
Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 53 (2020) 40LT01 (6pp) https://doi.org/10.1088/1751-8121/aba3df

Letter

A novel 8-parameter integrable map in R
4

G R W Quispel , D I McLaren1 and P H van der Kamp

Department of Mathematics, La Trobe University, Bundoora, VIC 3083, Australia

E-mail: r.quispel@latrobe.edu.au, d.mclaren@latrobe.edu.au and
p.vanderkamp@latrobe.edu.au

Received 16 March 2020, revised 27 June 2020
Accepted for publication 8 July 2020
Published 1 September 2020

Abstract
We present a novel 8-parameter integrable map in R

4. The map is measure-
preserving and possesses two functionally independent 2-integrals, as well as a
measure-preserving 2-symmetry.
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1. Introduction

Discrete integrable systems have attracted a lot of attention in recent years [9]. One of the
reasons for this comes from physics: many physical models include discreteness at a funda-
mental level. Another reason for the increased interest in discrete integrable systems comes
from mathematics: in several instances it turns out that discrete integrable systems are arguably
richer, or more fundamental than continuous (i.e. non-discrete) ones. Prime examples are (i)
integrable partial difference equations (PΔEs), where a single PΔE yields (through the use of
vertex operators) an entire infinite hierarchy of integrable partial differential equations [19]; (ii)
discrete Painlevé equations, where the Sakai classification is much richer in the discrete case
than in the continuous one [18]; (iii) Darboux polynomials, where in the discrete case unique
factorization of the so-called co-factors can be used [which does not exist in the continuous
(additive) case]2.

In this letter we will be interested in autonomous integrable ordinary difference equations
(or maps). Much interest was generated by the discovery of the 18-parameter integrable QRT
map in R

2 ([6, 16, 17]). For some other examples in higher dimensions, cf e.g. chapter 6 of [9].
A special aspect of the maps we consider in this Letter is that they are an example of

integrable maps arising as discretisations of ordinary differential equations (ODEs). Earlier
examples of this arose using the Kahan discretisation of first-order quadratic ODEs (cf [5, 10,
12, 15] and references therein), or by the discretisation of ODEs of order 1 and arbitrary degree
using polarisation methods [4], and by the methods in [11] for the discretisation of ODEs of
order o and degree o + 1, cf also [13, 14].

1Author to whom any correspondence should be addressed.
2 cf [2, 3] for the discrete case, and [7] for a very nice introduction to the continuous case.
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In section 3 we present a novel integrable 8-parameter map in R
4. This map generalizes

a 5-parameter map in R
4 found earlier in [4] to the inhomogeneous case, and because the

derivation of the novel map may be somewhat mysterious if the reader is unfamiliar with the
previous map and its derivation, we summarise the latter in section 2.

2. What went before

In [4] Celledoni et al introduced a novel integrable map in R
4. It was constructed as follows.

The authors considered the homogeneous quartic Hamiltonian

H = aq4 + 4bq3p+ 6cq2p2 + 4dqp3 + ep4, (1)

where a, b, c, d and e are 5 arbitrary parameters.
This gave rise to an ODE

d
dt

(
q
p

)
=

(
0 1
−1 0

)
∇H = f3

(
q
p

)
, (2)

where the cubic vector field f3 is defined by

f3

(
q
p

)
=

(
4bq3 + 12cq2 p+ 12dqp2 + 4ep3

−4aq3 − 12bq2 p− 12cqp2 − 4dp3

)
. (3)

Defining x :=

(
q
p

)
, and introducing the timestep h, the vector field (2) was then discretized:

xn+2 − xn

2h
= F3(xn, xn+1, xn+2), (4)

where F3 was defined using polarization, i.e.

F3(xn, xn+1, xn+2) :=
1
6

∂

∂α1

∂

∂α2

∂

∂α3
f3(α1xn + α2xn+1 + α3xn+2)|α=0. (5)

It is not difficult to check that the multilinear function F3 defined by (5) is equivalent to

F3(xn, xn+1, xn+2) :=
9
2

f3

(
xn + xn+1 + xn+2

3

)
− 4

3
f3

(
xn + xn+1

2

)

− 4
3

f3

(
xn + xn+2

2

)
− 4

3
f3

(
xn+1 + xn+2

2

)

+
1
6

f3 (xn) +
1
6

f3
(
xn+1

)
+

1
6

f3
(
xn+2

)
, (6)

cf [4] and page 110 of reference [8].
By construction, the rhs of (5) is linear in xn+2 and xn for cubic vector fields, i.e. (4) represents a
birational map (see [4]), and it was shown that this map possesses two functionally independent
2-integrals (recall that a 2-integral of a map φ is defined to be an integral of φ ◦ φ):

I(qn, pn, qn+1, pn+1) = qn pn+1 − pnqn+1 (7)

I(qn+1, pn+1, qn+2, pn+2) = qn+1 pn+2 − pn+1qn+2, (8)

where qn+2 and pn+2 should be eliminated from (7) using (4).
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Note that (7) above does not depend on the parameters a, b, c, d, e (in contrast to (8), which
will depend on the parameters once expressed in qn, qn+1, pn, pn+1).
The map (4) also preserves the measure

dqn ∧ dpn ∧ dqn+1 ∧ dpn+1

1 + 4h2Δ1
, (9)

where3

Δ1 =

∣∣∣∣c d
d e

∣∣∣∣ p2
n p2

n+1 +

∣∣∣∣b c
d e

∣∣∣∣ (p2
n pn+1qn+1 + pnqnq2

n+1)

+

∣∣∣∣b c
c d

∣∣∣∣ (p2
nq2

n+1 + q2
n p2

n+1) +

∣∣∣∣a b
c d

∣∣∣∣ (q2
n pn+1qn+1 + pnqnq2

n+1)

+

∣∣∣∣a c
c e

∣∣∣∣ pnqn pn+1qn+1 +

∣∣∣∣a b
b c

∣∣∣∣ q2
nq2

n+1. (10)

Finally, the map (4) is invariant under the scaling symmetry group

xn → λ(−1)n
xn. (11)

3. A novel 8-parameter integrable map in R
4

We now generalise the treatment of section 2 to the non-homogeneous Hamiltonian

H = aq4 + 4bq3p+ 6cq2p2 + 4dqp3 + ep4 +
1
2
ρq2 + σqp+

1
2
τ p2, (12)

where a, b, c, d, e, ρ, σ and τ are 8 arbitrary parameters.
This gives rise to an ODE

d
dt

(
q
p

)
=

(
0 1
−1 0

)
∇H = f3

(
q
p

)
+ f1

(
q
p

)
, (13)

where the cubic part of the vector field, f3, is again given by (3), whereas the linear part f1 is
given by

f1

(
q
p

)
=

(
σq + τ p
−ρq − σp

)
. (14)

We now discretise the cubic part resp. the linear part of the vector field in different ways:

xn+2 − xn

2h
= F3(xn, xn+1, xn+2) + F1(xn, xn+2), (15)

where F3 is again defined by (5), but F1 is defined by a kind of midpoint rule:

F1(xn, xn+2) = f1

(
xn + xn+2

2

)
. (16)

It follows that equation (15) again defines a birational map, and, importantly, it again preserves
the scaling symmetry (11). [Indeed the latter is the primary reason we use the discretization
(16)].

3 Erratum: in equations (4.1) of [4], 1 − 4h2Δ should read 1 + 4h2Δ. Their Δ is our Δ1.
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Two questions thus remain:

(a) Does equation (15) preserve two 2-integrals?
(b) Is equation (15) measure-preserving?

The answer to both these questions will turn out to be positive.
We actually had numerical evidence several years ago that the map (15) (or at least a spe-
cial case of it) was integrable. However it has taken us until now to actually find closed-form
expressions for the preserved measure and for the 2-integrals.
A first clue to the identity of a possible 2-integral of (15) came when we were carrying
out experimental mathematical computations (in the sense of [1]) to find ‘discrete Darboux
polynomials’ for the map (15) (cf [2, 3]). This gave a hint that a possible quadratic 2-integral
I(qn, pn, qn+1, pn+1) generalising (7), might exist for the map (15).
However, the mathematical complexity of the general 8-parameter map (15) was too great to
carry out these computations for a completely general quadratic 2-integral in four variables
with all 8 parameters symbolic.
Our process of discovery thus proceeded in two steps:
Step 1. Taking all parameters a, b, c, d, e, ρ, σ, τ and h to be random integers, and assuming
the 2-integral was an arbitrary quadratic function in four variables (with coefficients to be
determined), we computed the 2-integral for a large number of random choices of the integer
parameters. In each case, it turned out that the same six coefficients in the quadratic function
were zero, i.e. the 2-integral always had the form

I(qn, pn, qn+1, pn+1) = Aqnqn+1 + Bpn pn+1 + Cqn pn+1 + Dpnqn+1, (17)

where A, B, C, and D depended on the parameters in a way as yet to be determined.
Step 2. Now taking all parameters a, b, c, d, e, ρ, σ, τ and h symbolic, and assuming the 2-
integral I had the special quadratic form (17), we found

I(qn, pn, qn+1, pn+1) = (hσ + 1)pnqn+1 + (hσ − 1)qn pn+1 + hρqnqn+1 + hτ pn pn+1. (18)

Notes:

(a) The 2-integral (18) is invariant under the scaling symmetry group (11) 4.
(b) In the continuum limit h → 0, and using equation (13), the integral I(qn, pn, qn+1,

pn+1)/h → 4H(q, p).
(c) Like equations (7), (18) does not explicitly depend on the parameters a, b, c, d, e.
(d) Note that it is a common feature of many dynamical systems that one has a choice to

either study a given phenomenon for a single system containing as many free parameters
as possible, or alternatively for multiple systems in so-called normal form (obtained by
suitable transformations of the variables), containing fewer parameters. Both in our earlier
works on the QRT map [16, 17], and on the 5-parameter map in R

4 [4], as well as in the
current Letter, we have chosen the former option.

Once we had the putative equation (18), it was not difficult to verify using symbolic
computation that I(qn, pn, qn+1, pn+1) and I(qn+1, pn+1, qn+2, pn+2) are indeed functionally
independent 2-integrals of (15).

4 The scaling symmetry (11) is an essential ingredient in our proof of the theorem in the current Letter that the map
(15) is integrable (as well as in our proof in [4] that the map (4) is integrable).

4



J. Phys. A: Math. Theor. 53 (2020) 40LT01

The map (15) preserves the measure

dqn ∧ dpn ∧ dqn+1 ∧ dpn+1

1 + 4h2(Δ1 +Δ2)
, (19)

where the quartic function Δ1 is given by (10) and the quadratic function Δ2 is given by

Δ2 =
1
2

(∣∣∣∣a b
σ τ

∣∣∣∣ +
∣∣∣∣c b
σ ρ

∣∣∣∣
)

qnqn+1 +
1
2

(∣∣∣∣c d
σ τ

∣∣∣∣ +
∣∣∣∣e d
σ ρ

∣∣∣∣
)

pn pn+1

+
1
2

(∣∣∣∣b c
σ τ

∣∣∣∣ +
∣∣∣∣d c
σ ρ

∣∣∣∣
)

(pnqn+1 + qn pn+1) +
1
4

∣∣∣∣ρ σ
σ τ

∣∣∣∣ . (20)

Finally, the map (15) is again invariant under the scaling symmetry group (11).

Theorem. The birational map defined by (15) is integrable.

Proof. The proof of integrability is identical to the proof in [4]. The second iterate of the
map defined by (15) has a one-dimensional measure-preserving symmetry group. The map thus
descends to a measure-preserving map on the three-dimensional quotient. The two integrals of
the second iterate of the map are invariant under the symmetry and therefore also pass to the
quotient. This yields a three-dimensional measure-preserving map with two integrals, which
is thus integrable.
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