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Abstract—In this paper, we present Poisson brackets of certain classes of mappings obtained
as general periodic reductions of integrable lattice equations. The Poisson brackets are derived
from a Lagrangian, using the so-called Ostrogradsky transformation. The (q,−p) reductions
are (p + q)-dimensional maps and explicit Poisson brackets for such reductions of the discrete
KdV equation, the discrete Lotka – Volterra equation, and the discrete Liouville equation are
included. Lax representations of these equations can be used to construct sufficiently many
integrals for the reductions. As examples we show that the (3,−2) reductions of the integrable
partial difference equations are Liouville integrable in their own right.
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1. INTRODUCTION

In this paper we derive Poisson structures (and symplectic structures) for several families of
discrete dynamical systems. In general, of course, the problem of finding a Poisson structure for
a given mapping (if it has such a structure) is not algorithmic. However, suppose the system in
question is the periodic reduction of a partial difference equation, e. g.,

ul+1,m+1 = F (ul,m, ul+1,m, ul,m+1)

with

ul+q,m−p = ul,m,

where F is a given function, R3 → R, and u is the unknown function, Z2 → R. In the simplest
cases, p = q resp. p = 1, Poisson structures were first found by inspection, cf. [15], resp. [21].
Later on, for the case p = −q (pre) symplectic structures for reductions of Adler –Bobenko – Suris
(ABS) equations were derived using the existence of the so-called three-leg form [1, 18]. Using the
three-leg forms of ABS equations, we can derive Lagrangians for these equations which help us to
find symplectic structures for the case where p = ±q. This method is called the Hamiltonian –
Lagrangian approach and it was introduced in [5, 24]. For the case p = q, using the discrete
Legendre transformation we can bring reduction of potential Korteweg – de Vries (pKdV) to
canonical coordinates [7]. For the case p �= ±q, the discrete analogue of the so-called Ostrogradsky
transformation will help us to bring the map to canonical coordinates [4, 5, 24]; therefore we
can derive Poisson structures of the original maps. We note that, in the continuous context,
this transformation has been used to construct Hamiltonians from higher derivative Lagrangians.
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The Hamiltonian –Lagrangian approach was used in [11]1) to find the Poisson structure of p = 1
reductions of the discrete KdV equation.

In this paper we use the Ostrogradsky transformation to find Poisson structures for periodic
reductions of several partial difference equations, including the discrete KdV equation, the plus-
KdV equation, the discrete Lotka –Volterra equation, and the discrete Liouville equation. All
the partial difference equations we discuss (except for one) are integrable, i. e., they possess a
Lax representation, and this Lax representation can be used to derive Lax representations for
the reductions, in their turn yielding integrals of the reductions, cf. [15, 16, 19]. As examples,
we explicitly show that p = 2, q = 3 reductions of the integrable partial difference equations
are Liouville integrable in their own right, i. e., they possess a sufficient number of functionally
independent integrals in involution with respect to the derived Poisson structures.

2. SETTING
In this section, we give some basic notions for the rest of the paper. In particular, we will present

the so-called discrete Ostrogradsky transformation to obtain Poisson brackets from a Lagrangian.

2.1. Completely Integrable Map

Recall that a map between two Poisson manifolds is called Poisson if it preserves the Poisson
brackets. In particular, a d-dimensional mapping

ϕ : Rd → Rd

(x1, x2, . . . , xd) �→ (x
′
1, x

′
2, . . . , x

′
d) (2.1)

is called a Poisson map if

{x′
i, x

′
j} = {xi, xj} |x=x′ , (2.2)

where {, } denotes the Poisson bracket in Rd (the same bracket in the domain and the co-domain).
One sufficient condition for the map (2.1) to be Poisson is the existence of a structure matrix, Ω,
such that

dϕΩ(x)dϕT = Ω(x
′
), (2.3)

where dϕ is the Jacobian of the map (2.1). By structure matrix we mean that Ω is a d × d skew-
symmetric matrix that satisfies the Jacobi identity [14]∑

l

(
Ωli

∂

∂xl
Ωjk + Ωlj

∂

∂xl
Ωki + Ωlk

∂

∂xl
Ωij

)
= 0, ∀i, j, k. (2.4)

The Poisson bracket between 2 smooth functions f and g is defined through this structure by the
following formula:

{f, g} = ∇f.Ω.(∇g)T ,

where ∇f is the gradient of f . In this case, Ωij = {xi, xj}. We can see that the entries in the LHS
and RHS of (2.3) are {x′

i, x
′
j} and {xi, xj} |x=x′ , respectively.

If the Poisson structure is nondegenerate, i. e., Ω has full rank, one can define a closed two-form

w =
∑
i<j

wijdxi ∧ dxj

through the Poisson structure W = Ω−1 and vice versa2). Then the Poisson map is called a
symplectic map and preserves the closed two-form W . For the case where the closed two-form
is preserved by the map (2.1), but is degenerate, we call the two-form presymplectic [6].

A function I(x) is called an integral of ϕ if I(x) = I(x
′
). A set of smooth functions {I1, I2, . . . , Ik}

on an open domain D is called functionally independent on D if its Jacobian matrix dI has full
rank on a set dense in D.

1)Another approach to obtain Poisson structures used in [11] is based on cluster algebras.
2)In the literature the symbol J is sometimes used instead of W . We reserve J to denote the Jacobian.
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Definition 1. The map ϕ is completely integrable if it preserves a Poisson bracket of rank 2r � d
and it has r + d − 2r = d − r functionally independent integrals which are pairwise in involution.

2.2. (q,−p) Reductions of Lattice Equations

In this section, we introduce the (q,−p)-reduction (gcd(p, q) = 1, q, p > 0) to obtain ordinary
difference equations from lattice equations.

Given a lattice equation (see Fig. 1)

Q(ul,m, ul+1,m, ul,m+1, ul+1,m+1) = 0,

the (q,−p) reduction can be described as follows. We introduce the periodicity condition ul,m =
ul+q,m−p and travelling wave reduction vn = ul,m, where n = lp + mq. For 0 � n � p + q − 1, since
gcd(p, q) = 1 one can find unique (l, m), l � 0, m � 0 such that |m| is smallest and n = lp + mq.
The lattice equation reduces to the following ordinary difference equation

Q(vn, vn+p, vn+q, vn+p+q) = 0. (2.5)

This equation gives us a (p + q)-dimensional map

(vn, vn+1, . . . , vp+q−1) �→ (vn+1, vn+2, . . . , vn+p+q),

where we have assumed that one can solve vn+p+q uniquely from Eq. (2.5). For example, the
(3,−2)-reduction is depicted in Fig. 1.

ul,m+1 ul+1,m+1

ul+1,mul,m

v0 v2 v4

v1 v3 v5

v0 v2 v4

Fig. 1. Quad equation and the (3,−2) reduction.

2.3. Lagrangian Equation and Ostrogradsky Transformation

Given a mapping obtained from an Euler – Lagrange equation, Bruschi et al. presented a
transformation to rewrite this map in a canonical form [5]. We use this canonical form to derive a
Poisson structure for mappings obtained from the Euler – Lagrange equation.

We start with the following symplectic map without knowing its symplectic structure

φ : x(n) �→ x(n + 1),

where x(n), x(n + 1) ∈ R2N . We rewrite the map in canonical form as follows:(
q(n), p(n)

)
�→

(
q(n + 1), p(n + 1)

)
, (2.6)

with qj(n + 1) = gj

(
q(n), p(n)

)
and pj(n + 1) = fj

(
q(n), p(n)

)
and such that {fi, fj} = {gi, gj} = 0

and {fi, gj} = δij for 1 � i, j � N .

Suppose we have a Lagrangian L
(
u(k), u(k + 1), . . . , u(k + N)

)
and the discrete action functional

I =
∑
k∈Z

L
(
u(k), u(k + 1), . . . , u(k + N)

)
.
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The discrete Euler – Lagrange equation for the Lagrangian L is

δI

δu(n)
= 0,

which means

∂L
(
u(n), u(n + 1), . . . , u(n + N)

)
∂u(n)

+
∂L

(
u(n − 1), u(n), . . . , u(n + N − 1)

)
∂u(n)

+ . . . +
∂L

(
u(n − N), u(n − N + 1), . . . , u(n)

)
∂u(n)

= 0.

We denote u(s) = u(n + s) and Lr = ∂L
∂u(r) and introduce a shift operator E , i. e, Ej (u(n)) = u(n + j)

for j ∈ Z. The Euler – Lagrange equation can be rewritten as follows:
N∑

r=0

E−rLr = 0.

Definition 2. A Lagrangian L is called normal if L0N = ∂2L
∂u(0)u(N) �= 0.

Given a normal Lagrangian L, we obtain a (nonlinear) difference equation of order 2N . We introduce
coordinates qi and pi, so that we can write the map derived from the Euler – Lagrange equation in
canonical form. For example, we introduce a transformation(

u(−N), . . . , u(0), . . . , u(N−1)
)
�→ (q1, q2, . . . , qN , p1, p2, . . . , pN ),

where
qi = u(i−1) = u(n + i − 1),

pi = E−1
N−i∑
k=0

E−kLk+i,
(2.7)

for i = 1, 2, . . . , N . This transformation can be considered as an analog of Ostrogradsky’s transfor-
mation, cf. [8]. We have, using (2.7),

p1 =
N∑

k=1

E−kLk = −L0

(
q1, q2, . . . , qN , u(N)

)
,

where we suppose that we can obtain
u(N) = α(q, p1).

We give a proof for this result.

Lemma 1. The map (2.6) has the following canonical form:

qi(n + 1) = gi(q, p) = qi+1(n), i = 1, 2, . . . , N − 1, (2.8)
qN (n + 1) = gN (q, p) = α(q, p1), (2.9)

pi(n + 1) = fi(q, p) = pi+1(n) + L̃i(q, p1), i = 1, 2, . . . , N − 1,

pN (n + 1) = fN (q, p) = L̃N (q, p1),
(2.10)

where we denote L̃(q, p1) = L
(
q1, q2, . . . , qN , α(q1, q2, . . . , qN , p1)

)
.

Proof. It is easy to obtain (2.8), (2.9) and (2.10). For 1 � i � N − 1, we have

pi(n + 1) =
N−i∑
k=0

E−kLk+i =
N−i∑
k=1

E−kLk+i + L̃i =
N−i−1∑

k=0

E−k−1Lk+i+1 + L̃i

= pi+1(n) + L̃i.
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Now we prove that the mapping (2.6) preserves the canonical symplectic structure, i.e., we show
that {fi, fj} = {gi, gj} = 0 and {fi, gj} = δij . For 1 � i, j � N − 1, we have

{gi, gj} = {qi+1, qj+1} = 0,

{gi, gN} = {qi+1, L̃N (q, p1)} = −∂L̃N (q, p1)
∂pi+1

= 0,

{fi, gj} = {pi+1, qj+1} + {L̃i(q, p1), qj+1} = δi+1j+1 +
∂L̃i(q, p1)

∂pj+1
= δij ,

{fN , gN} = {L̃N (q, p1), α1(q, p1)} =
∂L̃N (q, p1)

∂p1

∂α(q, p1)
∂q1

− ∂L̃N (q, p1)
∂q1

∂α(q, p1)
∂p1

=

(
LNN

∂u(N)

∂p1

∂u(N)

∂q1
−

(
LNN

∂u(N)

∂q1
+ L0N

)∂u(N)

∂p1

)∣∣∣∣∣
u(0)=q1,...,u(N−1)=qN ,u(N)=α(q,p1)

= −LN0
∂u(N)

∂p1
=

∂p1

∂p1
= 1

{fi, fj} = {pi+1, pj+1} + {pi+1, L̃j(q, p1)} + {L̃i(q, p1), pj+1} + {L̃i(q, p1), L̃j(q, p1)}

=
∂L̃j(q, p1)

∂qi+1
− ∂L̃i(q, p1)

∂qj+1
+

∂L̃i

∂p1

∂L̃j

∂q1
− ∂L̃i

∂q1

∂L̃j

∂p1

=

(
Lij + LNj

∂u(N)

∂qi+1
− Lji − LNi

∂u(N)

∂qj+1
+ LNi

∂u(N)

∂p1

(
L0j + LNj

∂u(N)

∂q1

)
−

(
L0i + LNi

∂u(N)

∂q1

)
LNj

∂u(N)

∂p1

)∣∣∣∣∣
u(0)=q1,...,u(N−1)=qN ,u(N)=α(q,p1)

=

(
LNj

∂u(N)

∂qi+1
− LNi

∂u(N)

∂qj+1
+ LNi

∂u(N)

∂p1
L0j

− L0iLNj
∂u(N)

∂p1

)∣∣∣∣∣
u(0)=q1,...,u(N−1)=qN ,...,u(N)=α(q,p1)

{fi, fN} = {pi+1, L̃N (q, p1)} + {L̃i(q, p1), L̃N (q, p1)}

=
L̃N (q, p1)

qi+1
+

∂L̃i

∂p1

∂L̃N

∂q1
− ∂L̃i

∂q1

∂L̃N

∂p1

=

(
LiN + LNN

∂u(N)

∂qi+1
+ LiNL0N

∂u(N)

∂p1
− Li0LNN

∂u(N)

∂p1

)∣∣∣∣∣
u(0)=q1,u(N−1)=qN ,u(N)=α(q,p1)

.

We have p1 = −L0 |u(0)=q1,...,u(N−1)=qN ,u(N)=α(q,p1)
, therefore

1 = −L0N
∂u(N)

∂p1

∣∣
u(0)=q1,...,u(N−1)=qN ,u(N)=α(q,p1)

,

0 =

(
−L0i − L0N

∂u(N)

∂qi+1

) ∣∣∣∣
u(0)=q1,...,u(N−1)=qN ,u(N)=α(q,p1)

.

Thus, we get ∂u(N)

∂qi+1
= L0i

∂u(N)

∂p1
. This implies that {fi, fj} = 0 and {fi, fN} = 0. �
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3. POISSON BRACKETS FOR (q,−p) REDUCTIONS
OF THE KdV AND THE PLUS-KdV EQUATIONS

The KdV equation and a similar equation which we call the plus-KdV equation are given as
follows:

ul+1,m − ul,m+1 =
1

ul,m
− 1

ul+1,m+1
, (3.1)

ul+1,m + ul,m+1 =
1

ul,m
+

1
ul+1,m+1

, (3.2)

respectively. It is known that KdV can be obtained from a double copy of potential KdV equation
or H1 by introducing the new variable v, where ul,m = vl−1,m−1 − vl,m. Similarly, for plus-KdV, we
introduce variable v such that ul,m = vl−1,m−1 + vl,m. In terms of variables v, Eqs. (3.1) and (3.2)
become

(vl+1,m + vl−1,m) − (vl,m−1 + vl,m+1) +
1

vl−1,m−1 − vl,m
− 1

vl,m − vl+1,m+1
= 0,

vl+1,m + vl−1,m + vl,m−1 + vl,m+1 −
1

vl−1,m−1 + vl,m
− 1

vl,m + vl+1,m+1
= 0

These equations are Euler – Lagrange equations with the corresponding Lagrangians

L1
l,m = vl,mvl+1,m − vl,mvl,m+1 − ln |vl,n − vl+1,m+1|,

L2
l,m = vl,mvl+1,m + vl,mvl,m+1 − ln |vl,n + vl+1,m+1|

The (q,−p) reduction where gcd(p, q) = 1 and p < q gives us the following Lagrangians:

L1
n = vnvn+p − vnvn+q − ln |vn − vn+p+q|, (3.3)

L2
n = vnvn+p + vnvn+q − ln |vn + vn+p+q|.

The Euler – Lagrange equations derived from these Lagrangians are

vn+p + vn−p − (vn+q + vn−q) −
1

vn − vn+p+q
+

1
vn−p−q − vn

= 0,

vn+p + vn−p + (vn+q + vn−q) −
1

vn + vn+p+q
− 1

vn−p−q + vn
= 0,

which are the (q,−p) reduction of KdV and plus-KdV via reduction un = vn−p−q − vn. In canonical
coordinates, for a double copy of KdV we have

Qi = vn+i−1, for 1 � i � p + q,

P1 = −
(

vn+p − vn+q −
1

vn − vn+p+q

)
= vn−p − vn−q +

1
vn−p−q − vn

,

Pi = vn+i−p−1 − vn+i−q−1 +
1

vn+i−p−q−1 − vn+i−1
, for 1 < i � p,

Pi = −vn+i−q−1 +
1

vn+i−p−q−1 − vn+i−1
, for p < i � q,

Pi =
1

vn+i−p−q−1 − vn+i−1
, for q < i � p + q.

For the plus-KdV equation, we have
Qi = vn+i−1, for 1 � i � p + q,

P1 = −
(

vn+p + vn+q −
1

vn + vn+p+q

)
= vn−p + vn−q −

1
vn−p−q + vn

,
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Pi = vn+i−p−1 + vn+i−q−1 −
1

vn+i−p−q−1 + vn+i−1
, for 1 < i � p,

Pi = vn+i−q−1 −
1

vn+i−p−q−1 + vn+i−1
, for p < i � q,

Pi = − 1
vn+i−p−q−1 + vn+i−1

, for q < i � p + q.

Using the canonical Poisson bracket for these variables, we obtain Poisson brackets for mappings
obtained as the (q,−p) reductions of Eqs. (3.1) and (3.2). For both equations, we distinguish
between two cases where p = 1 and p > 1.

Theorem 1. The KdV map admits the following Poisson structure for 0 � i < j � p + q − 1.

• If p = 1, we have

{un+i, un+j} =

⎧⎨⎩ (−1)j−i
∏j

r=i u
2
n+i, 0 < j − i < p + q − 1,(

1 + (−1)p+q−1
∏j−1

r=i+1 u2
n+r

)
u2

n+iu
2
n+j, j − i = p + q − 1.

• If p > 1, we have

{un+i, un+j} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u2

n+iu
2
n+j if j − i = q,

(−1)(j−i)/p
∏(j−i)/p

k=0 u2
n+i+kp, if j − i ≡ 0 mod p,

0 otherwise.

(3.4)

Proof. We note that, for the case p = 1, the Poisson bracket was given in [11]. We just need to
prove this theorem for the case where p > 1.

We first need to prove that the Poison bracket (3.4) is preserved under the KdV map

φ : (un, un+1, . . . , un+p+q−1) �→ (un+1, un+2, . . . , un+p+q−1, un+p+q),

where

un+p+q =
−un

unun+p − unun+q − 1
.

By direct calculation, we have

∂un+p+q

∂un
= −

u2
n+p+q

u2
n

,
∂un+p+q

∂un+p
= u2

n+p+q,
∂un+p+q

∂un+q
= −u2

n+p+q.

It is easy to see that, for 0 � i < j < p + q − 1, we have

{u′
n+i, u

′
n+j} = {un+i+1, un+j+1} = {un+i, un+j}|u=φ(u).

For 0 � i < j = p + q − 1, we have

{u′
n+i, u

′
n+p+q−1} = {un+i+1, un+p+q}

= {un+i+1, un}
u2

n+p+q

u2
n

+ {un+i+1, un+p}u2
n+p+q − {un+i+1, un+q}u2

n+p+q. (3.5)

By considering whether p|(i + 1), one can see easily that if i + 1 �= p and i + 1 �= q, then

{un+i+1, un}
u2

n+p+q

u2
n

+ {un+i+1, un+p}u2
n+p+q = 0. (3.6)

We consider 3 cases.

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 6 2016
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• Case 1 where p + q − i− 1 �= q and p � (p + q − i− 1). This means i + 1 �= p and p � q − i− 1.
Therefore, {un+i+1, un+q} = 0 and i + 1 �= q, |i + 1 − p| �= 0, and q. This also gives us (3.6).
Thus, {u′

n+i, u
′
n+p+q−1} = 0 = {un+i, un+p+q−1}|u=φ(u).

• Case 2 where p + q − i− 1 = q, i. e., i + 1 = p. It implies that the second term and third term
in (3.5) vanish. Hence, we have

{u′
n+p−1, u

′
n+p+q−1} = {un+p, un}

u2
n+p+q

u2
n

= u2
n+pu

2
n

u2
n+p+q

u2
n

= u2
n+pu

2
n+p+q

= u2
n+p−1u

2
n+p+q−1|u=φ(u) = {un+p−1, un+p+q−1}|u=φ(u).

• Case 3 where p|(p + q − i − 1), i. e., p|(q − i − 1). If i + 1 = q, the second and third term
in (3.5) equal to 0. Therefore, we have

{u′
n+q−1, u

′
n+p+q−1} = {un+q, un}

u2
n+p+q

u2
n

= −u2
n+qu

2
n+p+q

= −u2
n+q−1u

2
n+p+q−1|u=φ(u) = {un+q−1, un+p+q−1}|u=φ(u).

If i + 1 �= q and i + 1 �= p, we have (3.6). Since i + 1− q < p, we have i + 1− q < 0. Thus, (3.5)
becomes

{u′
n+i, u

′
n+p+q−1} = {un+i+1, un+q}u2

n+p+q = −(−1)(q−i−1)/pu2
n+i+1u

2
n+i+1+pun+qun+q+p2

= (−1)(p+q−i−1)/p

(p+q−i−1)/p∏
k=0

u2
n+i+1+kp = {un+i−1, un+p+q−1}|u=φ(u).

To complete this proof, we need to prove the Jacobian identity (2.4):∑
l

(
Ωli

∂

∂un+l
Ωjk + Ωlj

∂

∂un+l
Ωki + Ωlk

∂

∂un+l
Ωij

)
= 0, ∀i, j, k. (3.7)

Without loss of generality, we can assume that 0 � i � j � k � p + q − 1. It is easy to see that
the Jacobian identity holds if two indices in (i, j, k) are equal. We need to prove the case where
0 � i < j < k � p + q − 1. We also distinguish 3 cases.

• Case 1 where j − i = q. Since k < p + q, we have 0 < k − j < p. Therefore, Ωjk = 0. Further-
more, one can see easily that

p+q−1∑
l=0

Ωlk
∂Ωij

∂un+l
=

2ΩikΩij

un+i
+

2ΩjkΩij

un+j
=

2ΩikΩij

un+i
.

If p � (k − i), then Ωki = 0. Thus, the Jacobian identity (3.7) holds. If p|(k − i), then we have

p+q−1∑
l=0

Ωlj
∂Ωki

∂un+l
=

∑
i<l�k, l≡i mod p

2ΩljΩki

un+l
+

2ΩijΩki

un+i
= −2ΩijΩik

un+i
,

where we have used Ωlj = 0 as p � (j − l) and j − l �= ±q for i < l � k and p|(l − i).

• Case 2 where p|(j − i). We have

p+q−1∑
l=0

Ωlk
∂Ωij

∂un+l
=

∑
i�l�j, l≡i mod p

2ΩlkΩij

un+l
. (3.8)
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Since p � j − i, we have k − j < q. Thus, if k − i = q, then p � (k − j). This yields Ωjk = 0
and

p+q−1∑
l=0

Ωlj
∂Ωki

∂un+l
=

2ΩijΩki

un+i
+

2ΩkjΩki

un+k
=

2ΩijΩki

un+i
.

However, for i < l � j and l ≡ i mod p, we have Ωlk = 0. Therefore, the RHS of (3.8)
becomes 2ΩikΩij/un+i. Hence, we obtain the Jacobian identity (3.7).

If k − i �= q and p � k − i, then Ωjk = Ωki = Ωlk = 0 for i < l < j and l ≡ i mod p (as k − l <
p + q − (i + p) � q and p � (k − l). This implies that LHS (3.8) = 0. Thus, the Jacobian
identity (3.7) holds.

If p|(k − i), i. e., i ≡ j ≡ k mod p, then the LHS of the Jacobian identity (3.7) is

LHS (3.7) =
∑

j�l�k, l≡i mod p

2ΩliΩjk

un+l
+

∑
i�l�k, l≡i mod p

2ΩljΩki

un+l
+

∑
i�l�j, l≡i mod p

2ΩlkΩij

un+l
.

It is easy to see that the three terms in this sum can be written as follows:∑
j�l�k, l≡i mod p

2ΩliΩjk

un+l
= −

∑
j<l�k, l≡i mod p

2ΩikΩjl

un+l
+

2ΩjiΩjk

un+j
,

∑
i�l�k, l≡i mod p

2ΩljΩki

un+l
=

∑
i�l<j, l≡i mod p

2ΩljΩki

un+l
+

∑
j<l�k, l≡i mod p

2ΩljΩki

un+l
,

∑
i�l�j, l≡i mod p

2ΩlkΩij

un+l
=

∑
i�l<j, l≡i mod p

2ΩikΩlj

un+l
+

2ΩjkΩij

un+j
.

Adding these three terms together, we get LHS (3.7) = 0.

• Case 3 where j − i �= q and p � (j − i), i. e., we have Ωij = 0. Similarly, by considering the
following subcases k − j = q; p|(k − j); k − j �= q, andp � (k − j), we can prove that the
Jacobian identity (3.7) holds.

�

Analogously, we can derive the following result for the map obtained from the plus-KdV.

Theorem 2. The map obtained as the (q,−p) reduction of Eq. (3.2) admits the following Poisson
structure for 0 � i < j � p + q − 1.

• If p = 1, we have

{un+i, un+j} =

⎧⎨⎩ (−1)j−i
∏j

r=i u
2
n+i, 0 < j − i < p + q − 1,(

− 1 + (−1)p+q−1
∏j−1

r=i+1 u2
n+r

)
u2

n+iu
2
n+j, j − i = p + q − 1.

• If p > 1, we have

{un+i, un+j} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−u2

n+iu
2
n+j if j − i = q,

(−1)(j−i)/p
∏(j−i)/p

k=0 u2
n+i+kp, if j − i ≡ 0 mod p,

0 otherwise.

(3.9)
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3.1. Examples

The matrices

L =

⎛⎝ul,m − 1
ul+1,m

λ

1 0

⎞⎠ , M =

⎛⎝ul,m λ

1 1
ul,m

,

⎞⎠
are Lax-matrices for the KdV equation (3.1). For the (3,−2)-reduction (with n = 2l + 3m, ul,m →
vn, Ll,m → Ln, Ml,m → Mn),

vn+2 − vn+3 =
1
vn

− 1
vn+5

,

the trace of the monodromy matrix L = M−1
0 L1M

−1
1 L2L0 yields the following three invariants:

I1 =
1
v0

+
1
v1

+
1
v2

+
1
v3

+
1
v4

− v2, I2 =
(v2v4−1)(v1v3−1)(v0v2−1)

v0v1v2v3v4
, I3 =

(v1v4+1)(v0v3+1)
v0v1v2v3v4

.

We have

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −v2
0v2

2 v2
0v2

3 v2
0v

2
2v2

4

0 0 0 −v2
1v2

3 v2
1v2

4

v2
0v2

2 0 0 0 −v2
2v2

4

−v2
0v2

3 v2
1v2

3 0 0 0

−v2
0v2

2v2
4 −v2

1v2
4 v2

2v2
4 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and I1 is a Casimir of the corresponding bracket. The rank of the bracket is 4, and we have
5 − 4/2 = 3 functionally independent invariants in involution with respect to the Poisson bracket,
so the Poisson map is completely integrable.

The matrices

L =

⎛⎝ul,m − 1
ul+1,m

λ

1 0

⎞⎠ , M =

⎛⎝ul,m λ

−1 − 1
ul,m

,

⎞⎠
are anti-Lax-matrices for the plus-KdV equation (3.2), which satisfy Ll,m+1Ml,m ≡ −Ml+1,mLl,m

modulo the equation. The idea of an anti-Lax pair was suggested to one of the authors by
J. A. G.Roberts [17]. For the (3,−2)-reduction,

vn+2 + vn+3 =
1
vn

+
1

vn+5
,

the trace of the monodromy matrix gives rise to the following three 2-integrals:

J1 =
1
v0

− 1
v1

+
1
v2

− 1
v3

+
1
v4

−v2, J2 =
(v2v4−1)(v1v3−1)(v0v2−1)

v0v1v2v3v4
, J3 =

(v1v4−1)(v0v3−1)
v0v1v2v3v4

,

that is, we have Ji(v1, . . . , v5) ≡ −Ji(v0, . . . , v4). We have

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −v2
0v2

2 −v2
0v2

3 v2
0v2

2v2
4

0 0 0 −v2
1v2

3 −v2
1v2

4

v2
0v2

2 0 0 0 −v2
2v2

4

v2
0v2

3 v2
1v2

3 0 0 0

−v2
0v2

2v2
4 v2

1v2
4 v2

2v2
4 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and J1 is a Casimir of the corresponding bracket. The rank of the bracket is 4, and we have
5 − 4/2 = 3 functionally independent invariants in involution, namely, I1 = J1/J2, I2 = J2/J3, and
I3 = J2J3, so the Poisson map is completely integrable.
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4. POISSON BRACKETS FOR (q,−p) REDUCTIONS OF THE LOTKA –VOLTERRA
EQUATION, AND THE LIOUVILLE EQUATION

The discrete Lotka –Volterra equation is given as follows (cf. [12]):

ul,m+1(1 + ul,m) = ul+1,m(1 + ul+1,m+1). (4.1)

We introduce the new variable wl,m = lnul,m to get

wl,m+1 − wl+1,m = − ln(1 + wl,m) + ln(1 + wl+1,m+1). (4.2)

This equation’s functional form is similar to that of the KdV equation. Therefore, it suggests that
one could try to introduce wl,m = vl−1,m−1 − vl,m to write Eq. (4.2) as an Euler – Lagrange equation.
One can easily derive a Lagrangian

L = vl,mvl,m+1 − vl,mvl+1,m + F (vl,m − vl+1,m+1), (4.3)

where

F (x) =
∫ x

0
ln(1 + et)dt.

Using the discrete analogue of the Ostrogradsky transformation, we can derive Poisson brackets
of mappings obtained by the (p,−q) reduction of Eq. (4.2) in the v variable and then in the w
variable. Once we have a Poisson bracket in the w variable, the associate Poisson bracket in the
original variable is calculated by

{un+i, un+j} = {ewn+i , ewn+j} = ewn+iewn+j{wn+i, wn+j}.
We obtain the following theorem.

Theorem 3. The map obtained as the (q,−p) reduction of Eq. (4.1) admits the following Poisson
structure for 0 � i < j � p + q − 1.

• If p = 1, we have

{un+i, un+j} =

⎧⎨⎩ (1 + un+i)(1 + un+j)
∏j−1

r=i+1

(1+un+r

un+r

)
, 0 < j − i < p + q − 1,

(1 + un+i)(1 + un+j)
(∏j−1

r=i+1

(1+un+r

un+r

)
− 1

)
, j − i = p + q − 1.

(4.4)

• If p > 1, we have

{un+i, un+j} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(un+i + 1)(un+j + 1) if j − i = q,

(un+i + 1)(un+j + 1)
∏(j−i)/p−1

k=1

(
un+i+kp+1

un+i+kp

)
, if j − i ≡ 0 mod p,

0 otherwise.

(4.5)

Similarly, if we take

L = vl,mvl,m+1 + vl,mvl+1,m + F (vl,m + vl+1,m+1)

and wl,m = vl−1,m−1 + vl,m, we obtain a Poisson bracket for the (q,−p) reduction of the following
equation:

(1 + ul,m)(1 + ul+1,m+1)ul+1,mul,m+1 − 1 = 0. (4.6)

Theorem 4. The map obtained as the (q,−p) reduction of Eq. (4.6) admits the following Poisson
structure for 0 � i < j � p + q − 1.
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• If p = 1, we have

{un+i, un+j} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)j−i(1 + un+i)(1 + un+j)

j−1∏
r=i+1

(1+un+r

un+r

)
, 0 < j − i < p + q − 1,

(1 + un+i)(1 + un+j)
(
(−1)j−i

j−1∏
r=i+1

(1+un+r

un+r

)
− 1

)
, j − i = p + q − 1.

(4.7)

• If p > 1, we have

{un+i, un+j} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−(un+i + 1)(un+j + 1) if j − i = q,

(−1)(j−i)/p(un+i + 1)(un+j + 1)
(j−i)/p−1∏

k=1

(
un+i+kp+1

un+i+kp

)
, if j − i ≡ 0 mod p,

0 otherwise.
(4.8)

If we take
L = vl,mvl,m+1 + vl,mvl+1,m − F (vl,m + vl+1,m+1),

we obtain Poisson brackets of maps obtained as reductions of the discrete Liouville equation

(1 + ul,m)(1 + ul+1,m+1) − ul+1,mul,m+1 = 0. (4.9)

Theorem 5. The map obtained as the (q,−p) reduction of (4.9) admits the following Poisson
structure for 0 � i < j � p + q − 1.

• If p = 1, we have

{un+i, un+j} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(1 + un+i)(1 + un+j)

j−1∏
r=i+1

(1+un+r

un+r

)
, 0 < j − i < p + q − 1,

−(1 + un+i)(1 + un+j)
( j−1∏

r=i+1

(1+un+r

un+r

)
+ 1

)
, j − i = p + q − 1.

(4.10)

• If p > 1, we have

{un+i, un+j} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−(un+i + 1)(un+j + 1) if j − i = q,

−(un+i + 1)(un+j + 1)
(j−i)/p−1∏

k=1

(
un+i+kp+1

un+i+kp

)
, if j − i ≡ 0 mod p,

0 otherwise.

(4.11)

Remark 1. We note that all equations that we have considered in this paper can be written in
the following form (after some transformations):

ul+1,m − ul,m+1 = G(ul,m) − G(ul+1,m+1) or ul+1,m + ul,m+1 = G(ul,m) + G(ul+1,m+1).

In fact, using the Ostrogradsky transformation and a Lagrangian which has the same form as (4.3),
one can always find Poisson brackets for maps obtained as reductions of these equations. This
method can also be applied to more general (q, p)-reductions, i. e., we do not require gcd(p, q) = 1.
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4.1. Examples

The matrices

L =

⎛⎝ 1 −ul+1,m

λ2

1
ul+1,m+1

ul+1,m

ul+1,m+1

⎞⎠ , M =

⎛⎝1 −ul,m+1(ul+1,m+1)

λ2

1 0,

⎞⎠
are Lax-matrices for the Lotka – Volterra equation (4.1). For the (3,−2)-reduction,

vn+3(vn + 1) = vn+2(vn+5 + 1),

the determinant of the monodromy matrix provides the invariant

I1 =
(v0 + 1)(v1 + 1)(v2 + 1)(v3 + 1)(v4 + 1)

v2
,

which is also a Casimir of the Poisson bracket defined by

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 (v0+1)(v2+1) −(v0+1)(v3+1) (v0+1)( 1
v2

+1)(v4+1)

0 0 0 (v1+1)(v3+1) −(v1+1)(v4+1)

−(v0+1)(v2+1) 0 0 0 (v2+1)(v4+1)

(v0+1)(v3+1) −(v1+1)(v3+1) 0 0 0

−(v0+1)( 1
v2

+1)(v4+1) (v1+1)(v4+1) −(v2+1)(v4+1) 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The trace yields two additional functionally independent integrals

I2 = v0v3 − v2 + v1v4,

I3 = (v1 + 1)(v0 + v2 + 2) + (v3 + 1)(v2 + v4 + 2) +
(v0 + 1)(v1 + v3 + 1)(v4 + 1)

v2
.

These integrals are in involution, which shows the mapping is completely integrable.

The (3,−2)-reduction of Eq. (4.6),

(1 + vn)vn+2vn+3(1 + vn+5) = 1,

is a Poisson map with Poisson structure

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −(v0+1)(v2+1) −(v0+1)(v3+1) (v0+1)( 1
v2

+1)(v4+1)

0 0 0 −(v1+1)(v3+1) −(v1+1)(v4+1)

(v0+1)(v2+1) 0 0 0 −(v2+1)(v4+1)

(v0+1)(v3+1) (v1+1)(v3+1) 0 0 0

−(v0+1)( 1
v2

+1)(v4+1) (v1+1)(v4+1) (v2+1)(v4+1) 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The Casimir function

C =
(v0 + 1)v2(v2 + 1)(v4 + 1)

(v1 + 1)(v3 + 1)

is a 2-integral, applying the map gives the multiplicative inverse. Hence the function C + 1/C is an
integral. We have not been able to find more integrals and, as the map seems to have nonvanishing
entropy, we believe it is not integrable.

The (3,−2)-reduction of Eq. (4.9),

(1 + vn)(1 + vn+5) = vn+2vn+3, (4.12)
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is a Poisson map with Poisson structure

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −(v0+1)(v2+1) −(v0+1)(v3+1) −(v0+1)( 1
v2

+1)(v4+1)

0 0 0 −(v1+1)(v3+1) −(v1+1)(v4+1)

(v0+1)(v2+1) 0 0 0 −(v2+1)(v4+1)

(v0+1)(v3+1) (v1+1)(v3+1) 0 0 0

(v0+1)( 1
v2

+1)(v4+1) (v1+1)(v4+1) (v2+1)(v4+1) 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The Casimir function

C =
(v0 + 1)(v2 + 1)(v4 + 1)

(v1 + 1)v2(v3 + 1)

is a 2-integral with C ′ = 1/C and so provides us with an integral I1 = C + 1/C. Other k-integrals
can be found from the i- and j-integrals given in [2] for an equation, [2, Eq. (19)], which is related
to (4.9) by ui,j → −1

1+ul,m
. The reduction of these integrals yields the 2-integral

A =
(v0 + v3 + 1)(v1 + v4 + 1)

(v1 + 1)(v3 + 1)

and the 3-integral

B =
(v0 + v2 + 1)(v1 + v3 + 1)

(v0 + 1)(v3 + 1)
.

Applying the map vi �→ vi+1 subject to (4.12), we obtain

A′ =
(v0 + v3 + 1)v2(v1 + v4 + 1)

(v0 + 1)(v2 + 1)(v4 + 1)
, A′′ = A

and

B′ =
(v1 + v3 + 1)(v2 + v4 + 1)

(v1 + 1)(v4 + 1)
, B′′ =

(v0 + v2 + 1)(v2 + v4 + 1)
v2(v2 + 1)

, B′′′ = B.

We have C = A/A′ and it can be checked that the integrals I1, I2 = A + A′, I3 = BB′B′′ are
functionally independent and in involution. The additional integral I4 = B + B′ + B′′ is functionally
independent and in involution with I2 (and I1), but not with I3. A linearization of the lattice
equation can be found in [2].

ACKNOWLEDGMENTS

This research was supported by the Australian Research Council and by La Trobe University’s
Disciplinary Research Program in Mathematical and Computing Sciences.

REFERENCES
1. Adler, V.E., Bobenko, A. I., and Suris, Yu. B., Classification of Integrable Equations on Quad-Graphs:

The Consistency Approach, Comm. Math. Phys., 2003, vol. 233, no. 3, pp. 513–543.
2. Adler, V.E. and Startsev, S. Ya., On Discrete Analogues of the Liouville Equation, Theoret. and Math.

Phys., 1999, vol. 121, no. 2, pp. 1484–1495; see also: Teoret. Mat. Fiz., 1999, vol. 121, no. 2, pp. 271–284.
3. Arnold, V. I., Kozlov, V.V., and Neishtadt, A. I., Mathematical Aspects of Classical and Celestial

Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.
4. B�laszak, M., Multi-Hamiltonian Theory of Dynamical Systems, Texts Monogr. Phys., Berlin: Springer,

1998.
5. Bruschi, M., Ragnisco, O., Santini, P. M., and Tu, G. Zh., Integrable Symplectic Maps, Phys. D, 1991,

vol. 49, no. 3, pp. 273–294.
6. Byrnes, G., Haggar, F. A., and Quispel, G. R. W., Sufficient Conditions for Dynamical Systems to Have

Pre-Symplectic or Pre-Implectic Structures, Phys. A, 1999, vol. 272, nos. 1–2, pp. 99–129.

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 6 2016



696 TRAN et al.

7. Capel, H. W., Nijhoff, F., and Papageorgiou, V.G., Complete Integrability of Lagrangian Mappings
and Lattice KdV Type, Phys. Lett. A, 1991, vol. 155, nos. 5–6, pp. 377–387.

8. Dubrovin, B.A., Krichever, I. M., and Novikov, S. P., Integrable Systems: 1, in Dynamical Systems 4,
V. I. Arnold, S. P. Novikov (Eds.), 2nd, exp. and rev. ed., Encyclopaedia Math. Sci., vol. 4, Berlin:
Springer, 2001, pp. 177–332.

9. Emmrich, C. and Kutz, N., Doubly Discrete Lagrangian Systems Related to the Hirota and sine-Gordon
Equation, Phys. Lett. A, 1995, vol. 201, nos. 2–3, pp. 156–160.

10. Faddeev, L.D. and Volkov, A.Y., Hirota Equation As an Example of Integrable Symplectic Map, Lett.
Math. Phys., 1994, vol. 32, no. 2, pp. 125–136.

11. Hone, A. N.W., van derKamp, P. H., Quispel, G. R. W., and Tran, D.T., Integrability of Reductions
of the Discrete Korteweg – deVries and Potential Korteweg – de Vries Equations, Proc. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci., 2013, vol. 469, no. 2154, 20120747, 23 pp.

12. Levi, D. and Yamilov, R. I., The Generalized Symmetry Method for Discrete Equations, J. Phys. A,
2009, vol. 42, no. 45, 454012, 18 pp.

13. Maeda, Sh., Completely Integrable Symplectic Mapping, Proc. Japan Acad. Ser. A Math. Sci., 1987,
vol. 63, no. 6, pp. 198–200.

14. Olver, P. J., Applications of Lie Groups to Differential Equations, 2nd ed., Grad. Texts in Math., vol. 107,
New York: Springer, 1993.

15. Papageorgiou, V.G., Nijhoff, F. W., and Capel, H. W., Integrable Mappings and Nonlinear Integrable
Lattice Equations, Phys. Lett. A, 1990, vol. 147, nos. 2–3, pp. 106–114.

16. Quispel, G. R. W., Capel, H.W., Papageorgiou, V. G., and Nijhoff, F. W., Integrable Mappings Derived
from Soliton Equations, Phys. A, 1991, vol. 173, nos. 1-2, pp. 243–266.

17. Roberts, J. A.G., private communication (2013).
18. Tran, D. T., Complete Integrability of Maps Obtained As Reductions of Integrable Lattice Equations,

PhD Thesis, La Trobe Univ., Melbourne, 2011.
19. Tran, D.T., van der Kamp, P. H., and Quispel, G. R. W., Closed-Form Expressions for Integrals of Trav-

eling Wave Reductions of Integrable Lattice Equations, J. Phys. A, 2009, vol. 42, no. 22, 225201, 20 pp.
20. Tran, D.T., van der Kamp, P. H., and Quispel, G. R. W., Sufficient Number of Integrals for the pth-Order

Lyness Equation, J. Phys. A, 2010, vol. 43, no. 30, 302001, 11 pp.
21. Tran, D.T., van der Kamp, P. H., and Quispel, G. R. W., Involutivity of Integrals of sine-Gordon,

Modified KdV and Potential KdV Maps, J. Phys. A, 2011, vol. 44, no. 29, 295206, 13 pp.
22. van der Kamp, P. H., Initial Value Problems for Lattice Equations, J. Phys. A, 2009, vol. 42, no. 40,

404019, 16 pp.
23. van der Kamp, P. H. and Quispel, G. R. W., The Staircase Method: Integrals for Periodic Reductions

of Integrable Lattice Equations, J. Phys. A, 2010, vol. 43, no. 46, 465207, 34 pp.
24. Veselov, A.P., Integrable Maps, Russian Math. Surveys, 1991, vol. 46, no. 5, pp. 1–51; see also: Uspekhi

Mat. Nauk, 1991, vol. 46, no. 5, pp. 3–45.

REGULAR AND CHAOTIC DYNAMICS Vol. 21 No. 6 2016


