n, τ̃∗n exist such that 
(57) holds. However, given the initial data k0, l0, k1, l1 and coefficients a1, a3, . . . , a6 for 
(12), although the coefficients α, β are given by the polynomial expressions (56), it is 
necessary to solve algebraic equations in order to find the four sets of initial data for 
Somos-5, i.e. τ0, τ1, . . . , τ4 for the first sequence, and so on. Without loss of generality, 
by exploiting the gauge symmetry (69), the 6 values τ∗0 , τ∗1 , τ∗2 , ̃τ∗0 , ̃τ∗1 , ̃τ∗2 can all be fixed 
to 1, so that τ0 = k0, τ1 = k1, τ2 = k2 and τ̃0 = l0, τ̃1 = l1, τ̃2 = l2. By fixing γ as 
in (56), the formula (65) determines τ4 as an algebraic function of τ0, τ1, τ2, τ3 and the 
coefficients and initial data for (12), by solving a quadratic equation, and similarly for 
τ∗4 , ̃τ4, ̃τ

∗
4 . Thus, in order to have four complete sets of initial data for Somos-5, it remains 

to determine the four quantities τ3, τ∗3 , ̃τ3, ̃τ∗3 . The product τ3τ∗3 = k3 is a known (Laurent 
polynomial) function of k0, l0, k1, l1 and a1, a3, . . . , a6, and similarly for τ̃3τ̃∗3 = l3, but 
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two more relations in are needed to obtain the remaining four quantities. Then, by using 
(58) to write

k5 = τ5τ
∗
5 = (ατ1τ4 + βτ2τ3)(ατ∗1 τ∗4 + βτ∗2 τ

∗
3 )

τ0τ∗0
,

the left-hand side is determined by the coefficients/initial data for (12), while the ratio 
on the right-hand side is a rational function of these together with the Somos-5 initial 
data, and similarly for l5 = τ̃5τ̃

∗
5 , thus providing the necessary two additional relations, 

which are best solved using resultants.

Proof of Theorem 23. By Theorem 26, both kn and ln are products of Somos-5 sequences, 
so by Corollary 25 they satisfy the same Somos-7 recurrence with coefficients given by 
(66). It remains to relate the quantities ψ2, ψ3, ψ4 that define the companion EDS to 
the parameters aj , j = 1, 2, 3, 5, 6 and the value of the integral I for the QRT map (5). 
This is achieved by using the formulae for the EDS in [21], which give the identity 
ψ4

2 = β + αγ in addition to (63), and noting that fixing the value of the invariant γ
defines a curve of genus one in the plane with coordinates (x, y) = (τnτn+3/(τn+1τn+2),
(τn+1τn+4/(τn+2τn+3)), that is

(x + y)xy + α(x + y) − γxy + β = 0. (70)

The latter curve is isomorphic to the curve C, and by the use of an algebra package such 
as algcurves in Maple one can relate α, β, γ to the coefficients appearing in C; this leads 
to the relations (56). �
6.2. The additive case

The quantity

J = a1u
2
0u

2
1 + a2u0u1(u0 + u1) + a3(u2

0 + u2
1) + a4u0u1 + a5(u0 + u1), (71)

is an invariant of (6) considered as a map on the plane of initial values (u0, u1). There is 
a well known link between the additive form (6) of the QRT map and the multiplicative 
one (5).

Lemma 27. Suppose that an orbit of (5) starting from the initial point (u0, u1) is such 
that the value of the invariant is I = −a4. Then this coincides with the orbit of (6)
starting from the same initial point with the invariant taking the value J = −a6.

Proof. This follows from (53), expressing a6 in terms of I, substituting into the formula 
for the corresponding map, then comparing with a4 in terms of J obtained from (71). �
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Theorem 28. The variables kn, ln in (29) each satisfy the same Somos-7 recurrence, of 
the form

xn+7xn = Axn+6xn+1 + Bxn+5xn+2 + Cxn+4xn+3 (72)

with coefficients given by (55), but with

α = a1J +a2a5 +a2
3 −a3a4, β = a1a

2
5 − 2a2a3a5 +a2

3a4 +(a1a4 −a2
2)J, γ = 4a3 −a4.

Proof. It is enough to observe that, by Lemma 27, any orbit of the multiplicative map 
corresponds to an orbit of the additive version, and by identifying kn, ln in (12) with 
kn, ln in (29) the result follows. �

As already noted, the DTKQ-2 equation (3) is a special case of the additive QRT 
map, with

J = (unun−1 − α)(un + un−1)

being a first integral in this case. Moreover, (4) arises from (3) by setting

un = enen+3

en+1en+2
.

To see that how this is a degenerate case of the preceding result on Somos-7 recurrences, 
observe that, by Lemma 27, the iterates of (3) also satisfy the multiplicative QRT map

un+1un−1 = − (αun + J)
un

,

which leads to the following result.

Proposition 29. Any sequence (en) generated by (4) also satisfies the Somos-5 relation

en+5en + α en+4en+1 + J en+3en+2 = 0. (73)

Corollary 30. For all m, n ∈ Z the following relation holds:∣∣∣∣ enen+5 emem+5
en+2en+3 em+2em+3

∣∣∣∣ + α

∣∣∣∣en+1en+4 em+1em+4
en+2en+3 em+2em+3

∣∣∣∣ = 0. (74)

Proof of Corollary. This follows immediately from (73). By eliminating em+5 from the 
top right entry and expanding the two determinants, the left-hand side of (74) becomes∣∣∣∣∣ enen+5 −α em+4em+1 − J em+3em+2

en+2en+3 em+2em+3

∣∣∣∣∣ + α

∣∣∣∣∣ en+1en+4 em+1em+4
en+2en+3 em+2em+3

∣∣∣∣∣
= em+2em+3 (en+5en + α en+4en+1 + J en+3en+2) = 0



K. Hamad et al. / Advances in Applied Mathematics 96 (2018) 216–248 241
Thus apart from an overall m-dependent prefactor, which can be removed, for each n
the formula (74) just corresponds to the same Somos-5 relation (73). �
Remark 31. The equation (74) is of degree four and depends on two indices m, n. This 
is reminiscent of Ward’s defining relation for an elliptic divisibility sequence [33].

6.3. The asymmetric QRT map

It turns out that Theorem 23 admits a straightforward generalization to both the 
general 12-parameter symmetric QRT map and the full 18-parameter asymmetric QRT 
map, with the result for the former being a special case of that for the latter. For 
convenience, we briefly outline the geometrical description of the general QRT map due 
to Tsuda [29]; for more details see Duistermaat’s book [8]. Starting from a pencil of 
biquadratic curves

P(u, v;λ) ≡
∑

i,j=0,1,2
(aij + λ bij)u2−iv2−j = 0 (75)

in the (u, v) plane, labelled by λ ∈ P
1, there are two natural birational involutions on each 

curve (for fixed λ), called the horizontal/vertical switch, denoted ιH and ιV respectively, 
given by

ιH : (u, v) 
→ (u†, v), ιV : (u, v) 
→ (u, v†), (76)

where u† denotes the conjugate root of (75) considered as a quadratic in u (for fixed v), 
and similarly for v†. Note that the birationality of ιH (and similarly that of ιV ) can be 
seen directly by writing (75) as

P ≡ A(v, λ)u2 + B(v, λ)u + C(v, λ) = 0,

and using either the formula for the sum or the product of the roots, i.e.

u† + u = −B(v, λ)
A(v, λ) , u† u = C(v, λ)

A(v, λ) . (77)

Then the QRT map ϕ is defined on each curve in the pencil to be the product of these 
two involutions,

ϕ = ιV · ιH , (78)

and this lifts to a birational map on the (u, v) plane: to apply ιH one can eliminate λ
from the pair of equations (77) to yield a formula for u† as a rational function of u and 
v alone, and similarly for the application of ιV . Moreover, solving (75) for λ gives
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λ = −
∑

i,j aiju
jvk∑

i,j biju
jvk

, (79)

and a generic point (u, v), as well as its orbit under the QRT map ϕ, belongs to a unique 
curve C = C(λ) with the corresponding value of λ being determined by the above ratio 
(the exception being the base points, for which both the numerator and denominator 
vanish).

In the special case where the coefficient matrices A = (aij) and B = (bij) are symmet-
ric, each curve in the pencil admits the additional involution σ : (u, v) 
→ (v, u), and the 
symmetric QRT map ϕsym is defined as ϕsym = σ · ιH ; the vertical switch is conjugate 
to the horizontal, so ιV = σ · ιH · σ, and ϕ = (ϕsym)2. With symmetric matrices as in 
(34), ϕsym coincides with the map (35) defined previously, and comparing (36) with (79)
we see that J = −λ.

Considering the general asymmetric QRT map, we can start from an initial point 
(u0, v0) and apply ϕ repeatedly to obtain the sequence

(un, vn) = ϕn(u0, v0). (80)

We have the following result.

Theorem 32. Any orbit (80) produced by the general QRT map can be written as un =
kn/ln, vn = pn/qn, where kn, ln, pn, qn all satisfy the same Somos-7 recurrence of the 
form (54), with the coefficients A, B, C given by (55) in terms of quantities α, β, γ which 
are determined precisely by the 18 parameters aij, bij and the value of the invariant λ as 
in (79).

Proof. This is similar to the proof of Theorem 26, so rather than repeating this it is 
sufficient to explain the main things that are different. For generic values of aij, bij and 
λ the curve C defined by (75) is smooth for (u, v) ∈ P

1 × P
1 and has genus one, so it 

is isomorphic to C/Λ where Λ is the period lattice of an elliptic curve E given in the 
Weierstrass form (62). Each of the maps (u, v) 
→ u and (u, v) 
→ v defines a double cover 
of P1, with associated elliptic functions of order two, denoted f, g respectively, such that 
(u, v) = (f(z), g(z)) provides the uniformization of C. Now, up to an overall shift in z, 
we may write

f(z) = K
σ(z − Z)σ(z + Z)
σ(z − P )σ(z + P ) , g(z) = K ′ σ(z + δ − Z ′)σ(z + δ + Z ′)

σ(z + δ − P ′)σ(z + δ + P ′)

for some constants δ, Z, P, K, Z ′, P ′, K ′ which specify the poles and zeros of f, g. Then by 
a standard argument (see e.g. Theorem 2.4 in [29] or the proof of Proposition 2.5 in [19]), 
the composition of two involutions ϕ = ιV · ιH corresponds to a translation z 
→ z+κ on 
the torus C/Λ, so the iterates (80) of the QRT map have an analytic expression given 
by (67) and



K. Hamad et al. / Advances in Applied Mathematics 96 (2018) 216–248 243
vn = pn
qn

= K ′ σ(zn + δ − Z ′)σ(zn + δ + Z ′)
σ(zn + δ − P ′)σ(zn + δ + P ′) , zn = z0 + nκ. (81)

Thus once again we can write down a factorisation kn = τnτ
∗
n into a product of Somos-5 

sequences, and similarly for ln, pn, qn. Therefore all of kn, ln, pn, qn satisfy the same 
Somos-7 recurrence, whose coefficients can be determined in terms of the parameters 
α, β, γ for a cubic curve (70) that is isomorphic to C. (See e.g. Remark 2.2 in [29] for 
details.) �
Remark 33. The formulae for kn, ln, pn, qn as a product of two tau functions/sigma func-
tions, as in (57), (68), and in the proof above, have a counterpart in the non-autonomous 
setting, in the form of the bilinearization of the q-PIII and q-PV I equations by Jimbo 
et al. [22].

The analogue of the above result for the map ϕsym = σ · ιH is simpler because for 
a symmetric biquadratic curve the shift κ for the original QRT map ϕ can be chosen 
so that g(z) = f(z + κ/2), and then we can identify vn = un+1/2 in (80). Lemma 27
generalizes to the full 12-parameter symmetric case, such that on every orbit of (35) one 
may write un as a ratio of quantities which satisfy both bilinear systems (12) and (29), 
with parameters that are linear functions of λ. By combining the above results on the 
multiplicative and additive cases, we arrive at the following.

Corollary 34. Consider the general symmetric QRT map (35) with un = pn/qn, where 
the variables pn, qn satisfy a rational, non-Laurent system which is a variant of (37), 
namely

pn+1 = qn−1F
(1)
n − pn−1F

(2)
n

Dn
, qn+1 = qn−1F

(2)
n − pn−1F

(3)
n

Dn
, (82)

with F (i)
n = q4

nf
(i)(pn

qn
) and Dn = V(pn−1, qn−1)TBV(pn, qn) as above. Then pn and qn

are both solutions of the same Somos-7 relation, namely

pn+7pn = Apn+6pn+1 + Bpn+5pn+2 + Cpn+4pn+3, (83)

where the formulae (55) and (56) for the coefficients A, B, C are still valid if we set

a1 = a00 − Jb00, a2 = a01 − Jb01, a3 = a02 − Jb02, a5 = a12 − Jb12, a6 = a22 − Jb22,

I = −a11 + Jb11

in terms of the 12 parameters aij, bij, 0 ≤ i ≤ j ≤ 2 and first integral J = −λ, as in 
(36), for ϕsym.
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Corollary 35. The variables sn, tn in the system (47) both satisfy the same Somos-7 
relation, given by (83) but with the coefficients rescaled according to

A → K12A, B → K20B, C → K24C,

where on each orbit the constant K is given by

K2 = ρn+1ρn−1

ρ2
n

, ρn = sn
pn

= tn
qn

, (84)

with pn, qn being the corresponding solution to (82).

Proof of Corollary 35. Since the solutions of (47) and (82) are both related to the same 
solution of (35) via un = sn/tn = pn/qn, we can introduce ρn = sn/pn = tn/qn. Taking 
the quotient of each side of the second equation (47) with each side of the first equation 
(82), and doing the same for the third equation (47) with the second equation (82), leads 
in both cases to

ρn+1rn−1 = Dnρ
4
nρn−1, (85)

while eliminating sn, tn from the first equation (47) gives

rnrn−1 = ρ8
nQ(pn, qn). (86)

Then using (85) in (86) and further substituting for pn+1, qn+1 from (82) gives
(
ρn+1ρn−1

ρ2
n

)(
ρn+2ρn
ρ2
n+1

)−1

= Q(pn, qn)
DnDn+1

= 1 =⇒ ρn+1ρn−1

ρ2
n

= const

=⇒ ρn = ρ0

(
ρ1

Kρ0

)n

Kn2

for some K, which verifies (84). The quadratic exponential form of the gauge transforma-
tion from pn to sn means that sn satisfies (83) but with coefficients rescaled as stated, 
and likewise for tn. If the initial values are chosen so that r0 = 1, s0 = p0 = u0, 
s1 = p1 = u1 and t0 = q0 = t1 = q1 = 1 then ρ0 = ρ1 = 1 and hence 
K2 = ρ2 = D1 = V(u0, 1)TBV(u1, 1). �
7. Concluding remarks

We have applied homogenisation and/or recursive factorisation to symmetric QRT 
maps, and have shown directly that this produces systems with the Laurent property. 
In the multiplicative case, the resulting system (12), appears to correspond to a pair 
of mutations in an LP algebra [23], which would give an alternative way to verify the 
Laurent property. However, neither (29) nor the system (47) obtained from the general 
symmetric QRT are of the right form for successive LP algebra mutations.
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Our results show that obtaining Laurent systems and using their ultradiscrete (or 
tropical) versions is a very efficient method for calculating the degree growth of maps. 
For the QRT maps, which preserve an elliptic fibration, the fact that the degree growth 
is quadratic is well known in the context of algebraic entropy of maps with invariant 
curves [2]. Earlier results on automorphisms of rational surfaces admitting an elliptic 
fibration were presented by Gitzatullin [15]. The quadratic growth observed in QRT 
maps also fits into Diller and Favre’s classification of bimeromorphic maps of surfaces 
in [7], and can be understood by making a sequence of blowing-up transformations which 
lifts the QRT map to an automorphism of a complex analytic surface, then considering 
the action on homology (see e.g. the discussion of geometric singularity confinement in 
chapter 3 of [8]). However, this approach may become intractable for maps in dimension 
3 and above, whereas the combination of Laurentification and ultradiscretization extends 
to higher dimensions in a straightforward manner.

In future work we propose to consider the analogue of (47) for the general asymmetric 
QRT map, as well as Laurent systems for higher-dimensional maps. As a starting point, 
it would be worth considering the bilinearization of the discrete Painlevé VI (q-PV I) 
equation presented in [22], for which the autonomous limit is just the multiplicative 
version of the asymmetric QRT map.
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Appendix A

Here we provide an inductive proof of Lemma 19, by making repeated use of two 
facts: (i) for a pair of polynomials f, g ∈ K[x1, . . . , xm] in m variables over a field K with 
positive degree in x1, there are polynomials A, B such that Af + Bg = Res(f, g, x1); 
and (ii) f, g have a common factor with positive degree in x1 if and only if this resultant 
vanishes (see e.g. Proposition 1, section §6 of chapter 3 in [5]). This extends directly to 
the case at hand, where the ring of coefficients R is a unique factorisation domain, by 
working in the corresponding field of fractions.

As our inductive hypothesis, we assume that (sk, tk) = 1 for 0 ≤ k ≤ n. The base 
cases k = 0, 1 are trivial, while for k = 2 we can write

(
r0s2
r0t2

)
=

(
−F (2)(s1, t1) F (1)(s1, t1)
−F (3)(s1, t1) F (2)(s1, t1)

)(
s0
t0

)
, (87)
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and verify directly that N2 = r0s2 and N̂2 = r0t2 are coprime polynomials in 
R[s0, t0, s1, t1], and homogeneous in s0, t0 and s1, t1 separately (of degree 1 and 4, re-
spectively). Moreover, if we regard N2, N̂2 as (linear) polynomials in u0 = s0/t0, then 
from the aforementioned facts their coprimality means that there are polynomials A, B
(also linear in u0), whose coefficients are homogeneous polynomials in R[s1, t1], such that

t−1
0 (Ar0s2 + Br0t2) = Res(t−1

0 r0s2, t
−1
0 r0t2, u0) �= 0.

As it happens, from the linearity of the system (87) we see that the resultant in this case 
is just the determinant of the 2 × 2 matrix on the right, and turns out to be equal to the 
polynomial −Q(s1, t1), homogeneous of degree 8, so after rescaling by t20 we have

A′r0s2 + B′r0t2 = −t20Q(s1, t1),

where A′, B′ are homogeneous in s0, t0 and s1, t1 (separately). Upon shifting indices, 
by applying the pullback of the map defined by the Laurent system (47), this gives an 
identity of Laurent polynomials for all n, namely

A′(sn−1, tn−1, sn, tn)rn−1sn+1+B′(sn−1, tn−1, sn, tn)rn−1tn+1 = −t2n−1Q(sn, tn). (88)

Now we suppose that sn+1 and tn+1 have a non-trivial common factor P , and show 
that under the inductive hypothesis this leads to a contradiction. Indeed, from the right-
hand side of (88) there are two possibilities: (a) P |tn−1, or (b) P |Q(sn, tn). In case (a), 
(47) directly yields

rn−1sn+1 − tn−1F
(1)(sn, tn) = −sn−1F

(2)(sn, tn),

rn−1tn+1 − tn−1F
(2)(sn, tn) = −sn−1F

(3)(sn, tn),

therefore P must divide both right-hand sides above, and, since (sn−1, tn−1) = 1 by the 
inductive hypothesis, this yields P |F (2)(sn, tn) and F (3)(sn, tn). By applying the same 
argument as in the proof of Proposition 4, we form the Sylvester matrix corresponding 
to the coefficients of F (2) and F (3), whose determinant is a non-zero element of R, and 
since also (sn, tn) = 1 by hypothesis, this gives a contradiction. Thus we are left with 
case (b). The fact that s2, t2 are both coprime to Q(s1, t1) can be verified directly, so by 
taking resultants with respect to u1 and shifting indices this leads to a pair of identities

A∗
nrn−1sn+1 + B∗

nQ(sn, tn) = tMn R∗(sn−1, tn−1),

A†
nrn−1sn+1 + B†

nQ(sn, tn) = tMn R†(sn−1, tn−1),

where A∗
n, B

∗
n, A

†
n, B

†
n are homogeneous polynomials in sn−1, tn−1, sn, tn, M is a positive 

integer, and the resultants R∗, R† are a pair of coprime homogeneous polynomials in 
their arguments. Using the same method as for Proposition 4 once again, the latter 
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coprimality means that, since (sn−1, tn−1) = 1 by hypothesis, P cannot divide both 
R∗(sn−1, tn−1) and R†(sn−1, tn−1), hence P |tn. To finish off the argument, it is enough 
to use (s2, t1) = 1 = (t2, t1) and take resultants with respect to v1 = t1/s1, then shift to 
obtain further relations of the form

Ãnrn−1sn+1 + B̃ntn = sLnR̃(sn−1, tn−1), Ânrn−1sn+1 + B̂ntn = sLnR̂(sn−1, tn−1)

for all n, where L is a positive integer and the resultants R̃, R̂ are coprime homogeneous 
polynomials in their arguments. From (sn, tn) = 1 it follows from the two right-hand 
sides above that P |R̃(sn−1, tn−1), R̂(sn−1, tn−1), which is seen to be a contradiction by 
applying the argument used for Proposition 4 once more. This completes the proof of 
Lemma 19. �

Analogous arguments can be used to obtain similar coprimality conditions for all 
Laurent polynomials rn, sn, tn generated by (47), and it appears that more is true: these 
iterates should be distinct irreducible elements of R̂ = R[r±1

0 , s0, s1, t0, t1] for all n.
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