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Abstract—In this paper, we present Poisson brackets of certain classes of mappings obtained
as general periodic reductions of integrable lattice equations. The Poisson brackets are derived
from a Lagrangian, using the so-called Ostrogradsky transformation. The (¢, —p) reductions
are (p + ¢q)-dimensional maps and explicit Poisson brackets for such reductions of the discrete
KdV equation, the discrete Lotka — Volterra equation, and the discrete Liouville equation are
included. Lax representations of these equations can be used to construct sufficiently many
integrals for the reductions. As examples we show that the (3, —2) reductions of the integrable
partial difference equations are Liouville integrable in their own right.
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1. INTRODUCTION

In this paper we derive Poisson structures (and symplectic structures) for several families of
discrete dynamical systems. In general, of course, the problem of finding a Poisson structure for
a given mapping (if it has such a structure) is not algorithmic. However, suppose the system in
question is the periodic reduction of a partial difference equation, e. g.,

Ul+1,m+1 = F(ul,ma Ul4+1,m» ul,m-l—l)
with
Ul+qm—p = Ul,m,

where F' is a given function, R? — R, and u is the unknown function, Z? — R. In the simplest
cases, p = q resp. p =1, Poisson structures were first found by inspection, cf. [15], resp. [21].
Later on, for the case p = —q (pre) symplectic structures for reductions of Adler — Bobenko— Suris
(ABS) equations were derived using the existence of the so-called three-leg form [1, 18]. Using the
three-leg forms of ABS equations, we can derive Lagrangians for these equations which help us to
find symplectic structures for the case where p = +¢. This method is called the Hamiltonian—
Lagrangian approach and it was introduced in [5, 24]. For the case p = ¢, using the discrete
Legendre transformation we can bring reduction of potential Korteweg—de Vries (pKdV) to
canonical coordinates [7]. For the case p # +¢, the discrete analogue of the so-called Ostrogradsky
transformation will help us to bring the map to canonical coordinates [4, 5, 24]; therefore we
can derive Poisson structures of the original maps. We note that, in the continuous context,
this transformation has been used to construct Hamiltonians from higher derivative Lagrangians.
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POISSON BRACKETS OF MAPPINGS 683

The Hamiltonian — Lagrangian approach was used in [11]1) to find the Poisson structure of p =1
reductions of the discrete KAV equation.

In this paper we use the Ostrogradsky transformation to find Poisson structures for periodic
reductions of several partial difference equations, including the discrete KdV equation, the plus-
KdV equation, the discrete Lotka— Volterra equation, and the discrete Liouville equation. All
the partial difference equations we discuss (except for one) are integrable, i.e., they possess a
Lax representation, and this Lax representation can be used to derive Lax representations for
the reductions, in their turn yielding integrals of the reductions, cf. [15, 16, 19]. As examples,
we explicitly show that p =2, ¢ =3 reductions of the integrable partial difference equations
are Liouville integrable in their own right, i.e., they possess a sufficient number of functionally
independent integrals in involution with respect to the derived Poisson structures.

2. SETTING

In this section, we give some basic notions for the rest of the paper. In particular, we will present
the so-called discrete Ostrogradsky transformation to obtain Poisson brackets from a Lagrangian.

2.1. Completely Integrable Map

Recall that a map between two Poisson manifolds is called Poisson if it preserves the Poisson
brackets. In particular, a d-dimensional mapping

p: RY — R?
(zl,xg,...,xd)r—>(x/1,:c/2,...,x/d) (2.1)
is called a Poisson map if
{$Z,$j} = {xhx]} |x=xl’ (22)

where {, } denotes the Poisson bracket in R? (the same bracket in the domain and the co-domain).
One sufficient condition for the map (2.1) to be Poisson is the existence of a structure matrix, {2,
such that

dpQ(z)de” = Q(z), (2.3)

where dyp is the Jacobian of the map (2.1). By structure matrix we mean that € is a d x d skew-
symmetric matrix that satisfies the Jacobi identity [14]

0 0 0
Qi — it + i — Qs + Q=i | =0, Vi, 5, k. 2.4
zl:( I 921 ik lj@xl ki + lkaxl ]> 2,7 (2.4)

The Poisson bracket between 2 smooth functions f and g is defined through this structure by the
following formula:

{f,9} = VI Q(Vg)T,
where V f is the gradient of f. In this case, €;; = {z;,z;}. We can see that the entries in the LHS
and RHS of (2.3) are {x;,x;} and {x;, 2} [ _,/»
If the Poisson structure is nondegenerate, i.e., {2 has full rank, one can define a closed two-form

w = Zwijdxi AN da:j
1<j

respectively.

through the Poisson structure W = Q™' and vice versa?). Then the Poisson map is called a

symplectic map and preserves the closed two-form W. For the case where the closed two-form
is preserved by the map (2.1), but is degenerate, we call the two-form presymplectic [6].

A function I(x) is called an integral of ¢ if I(x) = I(x). A set of smooth functions {I1, I, . .., I;;}
on an open domain D is called functionally independent on D if its Jacobian matrix dI has full
rank on a set dense in D.

U Another approach to obtain Poisson structures used in [11] is based on cluster algebras.
DIn the literature the symbol J is sometimes used instead of W. We reserve J to denote the Jacobian.
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684 TRAN et al.

Definition 1. The map ¢ is completely integrable if it preserves a Poisson bracket of rank 2r < d
and it has r +d — 2r = d — r functionally independent integrals which are pairwise in involution.

2.2. (q, —p) Reductions of Lattice Equations

In this section, we introduce the (g, —p)-reduction (ged(p,q) =1,¢,p > 0) to obtain ordinary
difference equations from lattice equations.

Given a lattice equation (see Fig. 1)
Q(ul,m7 Ul+1,m7 ul,m+17 ul+1,m+1) - 07

the (g, —p) reduction can be described as follows. We introduce the periodicity condition wu;,, =
Uj+q,m—p and travelling wave reduction v, = uy,, where n = Ip +mq. For 0 < n < p+q — 1, since
ged(p, q) = 1 one can find unique (I,m),l > 0,m < 0 such that |m/| is smallest and n = Ip + mq.
The lattice equation reduces to the following ordinary difference equation

Q(Un7 Un+p; Un+q> Un—f—p-l—q) =0. (25)
This equation gives us a (p + ¢)-dimensional map
(Unv Un+1,--- 7,Up+(I*1) = (UTL+1’ Un+2; - - - aanerrq)a

where we have assumed that one can solve vy4,14 uniquely from Eq. (2.5). For example, the
(3, —2)-reduction is depicted in Fig. 1.

V0 v2 V4

Ul m+1 Ul+1,m+1 U1 v3 V5

Ul m Ul4+1,m Vo v2 V4

Fig. 1. Quad equation and the (3, —2) reduction.

2.3. Lagrangian Equation and Ostrogradsky Transformation

Given a mapping obtained from an Euler—Lagrange equation, Bruschi et al. presented a
transformation to rewrite this map in a canonical form [5]. We use this canonical form to derive a
Poisson structure for mappings obtained from the Euler — Lagrange equation.

We start with the following symplectic map without knowing its symplectic structure
¢:x(n)—xz(n+1),
where z(n), z(n + 1) € R?Y. We rewrite the map in canonical form as follows:

(a(m),p(m)) — (a(n +1),p(n + 1)), (2.6)
with gj(n+ 1) = gj(¢(n),p(n)) and p;j(n + 1) = f;(q(n), p(n)) and such that {f;, f;} = {gi,g;} =0
and {fi,g;} = d; for 1 <i,5 < N.

Suppose we have a Lagrangian L(u(k), u(k+1),...,u(k+ N)) and the discrete action functional

I= ZL(u(k:),u(k:—i— 1),...,u(k+ N)).
kEZ
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The discrete Euler — Lagrange equation for the Lagrangian L is

oI
du(n)

:0’

which means
OL(u(n),u(n+1),...,u(n+ N)) N OL(u(n —1),u(n),...,u(n+ N — 1))
du(n) du(n)
N OL(u(n — N),u(n — N +1),...,u(n))
du(n)

We denote u(®) = u(n+ s) and L, = % and introduce a shift operator £, i.e, &7 (u(n)) = u(n + j)
for j € Z. The Euler — Lagrange equation can be rewritten as follows:

N
» e, =0.
r=0

Definition 2. A Lagrangian L is called normal if Loy = au(0>u(N> #0.

Given a normal Lagrangian L, we obtain a (nonlinear) difference equation of order 2/N. We introduce
coordinates ¢; and p;, so that we can write the map derived from the Euler — Lagrange equation in
canonical form. For example, we introduce a transformation

(u(_N), .. .,U(O),. . .,U(N_l)) — (C]1,Q2a -5 4dN,P1, P25 - - - 7pN)a

where '
G =u""Y=un+i-1),
N (2.7)
pi=&" Z E " Lyys,
k=0
for i =1,2,..., N. This transformation can be considered as an analog of Ostrogradsky’s transfor-
mation, cf. [8]. We have, using (2.7),
N
=> &*L=—Lo(q. q2.- .., qw, u™),
k=1
where we suppose that we can obtain
u™) = a(g, p1).
We give a proof for this result.
Lemma 1. The map (2.6) has the following canonical form:
gi(n+1) =gi(q,p) = git1(n), i=1,2,...,N — 1, (2.8)
an(n+1) = gn(g,p) = (g, p1), (2.9)

pn(n+1) = fn(q.p) = Ln(g,p1),

where we denote E(qapl) = L(q17QQ7 .. '7qN7a(Q17QQ7 s 7QN7p1))'

Proof. Tt is easy to obtain (2.8) (2.9) and (2.10). For 1 <i < N — 1, we have
N—i—1

pi(n+1) ZS Ly = Zf Liyi+ Li = Z EF  Lyyir + Li

= pi+1(”) + L.
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Now we prove that the mapping (2.6) preserves the canonical symplectic structure, i.e., we show
that {fi, f;} = {9i,9;} =0 and {fi,g;} = d;j. For 1 <4,j < N — 1, we have

{9i,95} = {@i+1, 4541} =0,

~ Ly (q,
{9i: 98} = {di+1, Ln(g,p1)} = W =0,
Pi+1
~ dLi(q,p
{fir9;} = {piv1, gj1} +{Li(q, p1): Gj+1} = Gig1j1 + % = dijs
Pji+1
7 azN(Qapl) aa(Qapl) azN(val) aa(qvpl)
= L = —_
{fv.gn} ={Ln(q,p1), 21(q,p1)} ap o0 o0, op1
Ou) gy (V) ou) ou)
i A i v Lyn 5 + Lon 5
p1 a a p1 u(0)=Q17~--,U(N*1>=QN7u(N>=a(q,P1)
ouN)  ap
- _I St
N apy Op1

{fi: it = piv1, pjr1}t + {pisa, Ej(q,pl)} + {zi(q,p1)7pj+1} + {Zi(qml), Ej(q,m)}
_9Li(a,p) _ OLila,pr) | OLiOL; IL;IL,

0gi+1 0qj 11 dp1 dq1  Oq1 O
ou) ou) ou) ou)
= | Lij+ Lnj— — Lji — Ly + L Loj + Lnj—F—
( TN B ! N Bg; 41 N op, (Loj + L oq )
o) Ou@®)
— (Loi + LNia—)LNja—
a PL 0= g =1 —gpe ™) —a(g.p1)
ouN) ouN) 8u(N)L
N Bgira N Bg; 1 N oy Y
Ou@)
— Loilnj—5—
PU |0 =gy s =D g ™ =a(g.p1)

{fi, InYy = {pic1, Ly (g, p1)} + {Li(q,p1), Ln (g, 1)}
= M _|_8_ziazN . aflafN

di+1 Op1 91 Oq1 Op
Ou@) Ou@) Ou@)
= (LiN +LNN8 — + LinLon 5 ioLnN 5
fi1 h PLJ 10 =gy 01 =gy ™ =a(g 1)
We have p; = —Lg |u(0):q1’“.’u(N—l):qN7u(N):a(q7pl), therefore
Ou)
1= _LON—‘ (0)— (N—-1)— (N)— )
Opy 'wV=ar,u anNu a(g,p1)

(N)
0= <_L0i — Lon Ou )
9gi+1

= Lo; 2™ This implies that {f;, f;} = 0 and {f;, fy} = 0. 0

u®=qy,.. ulN="D=gyuN=a(g,p1)

Ou(N)
0qi+1

Thus, we get
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3. POISSON BRACKETS FOR (¢, —p) REDUCTIONS
OF THE KdV AND THE PLUS-KdV EQUATIONS

The KdV equation and a similar equation which we call the plus-KdV equation are given as
follows:

1 1
Ul 1m — UWmtl = - ; (3.1)
Upm Ul+1,m+1
1 1
Ul41,m T Umy1 = + (3.2)

Upm Ul+1,m+1 ’
respectively. It is known that KdV can be obtained from a double copy of potential KAV equation
or H; by introducing the new variable v, where u; ,;, = vi—1 m—1 — V1. Similarly, for plus-KdV, we
introduce variable v such that w;, = vi—1 m—1 + V. In terms of variables v, Egs. (3.1) and (3.2)
become

1 1
(Ul-i-l,m + Ul—l,m) - (Ul,m—l + Ul,m+1) + — =0,
Vi—1,m—1 — Ulm UVi,m — Vi+1,m+1

1 1

Vi—1m—1 T Um  Vim T Vit+1m+1

=0

Vi+1,m + Vi—1,m + Vi,m—1 + Vim+1 —

These equations are Euler — Lagrange equations with the corresponding Lagrangians

1
Ll,m = VmUl+1,m — VImVUlm+1 — In "Ul,n - Ul+1,m+1‘7

LIQ,m = ULm Vit 1m + VmVlms1 — 10 [V + V141 mep |
The (g, —p) reduction where ged(p, ¢) = 1 and p < g gives us the following Lagrangians:

L}, = UnUntp — UnUntq — 10 |5 — Vngprgls (3.3)

L2 = 0pUnip + Unntg — In|Un + Vnipigl-
The Euler —Lagrange equations derived from these Lagrangians are

1 1
Untp + Un—p — (Untq + Un—q) — + =0,
Un = Untptq  Un—p—q — Un
+ Vnep + (Untg + Ung) ! L 0
Un+p Un_p Un+q ’Un_q — — = U,
Un + Untptq  Un—p—q+ Un

which are the (¢, —p) reduction of KdV and plus-KdV via reduction u,, = v—p—q — v,. In canonical
coordinates, for a double copy of KdV we have

Qi = Vpti—1, for 1 <i < p+q,

1 1

P =— <Un+p — Un+4q — 7) = Un—p — Un—q +
Un = Untptq Un—p—q = Un
1 .

Py =vptip-1—Vnyi—g-1+ , for 1 <i < p,

Un+i—p—q—1 — Un+i—1

1 .
Pi = “Un+i—q-1 + ’ for p<i1<g,

Un+i—p—g—1 — Un+i—1
1 .

P = , forg<i<p+aq.

Un4i—p—q—1 — Un4i—1
For the plus-KdV equation, we have
Qi = vpyi—1, for 1 <i<p+gq,
1

Un + Un+ptq

1

P1:—<'Un+p+?}n+q— > :Unfp—l—vn,q—ﬁ,

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 6 2016
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1 .
P = vnqi—p-1 + Vnyi—g-1 — , for 1 <@ <p,
Un+i—p—q—1 + Un+i—1
1 .

P =vnppiq1— , for p <i <q,

Un+i—p—q—1 + Un+i—1

1 .
P =— ,forg<i<p+gq.

Un+i—p—q—1 + Unti—1

Using the canonical Poisson bracket for these variables, we obtain Poisson brackets for mappings
obtained as the (g, —p) reductions of Eqs. (3.1) and (3.2). For both equations, we distinguish
between two cases where p =1 and p > 1.

Theorem 1. The KdV map admits the following Poisson structure for 0 <i<j<p+q—1.
o Ifp=1, we have
(17 [T s, 0<j—i<p+q—1,

{un+i7un+j} - +q—1 2 2 . .
(1+( )p - Hr =i+1 un—f—r) n+iun+j7 J —z:p—l—q—l.

o Ifp>1, we have

Up il if j—i=gq,
{Un+i, untj} = (— ) J=9)/p H(J i/p Z+Z+kp, if7—i=0 mod p, (3.4)
0 otherwise.

Proof. We note that, for the case p = 1, the Poisson bracket was given in [11]. We just need to
prove this theorem for the case where p > 1.
We first need to prove that the Poison bracket (3.4) is preserved under the KdV map

¢ (un, Up+1s- - un+p+q—1) = (un+17 Unp+2; -« -y Untp+q—1, un—i—p—i—q)y

where

Un+pt+q = .
UpUntp — Uplptq — 1

By direct calculation, we have

2
Quniprq _ Uniprq OUnipiq _ o Quniprq _ 2

= ; = Uptptgo = TUnipig-

Ouy, uZ Oy p P Quyyg pra

It is easy to see that, for 0 <i < j <p+q— 1, we have

! !
{un+i7 unJrj} = {un+i+17 Un+j+1} = {un-i-ia un+j}‘u=¢>(u)'

For 0 <t < j=p+q—1, we have

/
{“n+i7 un+p+q—1} = {un+i+1, Un+p+q}

n+p+q

= {tntit1, un} + {untit1, UN+p}ui+p+q — {tn+iv1, un+q}ui+p+q. (3.5)

n

By considering whether p|(i + 1), one can see easily that if i + 1 # p and i + 1 # ¢, then

2
Un4ptq
2

{un+it1, un} + {Unpit 1, Unspytip 4 g = 0. (3.6)

n

‘We consider 3 cases.
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e Case l wherep+qg—i—1#qandpt(p+q—i—1). Thismeansi+1#pandptq—i—1.

Therefore, {untit1,Un+q} =0and i+ 1% ¢q, |i +1 —p| # 0, and ¢. This also gives us (3.6).
Thus, {unJri? un+p+q—1} =0= {un+i7 un+p+qfl}|u:¢(u)-

e Case 2 wherep+qg—1—1=gq,i.e., i+ 1 = p. It implies that the second term and third term
in (3.5) vanish. Hence, we have

! ! Uit Uit
— n+p+q __ 2 2 _ntptq __ 2 2
{un—l—p—b un+p+q—1} - {un+p> un} u2 = Upyplnp 02 = UpypUntpiq
n n

— 2 2 _
- un—&—p—lun—l—p—s—q—l’u:(j)(u) = {un+p—1’ un+p+q—1}’uz¢(u)'

e Case 3 where p|(p+qg—i—1), i.e, pl(¢g—i—1). If i+ 1 = g, the second and third term
in (3.5) equal to 0. Therefore, we have

2
/ ’ un-i—p-‘rq 2 2
{un+q*17 unerJrqfl} - {Un+q7 tn} u2 = TUntqUnipiq
n

2 2 —
- _un—&-q—lun—&-p—i-q—l’u:qﬁ(u) = {un—i—q—hUn+p+q—l}‘u:¢(u)-

Ifi+1+# qandi+ 1 # p, we have (3.6). Since i + 1 — ¢ < p, we have i + 1 — ¢ < 0. Thus, (3.5)

becomes
! ! _ . 2 _ q—i—1)/p, 2 2
{un+i7 un—i—p—l—q—l} - {un+1+17 uﬂ‘l‘q}un—i—p—l—q - 7(71)( ) un—l—i—l—lun+i+1+pun+qun+q+p2
(p+g—i—1)/p
_ p+g—i—1)/p 2 —_ .
- (_1)( )/ H Untit1+kp = {unﬂfbun+p+q*1}|u:¢(u)‘
k=0

To complete this proof, we need to prove the Jacobian identity (2.4):

0 0 0
Qi——Q + Ui —— i + Upo=——;5) =0, Vi, 7, k. 3.7
ZZ:( l Dunes gk 82 Do ki + 0k D g) (2W] (3.7)

Without loss of generality, we can assume that 0 <7< j <k <p+q— 1. It is easy to see that
the Jacobian identity holds if two indices in (i, j, k) are equal. We need to prove the case where
0<i<j<k<p+qg—1. We also distinguish 3 cases.

e Case 1 where j — i = ¢. Since k < p+ ¢, we have 0 < k — j < p. Therefore, €2;, = 0. Further-
more, one can see easily that

-1
P% o 8(21-]- _ 2Qisz’j n 2ijQij _ 2Qiinj‘
=0

aunJrl Un+4 Un+j Un+4i

If pt (k—1), then Q; = 0. Thus, the Jacobian identity (3.7) holds. If p|(k — i), then we have

-1

u (v i u i
i<i<k, I=i modp "t nti nti

where we have used ; =0 aspf(j —1) and j — 1 # %q for i <1 <k and p|(l —i).

e Case 2 where p|(j — ). We have

pta—1
Y QL= > el (3.8)

u
=0 n-+l

iU, =i mod p

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 6 2016
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Since p < j — i, we have k — j < ¢. Thus, if k —i = ¢, then p{ (k — j). This yields Q;, =0
and

p+q—1
Qi 2000 2000 20 Qs
ZQUakz: jk+ kjoiki ]k‘

aun+l Un+4 Un+k Un 44

However, for i <1< j and [ =i mod p, we have O = 0. Therefore, the RHS of (3.8)
becomes 22182 /un+i. Hence, we obtain the Jacobian identity (3.7).

Ifk—i#qandpfk—i, then Q= Qp =Qp =0fori <l <jandl =7 modp (ask—1<
p+q—(i+p) <q and p1f(k—1). This implies that LHS (3.8) = 0. Thus, the Jacobian
identity (3.7) holds.

If p|(k — i), i.e., i =j =k mod p, then the LHS of the Jacobian identity (3.7) is
2092 29 Qi 2015
LHS (37) _ Z lidejk + Z ljeki + Z lk ’Lj.
j<i<hk, 1= modp mtl i<I<k, I=1 modp UnH i<I<j, 1= modp ntl
It is easy to see that the three terms in this sum can be written as follows:

Z QQlink _ Z 2Qiijl + 2jSij’,

Un+1 Un+l Un+j

j<ILk, =i mod p j<i<k, =i mod p

Z QQleki _ Z QQleki + Z QQleki

Uu Uu Uu
i<i<k, I=i modp "t i<l<j, I=i modp "t j<i<k, =i modp "t
u u u ;
i<I<j, I=i modp "t i<l<j, =i modp "t nt)

Adding these three terms together, we get LHS (3.7) = 0.

e Case 3 where j —i# ¢ and p{(j — 1), i.e., we have Q;; = 0. Similarly, by considering the
following subcases k —j =gq; p|(k—j); k—j #q, andp{ (k — j), we can prove that the
Jacobian identity (3.7) holds.

O

Analogously, we can derive the following result for the map obtained from the plus-KdV.

Theorem 2. The map obtained as the (q, —p) reduction of Eq. (3.2) admits the following Poisson
structure for0 <1 < j<p+q—1.

e Ifp=1, we have

( )J lHrz n+z7 0<]_Z<p+q_17

{un+i7un+j} - +qg—1 2 2 . .
(_1+( pq Hr i+1 n+r) Un+iUntj> J—i=p+q-—L

e Ifp>1, we have

- 314_@‘ 314_]‘ ifj—i=q,
{tnsistnaj} = § (~D)IPIDP02 L ifj—i=0 modp, (3.9)
0 otherwise.
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3.1. Examples
The matrices

1
U, — A u A
I = l,m Ut1.m 7 M — l,m

UL m’
are Lax-matrices for the KdV equation (3.1). For the (3, —2)-reduction (with n = 21 + 3m, u;,, —
Un, Ll,m — Ly, Ml,m - Mn)v

1 1

Un+4+2 —Un43 = — — )
Un Un+5

the trace of the monodromy matrix £ = My 1L1M1_ 115 Ly yields the following three invariants:

I = l—i-i—l-l—l-i—l-l—vg, I = (1)21)4—1)(2)11)3—1)(2)01)2—1)7 Iy — (2}11)44-1)(2)01)34-1).
vo U1 V2 U3 U4 VU1 V2U3V4 VU1 V2U3V4
We have
0 0 —vgvs  vdvi vivdvd
0 0 0 —vivi v}
Q= viv? 0 0 0 —vivi |
—vgv? vivd 0 0 0
—vgviv:  —viv i 0 0

and I; is a Casimir of the corresponding bracket. The rank of the bracket is 4, and we have
5 —4/2 = 3 functionally independent invariants in involution with respect to the Poisson bracket,
so the Poisson map is completely integrable.

The matrices

1
L= M M e [

1 0 -1 -

ul,m’

are anti-Lax-matrices for the plus-KdV equation (3.2), which satisfy Lj p11 M = —Mip1 mLim
modulo the equation. The idea of an anti-Lax pair was suggested to one of the authors by
J.A.G.Roberts [17]. For the (3, —2)-reduction,

1
Un+t2 + Upt3 = — + ,
Un Un+5

the trace of the monodromy matrix gives rise to the following three 2-integrals:
1 1 1 1 1 vov4—1)(v1v3—1)(vov2—1 v104—1)(vov3—1
R S S W U R 0 0 O LT R T V[
Vo (%1 () (O} V4 VoUV1V2V3V4 VoU1UV2V3V4

that is, we have J;(v1,...,v5) = —J;(vo,...,vs). We have

0 0 —vdvi —vd? viviv:
0 0 0 —vivi  —vivd
Q= vivl 0 0 0 —viv? |
viv? vivd 0 0 0
—vdviv vl viv? 0 0

and J; is a Casimir of the corresponding bracket. The rank of the bracket is 4, and we have
5 —4/2 = 3 functionally independent invariants in involution, namely, I} = Ji/J2, I2 = J2/J3, and
I3 = JyJ3, so the Poisson map is completely integrable.
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4. POISSON BRACKETS FOR (¢,—p) REDUCTIONS OF THE LOTKA-VOLTERRA
EQUATION, AND THE LIOUVILLE EQUATION

The discrete Lotka — Volterra equation is given as follows (cf. [12]):
U1 (14 U m) = wig1m (1 + g1 met)- (4.1)
We introduce the new variable wy ,,, = Inv; ,, to get
Wimt+1 — Wit1,m = — In(1 4+ wy ) + In(1 + wigg my1)- (4.2)

This equation’s functional form is similar to that of the KdV equation. Therefore, it suggests that
one could try to introduce wy ,;, = vVj—1,m—1 — Vm to write Eq. (4.2) as an Euler — Lagrange equation.
One can easily derive a Lagrangian

L= Vi;mVl,m+1 — Vi,mVi+1,m + F(vl,m - vl+1,m+1)’ (43)

where
F(x) :/ In(1 + e')dt.
0

Using the discrete analogue of the Ostrogradsky transformation, we can derive Poisson brackets
of mappings obtained by the (p, —¢) reduction of Eq. (4.2) in the v variable and then in the w
variable. Once we have a Poisson bracket in the w variable, the associate Poisson bracket in the
original variable is calculated by

{Un+i7 unJrj} = {ew"-Ha ewn-H} = €w7l+iewn+‘j{wn+iv wn+j}-
We obtain the following theorem.
Theorem 3. The map obtained as the (q, —p) reduction of Eq. (4.1) admits the following Poisson
structure for 0 < i < j<p+q—1.

o Ifp=1, we have

i1 (dungr .
(Ui Uy} = (1 + tnpi) (1 + ungy) [T 204 (—Z:J: ) 0<j—i<p+gq-—1,
n-+iy Un+j 5 — - . . .
(1+“n+i)(1+“n+j)(ni:i+1 (rnr) *1), j—i=p+q-1
(4.4)
e Ifp>1, we have
—(tnti + 1) (unpy + 1) ifj—i=q,
1—1)/p—1 n+i+kpt1 p o .
{tntistngj} =S (ungs + 1) (unsy + 1) TIPS (%) ifj—i=0 modp,  (45)
0 otherwise.

Similarly, if we take
L= Vi,mVUl,m+1 + Vi,mVi4+1,m + F('Ul,m + vl—i—l,m—l—l)

and Wy, = Vj—1,m—1 + U,m, We obtain a Poisson bracket for the (g, —p) reduction of the following
equation:

(1 + wrm) (1 + W et 1)W1 U mr1 — 1 = 0. (4.6)

Theorem 4. The map obtained as the (q, —p) reduction of Eq. (4.6) admits the following Poisson
structure for0 < i1 < j<p+q—1.
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e Ifp=1, we have

o Jj—1
(“1 7 Ut i) (L ungy) T (Htete), 0<j—i<ptq-1,
{UnJria unJrj} = A TA:thll
(U ) (U ) (197 T (H22s) 1), j—i=ptg—1.
r=i+1
(4.7)
e Ifp>1, we have
—(Un+i + 1) (Unyj + 1) fj—i=q
i U=0/p=L ot e
{tntisuns} =8 (1)U P (uppy + D (uney +1) 1 (%), ifj—i=0 mod p,
k=1
0 otherwise.
(4.8)
If we take
L= Vi,mVl,m+1 + VimVi+1,m — F(vl,m + vl+1,m+1)a
we obtain Poisson brackets of maps obtained as reductions of the discrete Liouville equation
(1 + wm) (1 + Wi mt1) — Wt mUUmer = 0. (4.9)

Theorem 5. The map obtained as the (q,—p) reduction of (4.9) admits the following Poisson
structure for 0 <i < j<p+q—1.

e Ifp=1, we have

j—1
~(U ) (U ungy) T (Fre), 0<j—i<pta—1,
{un+i, untjt = T:thll 1
7(1+un+i)(1+un+j)( 1 (5r=) + 1), j—i=p+q—1.
r=i+1
(4.10)
e Ifp>1, we have
(i + 1)ty +1) fi—i=q
(j—4)/p—1 U L 41 o .
Qi) = (it Doy +1) - 11 (S2222) ifj—i=0 modp, (411
k=1
0 otherwise.

Remark 1. We note that all equations that we have considered in this paper can be written in
the following form (after some transformations):

Wt tm — UWmt1 = G(Um) — G(Wg1m+1) OF U 1,m + U mt1 = G(Um) + G(U41,m+1)-

In fact, using the Ostrogradsky transformation and a Lagrangian which has the same form as (4.3),
one can always find Poisson brackets for maps obtained as reductions of these equations. This
method can also be applied to more general (g, p)-reductions, i.e., we do not require ged(p, q) = 1.
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4.1. Examples

The matrices

1 _ul+;,m 1 _ Upmg (Wg1,mt1)
_ A _ A2
L B 1 Ul+1,m ’ M o
2 1 0,

U41,m+t1l U1, mt1
are Lax-matrices for the Lotka— Volterra equation (4.1). For the (3, —2)-reduction,

Un+3(vn + 1) = Un+2(vn+5 + 1)7

the determinant of the monodromy matrix provides the invariant

I = (vo+1)(v1 +1)(v2 +1)(v3 + 1)(vg + 1)
v2

which is also a Casimir of the Poisson bracket defined by

0 0 (vo+1)(v2+1)  —(vo+1)(vs+1) (vo+1)(5; +1)(vat+1)
0 0 0 (v1+1)(v3+1) —(v141)(va+1)
Q= —(vo+1)(va+1) 0 0 0 (va+1)(va+1)
(vo+1)(v3+1) —(v141)(vs+1) 0 0 0
—(vo+1) (o5 +1)(va+1)  (vi+1)(va+1) —(v2+1)(va+1) 0 0

The trace yields two additional functionally independent integrals

I> = vov3z — v2 + V14,

n (vo+ 1) (v +v3+ 1) (v + 1)'

I3 = (v1 + 1)(vo +v2 +2) + (v3+ 1) (v2 + v4 + 2) .
2

These integrals are in involution, which shows the mapping is completely integrable.

The (3, —2)-reduction of Eq. (4.6),

(1 + Un)vn+2vn+3(1 + vn+5) =1,

is a Poisson map with Poisson structure

0 0 —(vo+1)(v2+1) —(vo+1)(v3+1) (vo+1)(55+1)(va+1)
0 0 0 —(vi+1)(vs+1) —(vi+1)(va+1)
Q= (vo+1)(va+1) 0 0 0 —(va+1)(va+1)
(vo+1)(vs+1) (v1+1)(vs+1) 0 0 0
—(vo+1) (55 +1)(va+1) (vi+1)(va+1) (v2+1)(vat1) 0 0

The Casimir function

(1)0 + 1)1)2(7)2 + 1)(1)4 -+ 1)

= i D+ 1)

is a 2-integral, applying the map gives the multiplicative inverse. Hence the function C'+ 1/C is an
integral. We have not been able to find more integrals and, as the map seems to have nonvanishing
entropy, we believe it is not integrable.

The (3, —2)-reduction of Eq. (4.9),
(14 vn)(1 + vnt5) = Vnt2Un+s, (4.12)
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is a Poisson map with Poisson structure

0 0 —(vo+1)(v2+1) —(vo+1)(vs+1) —(vo+1)(5;+1)(va+1)
0 0 0 —(vi+1)(vs+1) —(vi+1)(va+1)
Q= (vo+1)(va+1) 0 0 0 —(va+1)(va+1)
(vo+1)(vs+1) (v14+1)(vs+1) 0 0 0
(vo+1) (55 +1)(va+1) (vi+1)(vat1) (v2+1)(va+1) 0 0

The Casimir function
(vo + 1)(v2 +1)(vs + 1)
(v1 4+ 1)ve(vs + 1)
is a 2-integral with ¢’ = 1/C and so provides us with an integral Iy = C' 4+ 1/C. Other k-integrals

can be found from the i- and j-integrals given in [2] for an equation, [2, Eq. (19)], which is related
to (4.9) by u; ; — _—} The reduction of these integrals yields the 2-integral

C =

14w

(vo +v3 + 1)(v1 +v4 + 1)

4 (v1 +1)(vs+ 1)

and the 3-integral

(vo +v2 + 1)(v1 +v3+ 1)
('Uo—i—l)(vg—l-l) '

Applying the map v; — v;41 subject to (4.12), we obtain

(vo 4+ v3 + 1)va(vy +vg + 1)
(UO + 1)(U2 + 1)(1)4 + 1)

B =

Al: , A”:A

and

(v1 +v3+ 1)(ve + vg + 1) vo + vy + 1)(vg + vg + 1)
(v1 +1)(va+ 1) va(ve + 1)

We have C' = A/A" and it can be checked that the integrals Iy, Io = A+ A’, I3 = BB'B" are

functionally independent and in involution. The additional integral I, = B + B’ + B” is functionally

independent and in involution with I (and I;), but not with I3. A linearization of the lattice
equation can be found in [2].

B =

s B// = ( 5 B/// — B
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