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Abstract
We prove the conjecture, formulated in Foursov M V 2000 Inverse Problems
16 259–74, that the system
ut = 1

2 u3 + 1
2v3 + (2 − α)u0u1 + (6 − α)v0u1 + αu0v1 + (4 − α)v0v1

vt = 1
2 v3 + 1

2 u3 + (2 − α)v0v1 + (6 − α)u0v1 + αv0u1 + (4 − α)u0u1

has polynomial symmetries of order 2k and weight 2k + 2n when α =
2(1−(k/n)) for any non-negative integer k and any positive integer n. Moreover
we prove the existence of infinitely many nonpolynomial symmetries for any
α. This demonstrates the use of the implicit function theorem of Sanders and
Wang together with the symbolic calculus of Gelfand and Dikiı̆ to prove the
existence of infinitely many symmetries of evolution equations.

1. Introduction

It was observed and conjectured (cf [5, 6, 9]) that the existence of one (or a few) symmetries
implies the existence of infinitely many symmetries. Counterexamples were found in [1, 10]
and a (p-adic) method to prove that the number of symmetries is finite has been developed
(cf [2, 11]). These developments show that it is necessary to prove the existence of infinitely
many symmetries. Although the methods employed in [3, 13–16] show how one can effectively
obtain integrability proofs, still the observation and conjecture are used to argue that it is enough
to find only one or two symmetries of a system in order to declare it integrable (cf [7, 12]). In
this paper we explain and demonstrate the use of an implicit function theorem, as formulated
in [14], and the symbolic calculus which is developed in [8].

In [7] a classification of third-order symmetrically coupled KdV-like equations with respect
to the existence of two symmetries is presented. One system (4.7) in the list is quite special.

ut = 1
2 u3 + 1

2v3 + (2 − α)u0u1 + (6 − α)v0u1 + αu0v1 + (4 − α)v0v1

vt = 1
2 v3 + 1

2 u3 + (2 − α)v0v1 + (6 − α)u0v1 + αv0u1 + (4 − α)u0u1.
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For all values of α odd-order symmetries were found. At even order, symmetries were found
as well, but only for some particular values of α. Foursov verified all weight two, four, six,
eight and ten symmetries and formulated the following conjecture.

Conjecture 1 ([7]). System 4.7 has symmetries of order 2k and weight 2k + 2n when α =
2(1 − (k/n)) for any non-negative integer k and any positive integer n.

A particular easy case is α = 2; there are the symmetries of zero order and weight 2n

ut = (u − v)n

vt = −(u − v)n .

No extra odd-weight symmetries were found because it was assumed that the symmetries were
polynomial. The crucial observation one has to make is that the weight can be any number,
i.e. the above system is a symmetry when α = 2 for all n ∈ C.

In this paper we prove that system 4.7 has infinitely many symmetries at any positive
order for all α �= 2. The weight of the even-order symmetries is generally a real number (or
complex when α is complex). Only for the special values of α stated in the conjecture does the
weight become even at special orders. At α = 2 there are symmetries at all odd orders and the
symmetries of order zero but arbitrary weight. When −2α ∈ N we find additional odd-order
symmetries. A computer program that produces all these symmetries is included in appendix
C. Also the existence of an extra set of symmetries of arbitrary order is proven and examples
are given.

2. Implicit function theorem

We can view the right-hand side of an evolution equation (ut , vt ) = K as an element of a Lie
algebra L.

Definition 1. An element Q ∈ L is called a generalized symmetry of K , or symmetry for short,
if ad(K )Q = [K , Q] = 0. An equation with infinitely many independent symmetries is said
to be integrable and an infinite set of symmetries is called a hierarchy.

The computation of symmetries can be very cumbersome. It is a useful procedure to divide the
problem into a number of smaller computations. This can be done by introducing a filtration
on the algebra.

Definition 2. A Lie algebra L is filtered if L = L0 ⊃ L1 ⊃ L2 ⊃ · · · such that ∩∞
i=0Li = {0}

and

[Li ,L j ] ⊂ Li+ j .

Now finding a symmetry of K is equivalent to solving the set of equations

[K , Q] ∈ L j for j = 1, 2, . . . .

Under some conditions all these equations hold provided that the first few do.

Definition 3. We call K ∈ L0 nonlinear injective if [K , Q] ∈ Li+1 implies Q ∈ Li+1 for all
Q ∈ Li , i > 0.

Definition 4. We call K ∈ L0 relative l-prime with respect to S ∈ L0 if [S, Q] ∈ Im (ad(K ))

mod Li+1 implies Q ∈ Im (ad(K )) mod Li+1 for all Q ∈ Li , i � l.

The following implicit function theorem for filtered Lie algebras, which is to be found in [14],
can be used to prove the existence of infinitely many symmetries without the use of extra
structures such as a Lax pair, a recursion operator or a master symmetry. The proof is included
in appendix A.
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Theorem 1 (Sanders, Wang). Let L be a filtered Lie algebra. Suppose K , S and Q ∈ L0

such that

• [K , S] = 0,
• K is nonlinear injective,
• S is relatively l-prime with respect to K ,
• [K , Q] ∈ Ll and
• [S, Q] ∈ L1;

there exists a unique Q̃ ∈ Ll such that Q̂ = Q + Q̃ is a symmetry of both K and S, i.e.

• [K , Q̂] = 0 and
• [S, Q̂] = 0.

One has to find infinitely many independent Q for which the conditions are satisfied to prove
integrability. This can be done in the symbolic calculus, see [8] and appendix B.

3. A conjecture of Foursov

We put system 4.7 in Jordan form by the invertible linear transformation

u0 → 1
2 (u0 + v0), v0 → 1

2 (u0 − v0)

then we apply a scale transformation u0 → 1
2 u0 and the parameter translation α → α + 2 to

obtain the system we denote by K (α)

ut = u3 + 3u0u1

vt = αu1v0 + u0v1

a generalization of the usual KdV equation. The Foursov conjecture says that for all negative
α ∈ Q the equation has a hierachy of even-order polynomial symmetries. This is the case,
as we show in the following subsections that all conditions of the implicit function theorem
are satisfied. Since we allow the symmetries to be nonpolynomial, we find symmetries at any
order for any α �= 0.

3.1. [K , S] = 0

The first condition in theorem 1 is finding one symmetry (S). Instead of explicitly giving S,
we show that for all α the system has infinitely many odd-order symmetries.

Lemma 1. Let Kn be the (odd) nth-order symmetry of the KdV equation. Then for all n the
system

Sn(α) =
(

Kn

(αv0 + v1 D−1
x )Kn−2

)

is a symmetry of K (α).

Proof 1. The bracket

DK Sn(α) − DSn K (α)

has first component Du
K3

Kn − Du
Kn

K3 = 0 for Kn is a symmetry of KdV (K3). The second
component is expanded in powers of α. The zeroth power has coefficient

v1 Kn + u0v2 D−1
x Kn−2 + u0v1 Kn−2 − v1 D−1

x Du
Kn−2

K3 − D−1
x Kn−2(u0v2 + u1v1)

= v1(Kn + (u0 − D−1
x (D3

x + 3u0 Dx + 3u1) − u1 D−1
x )Kn−2)

= v1(Kn − (D2
x + 2u0 + u1 D−1

x )Kn−2)
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which vanishes because of the recursion relation for KdV symmetries. The coefficient of α

v0(Dx Kn − (D3
x + 2u0 Dx + 3u1 − u2 D−1

x )Kn−2)

vanishes for the same reason, since D−1
x u1 − u1 D−1

x = D−1
x u2 D−1

x . Finally α2 has coefficient
u1v0 Kn−2 − u1v0 Kn−2 = 0. Therefore the Sn(α) with n odd form a hierarchy of the system
K (α) for all α. �

3.2. K (α) is nonlinear injective

As a grading of the Lie algebra L we choose the degree in u when a system is written as

ut
∂

∂u
+ vt

∂

∂v
=

∑
i

K i .

Notice that one can have for example K −1 = v3∂/∂u. This grading induces a filtration,∑
i=l K i ∈ Ll . For our system K (α) ∈ L0 we write

K 0 mod L1 =
(

u3

0

)
and K 1(α) =

(
3u0u1

αu1v0 + u0v1

)
.

Lemma 2. Suppose that Q ∈ Li and nonzero. Then [K , Q] ≡ 0 modulo Li+1 implies i = 0.

Proof 2. The first symmetry condition modulo Li+1 reads

0 ≡ [K , Q]

≡
(

D3
x 0

0 0

) (
Q1

Q2

)
−

(
Du

Q1
Dv

Q1

Du
Q2

Dv
Q2

) (
u3

0

)

≡
(

D3 Q1 − Du
Q1

u3

Du
Q2

u3

)
.

This implies first of all that Q1 does not contain a part that depends on v because this would
be changed by the operation D3 and left unchanged by Du

Q1
. That Q1 ∈ L0 is most easily seen

by using the symbolic method (see appendix B). When Q1 is nonzero

(ξ1 + ξ2 + · · · + ξi+1)
3 − (ξ3

1 + ξ3
2 + · · · + ξ3

i+1) = 0

only if i = 0. Second [K , Q] ≡ 0 implies that Q2 does not depend on u or its derivatives, i.e.
Q2 ∈ L0. �

That is to say, K (α) is nonlinear injective.

3.3. S is relatively 2-prime with respect to K

The symmetries we consider in the rest of this paper have the form (0, Q). Suppose now that
Q ∈ Li . The modulo Li+1 actions of K and Sn are symbolically given by multiplication with
the G-functions

Gi
n = ξn

1 + ξn
2 + · · · + ξn

i .

In the symbolic language [Sn Q] ∈ Im (ad(K )) implies Q ∈ Im (ad(K ))moduloLi+1 whenever
Gi+1

3 and Gi+1
n are relative prime.

Lemma 3. All Gi
n with i � 3 are irreducible.
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Proof 3. If the projective curve G3
n = 0 has two components it has a singularity, that is a

projective point (ξ1, ξ2, ξ3) where all partial derivatives of G3
n vanish. It is easy to see that no

such point exists. Thus G3
n is irreducible and because Gi

n = Gi−1
n at ξi = 0 all Gi

n with i > 3
are irreducible as well. �
This shows that Sn is relatively 2-prime with respect to K (α).

3.4. [K , Q] ∈ L2

We look for symmetries of the form (0, Qk). Then automatically the first equation K Qk ≡ 0
mod L1 holds (see section 3.2). The next (already the last) equation is written modulo L2

0 ≡
(

D3
x 0

0 0

) (
0

Q1
k

)
−

(
0 0

Du
Q1

k
Dv

Q1
k

) (
u3

0

)
+

(
3(u1 + u0 Dx) 0
αv0 Dx + v1 αU1 + u0 Dx

) (
0

Q0
k

)

−
(

0 0
Du

Q0
k

Dv

Q0
k

) (
3u0u1

αu1v0 + u0v1

)

leading to

Du
Q1

k
u3 ≡ u0 Dx Q0

k + αu1 Q0
k − Dv

Q0
k
(αu1v0 + u0v1)

which can be solved if the coefficients of u0, u1 and u2 vanish. Expanding the right-hand-side
terms gives

u0 Dx Q0
k + αu1 Q0

k − Dv

Q0
k
(αu1v0 + u0v1) ≡ u0(Dx Q0

k − vi+1∂vi Q0
k)

+ u1(αQ0
k − (α + i)vi∂vi Q0

k)

+ u2

(
−αi − i(i − 1)

2

)
vi−1∂vi Q0

k + · · ·
where the sum over i is taken. Since total differentiation is performed by the operator
Dx = vi+1∂vi the coefficient of u0 vanishes identically.

Let α �= 0. We make the following ansatz.

Ansatz 1. The term of lowest grading has the form

Q0
k ≡

2k∑
j=0

c jv jv2k− j v
w/2−k−1
0 modulo L1

of order 2k and weight w. Here k is a positive integer and w can be any number.

The operator ivi∂vi counts the order, it multiplies Q0
k with 2k. The operator vi∂vi counts

the degree in v; it multiplies Q0
k by (w/2)− k + 1. Therefore the u1-coefficient vanishes when

w = 2k
α − 2

α
.

When we put w = 2k + 2n we obtain α + 2 = 2(1 − (k/n)) as predicted by Foursov in his
conjecture. If n ∈ N this is where the symmetries are polynomial.

Straightforward calculation shows that the vanishing of the u2-coefficient implies

c j = c j−1
( j − 1 − 2k)(2α + 2k − j)

j (2α + j − 1)
.

As long as α �= 0,−1/2, . . . , 1/2 − k we can solve this recursion relation.
The result is nonempty because ck+i = ck−i when k ∈ N, which can be easily proven

by induction on i . One can look for odd-order solutions; take for k a half integer. In this
case we have ck+1/2+i = −ck−1/2−i , which implies Q0

k = 0. However when −2α ∈ N and
0 < 2k + 2α � k we have c j = 0 for all j � 2k + 2α. This means that when −α is integer or
half integer there exist respectively −α and −2(α + 1) additional odd-order solutions.
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Example 1. The only additional odd-order symmetry with this form of K
(−3/2

)
is

ut = 0

vt = v0v5 + 5
3v4v1 + 25

3 u1v
2
1 + 25

3 u0v1v2 + 10u1v0v2 + 5u0v3v0

+ 9u2v0v1 + 3
2 u3v

2
0 + 9

2 u0u1v
2
0 + 6u2

0v1v0.

To cover the higher values of k for integer or half-integer negative α we start counting
coefficients from the other side of the polynomial. The assumption we must make here is that
k � −α or k > −2α whenever −2α ∈ N.

Ansatz 2. Let

Q0
k ≡

k∑
i=0

bivk+i vk−i v
w/2−k−1
0 modulo L1.

Then the recurrence becomes

b1 = 2b0
k(1 − k − 2α)

(k + 1)(2α + k)

bi = bi−1
(k + 1 − i)(i − k − 2α)

(k + i)(k + i − 1 + 2α)
.

When −2α ∈ N and k = −2α + 1 + i, i ∈ N all coefficients b j , j > i vanish.
It is possible to perform the computations in higher filtration spaces. A recursive formula

in symbolic language for the terms Qn
k modulo Ln+1 is given in appendix C. There, MAPLE

(see [4]) computer code that produces these kinds of symmetry and an explicit example with
complex α is presented as well.

There is more symmetry. We make another ansatz.

Ansatz 3. Let

Q0
k ≡

k∑
j=0

a jvk− j v
j
1v

w/2−k/2− j
0 modulo L1

of order k and weight w; again k is a positive integer and w ∈ C.

The coefficient of u1 vanishes if w = k α−2
α

and the coefficient of u2 vanishes if

a j+1 = a j(k − j)( j + 1 − 2α − k)

2α( j + 1)
.

This procedure works for all integer k > 1 and all w ∈ C. We have Q0
k = 0 when k = 1.

For k = 2 one obtains the same symmetries as taking k = 1 in ansatz 1 (or 2). When α is a
negative integer or half integer we observe that a j = 0 for all j > k − 1 + 2α.

Example 2. K
(−4/3

)
has the extra symmetry of order four and weight ten

ut = 0

vt = v4v
3
0 + 1

2v2
0v3v1 − 3

16v0v2v
2
1 + 15

256v4
1 + 4

3 u2v
4
0

+ 5u1v
3
0v1 + 4u0v

3
0v2 + 5

4 u0v
2
0v

2
1 + 4

3 u2
0v

4
0 .

3.5. [S, Q] ∈ L1

The first component of Sn does not depend on v and its second vanishes modulo L1. Moreover
the first component of Qk vanishes and its second does not depend on u modulo L1. These
properties make their bracket vanish modulo L1.
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4. Results

We have shown that the KdV equation coupled to a nonlinear equation

K (α) :
ut = u3 + 3u0u1

vt = αu1v0 + u0v1

has infinitely many odd-order symmetries Sn(α) and that its linear part is nonlinear injective.
The linear part of any odd-order symmetry Sn(α) is relatively 2-prime with K (α). We solved
the first two symmetry conditions [K , Qk] ∈ L2 for infinitely many Qk (twice) for all α

and showed that [Sn, Qk] ∈ L1. By the implicit function theorem there exist Q̂k(α) which
commute with K (α) and with all Sn(α).

There is a linear map that transforms every symmetry of K (α) into a symmetry of
system 4.7 found by Foursov. His conjecture turns out to be true inside the class of polynomial
symmetries. However, the symmetry structure of the equation is bigger than this.

Appendix A. Implicit function theorem

Lemma 4. Let L be a filtered Lie algebra. Suppose K , S and Q ∈ L such that

• [K , S] = 0,
• K is nonlinear injective,
• [K , Q] ∈ Ll and
• [S, Q] ∈ L1.

Then

• [S, Q] ∈ Ll .

Proof 4. We know [K , [S, Q]] = [S, [K , Q]] ∈ Ll . Because [S, Q] ∈ L1 we can use the
nonlinear injectiveness of K to conclude that [S, Q] ∈ Ll . �

Theorem 2 (Sanders, Wang). Under the conditions in lemma 4 and the additional condition

• S is relatively l-prime with respect to K

there exists a unique Q̃ ∈ Ll such that Q̂ = Q + Q̃ is an invariant of both K and S, i.e.

• [K , Q̂] = 0 and
• [S, Q̂] = 0.

Proof 5. By induction we show that there exists a Q̂ such that [K , Q̂] ∈ Lp and [S, Q̂] ∈ Lp

for all p � l. Suppose [K , Q] ∈ Lp and [S, Q] ∈ Lp hold for some p � l. The case p = l
follows from lemma 4. We have

[K , [S, Q]] = [S, [K , Q]]

and, in particular, [S, [K , Q]] ∈ Im(ad(K )) mod Lp+1. By the relative l-primeness of S with
respect to K we have that [K , Q] ∈ Im(ad(K )) mod Lp+1. Therefore we can uniquely define
Q̃ ∈ Lp by

[K , Q̃] = −[K , Q]

such that Q̂ = Q+ Q̃ satisfies [K , Q̂] ∈ Lp+1 and by lemma 4 (taking l = p+1) [S, Q̂] ∈ Lp+1.
This implies that Q can always be extended such that all homogeneous parts of [K , Q]

and [S, Q] vanish. Uniqueness follows from the assumption that ∩∞
i=0Li = {0}. �



412 P H van der Kamp

Appendix B. Symbolic calculus

The Gel’fand-Dikiı̆ transformation, cf [8], is a one to one mapping between differential
polynomials and symmetric polynomials. The basic idea is very old, probably dating from the
time when the position of index and power were not as fixed as they are today. We give some
rules without proof.

A differential monomial with m symbols of the form uk

M(u) =
m∏

j=1

ui j

is mapped to

M(ξ) = 1

m!

∑
σm

m∏
j=1

ξ
i j

j

where
∑

σm
means one has to sum over all different permutations of the integers 1, . . . , m.

Monomials act on each other as follows: let N have n ξ -symbols

M(ξ) ◦ N(ξ) = 1

(m + n)!

∑
σm+n

M(ξ)N(ξ).

This mapping is extended to differential monomials in more variables by introducing other
symbols

M(u)N(v) → M(ξ)N(ζ ).

One symmetrizes only in the symbols with the same name since ui u j = u j ui and uiv j �= u jvi .
The operation of taking a total derivative turns into multiplication with the sum of all

symbols involved. Let K have m ξ -symbols and n ζ -symbols

Dx K (u, v) →
( m∑

i=1

ξi +
n∑

j=1

ζ j

)
K (ξ, ζ ).

Taking the Frechet derivative of a differential polynomial is done as follows:

Du
M(u) =

m∑
k=1

( m∏
j=1, j �=k

ui j

)
Dik

x

and in the symbolic calculus, when there are other symbols involved as well,

Du
K (ξ,ζ ) = nK (ξ1, . . . , ξn−1, D, ζ )◦

where ξn is replaced by the symbol D which is representing the sum of all symbols in the
monomial the Frechet derivative is acting on.

Appendix C. Higher-order calculations

Symmetries of K (α) are symbolically given by

Q(α, k) =
(

0∑k
n=0 Qn

)

where Q0 is given by function F[k, α](ζ1, ζ2)v
−(2k+a/a)

0 where F satisfies the linear differential
equation

α(∂ζ1 + ∂ζ2)F + 1
2 (ζ1∂

2
ζ1

+ ζ2∂
2
ζ2
)F = 0.
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The higher-order Qi satisfy the recurrence relation(
n

n∑
i=1

ξ3
i

)
Qn =

n∑
j=1

( n∑
i=1,i �= j

(ξi ) + 2(α + k)ξ j + ζ1 + ζ2

)
Qn−1(ξn/j , ζ1, ζ2)

− (αξ j + ζ1)Qn−1(ξn/j , ζ2, ξ j + ζ1) − (αξ j + ζ2)Qn−1(ξn/j , ζ1, ξ j + ζ2)

− 3
n∑

i=1

n∑
k>i

(ξi + ξk)Qn−1(ξn/ i/k , ξi + ξk, ζ1, ζ2)

where ξn/ i = ξ1, . . . , ξi−1, ξi+1, . . . , ξn . The implicit function theorem guarantees that this
relation generates polynomials, which can be transformed into differential functions. This
transformation is done in MAPLE (see [4]) by the following function TRANS(P,n), which
transforms polynomials P(x1, . . . , xn, y1, y2) into the corresponding differential polynomial
with degree n in u and two in v.

TRANS:=proc(P,n)
local R,e,i,Q:
R:=0:
Q:=expand(P):
if type(Q,‘+‘) then Q:=convert(Q,list) else Q:=[Q] fi:
for e in Q do
for i to n do e:=e*u[degree(e,x[i])]/x[i]^degree(e,x[i]) od:
for i to 2 do e:=e*v[degree(e,y[i])]/y[i]^degree(e,y[i]) od:
R:=R+e od:
RETURN(R)
end:

The symmetries can be calculated on a computer in the following way. First set (a is the same
as α)

a:=-4/3:
k:=2:

then run the program

c[0]:=1/2:
if type(2*a,integer) and a<0 and k>-2*a then
F:=c[0]*(y[1]*y[2])^k:
for i to k+2*a-1 do
c[i]:=-c[i-1]*(k+1-i)*(k+2*a-i)/(k+i)/(k+i-1+2*a):
F:=F+c[i]*(y[1]^(k+i)*y[2]^(k-i)+y[2]^(k+i)*y[1]^(k-i)) od:
else
F:=c[0]*(y[1]^(2*k)+y[2]^(2*k)):
for i to k-1 do
c[i]:=c[i-1]*(i-1-2*k)*(2*k+2*a-i)/i/(i-1+2*a):
F:=F+c[i]*(y[1]^i*y[2]^(2*k-i)+y[2]^i*y[1]^(2*k-i)) od:
F:=F-c[k-1]*(k+1)*(k+2*a)/k/(k-1+2*a)*y[1]^k*y[2]^k fi:
Q:=TRANS(F,0):
F:=unapply(F,y[1],y[2]):
for n to k do G:=0:
for j to n do
G:=G+(sum(x[’i’],’i’=1..n)+(2*a+2*k-1)*x[j]+y[1]+y[2])
*F(seq(x[i],‘i‘=1..j-1),seq(x[i],‘i‘=j+1..n),y[1],y[2])
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-(a*x[j]+y[1])*F(seq(x[i],‘i‘=1..j-1),seq(x[i],‘i‘=j+1..n)
,y[2],x[j]+y[1])-(a*x[j]+y[2])*F(seq(x[i],‘i‘=1..j-1)
,seq(x[i],‘i‘=j+1..n),y[1],x[j]+y[2]):
for l from j+1 to n do
G:=G-3*(x[j]+x[l])*F(seq(x[i],‘i‘=1..j-1),seq(x[i],‘i‘
=j+1..l-1),seq(x[i],‘i‘=l+1..n),x[j]+x[l],y[1],y[2]) od od:
G:=factor(G/sum(x[’i’]^3,’i’=1..n)/n):
Q:=Q+TRANS(G,n):
F:=unapply(G,seq(x[i],‘i‘=1..n),y[1],y[2]) od:
Q:=[0,factor(Q)*v[0]^(factor(-(2*k+a)/a))];

to find the second symmetry of K when α = −4/3, it has the same order and weight as
example 2 in section 3.4. The whole procedure also works for complex α.

Example 3. When one sets

k:=1:
alias(a=RootOf(x^2+x+1,x)):

the program calculates the first symmetry

Q := [0, 1/6*(-1+a)*(-4*v[2]*v[0]+3*v[1]^2+2*a*u[0]*v[0]^2
-2*a*v[2]*v[0]-2*v[0]^2*u[0])*v[0]^(1+2*a)].

It can easily be checked that this Q commutes with

K := [u[3]+3*u[1]*u[0], a*u[1]*v[0]+u[0]*v[1]];

for primitive third roots of unity a.
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