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Abstract. Manin transformations are maps of the plane that preserve a pencil

of cubic curves. They are the composition of two involutions. Each involution
is constructed in terms of an involution point that is required to be one of the

base points of the pencil. We generalise this construction to explicit birational

maps of the plane that preserve quadratic resp. certain quartic pencils, and
show that they are measure-preserving and hence integrable. In the quartic

construction the two involution points are required to be base points of the

pencil of multiplicity 2. On the other hand, for the quadratic pencils the in-
volution points can be any two distinct points in the plane (except for base

points). We employ Pascal’s theorem to show that the maps that preserve

a quadratic pencil admit infinitely many symmetries. The full 18-parameter
QRT map is obtained as a special instance of the quartic case in a limit where

the two involution points go to infinity. We show by construction that each

generalised Manin transformation can be brought to QRT form by a fractional
affine transformation. We also specify classes of generalised Manin transfor-

mations which admit a root.

1. Introduction. The (18-parameter) Quispel-Roberts-Thompson (QRT) map [28,
29] has become an archetypical integrable map of the plane. It is measure preserv-
ing, preserves a pencil of biquadratic curves, and can be written as the composition
of 2 involutions. Starting with works of Tsuda [34], Jogia et al [16] and Duister-
maat’s monograph [11], a thorough understanding of these maps was provided from
an algebraic geometric viewpoint. For example, as shown by Tsuda, the QRT map
can be described as an addition formula on a rational elliptic surface.

A Manin transformation [21, 11] is also an integrable map of the plane, measure
preserving and a composition of two involutions. However, it leaves invariant a
pencil of cubic curves. In [8, 25, 26, 36] it was shown that Manin transformations
arise in Kahan discretizations of certain vector fields. Other integrable maps which
preserve pencils of different degree type can also be found in the literature, e.g.
pencils of biquartic curves [17, 18, 12, 19, 39], and pencils of bisextic curves [7, 24].

It is known [16, 38] that every birational map of infinite order which preserves a
pencil of algebraic curves is birationally conjugate to a translation, either on a ruled
rational surface or on an elliptic surface. Hence, the pencils of the above mentioned
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maps all have genus < 2. As the genus g of a curve with nm singular points of
multiplicity m is related to the degree N ,

g =
(N − 1)(N − 2)

2
−
∑
m

nm
m(m− 1)

2
, (1)

and the genus is invariant under birational transformations, it follows that for N > 3
the invariant pencils of these maps have singular points.

One can ask for a given map which preserves a pencil of algebraic curves whether
it is birationally conjugate to a QRT map, or, quoting [39]

whether all integrable second order mappings with a rational invariant
can be brought to a QRT form by a birational change of coordinates of
the 2-plane.

The authors of [39] provide two examples of maps which both preserve a quartic
pencil, but for only one of these they were able to construct a transformation to a
QRT mapping. As an example, we show that that map is the root of a generalised
Manin transformation, cf. section 7.

In this paper we provide a geometric construction of classes of mappings which
preserve a pencil of curves of total degree N = 2, 3, 4 (thus including all Manin
transformations), and show these can all be brought into QRT form by a projective
collineation. In the case N = 2, our construction gives rise to the existence of
uncountably many symmetries, through application of Pascal’s theorem.

We also specify which subclasses of mappings are equivalent to a root of a QRT
map, also known as a symmetric QRT mapping. These includes mappings which
arise as the Kahan discretisation of physical systems such as the Suslov motion of
a rigid body under the constraint that a certain component of the angular veloc-
ity vector vanishes [33], and symmetric monopoles as described by reduced Nahm
equations [14], cf. [36].

2. Generalised Manin transformations. In a biquadratic pencil, a horizontal
(or vertical) line intersects a generic curve in two points only. Hence one can define
a horizontal (vertical) switch ι1 (ι2) as the involution which switches those two
points. This geometric construction defines the QRT map, τ = ι2 ◦ ι1, cf. [11, page
viii].

A Manin transformation is also a composition of two involutions. They are
defined for cubic curves [21], see also [11, Section 4.2]. Given a base point p of a
cubic pencil, i.e. a point which lies on every curve in the pencil, the line through p
intersects each curve in only two other points. Hence one can define a p-switch ιp
as the involution which switches those two points. We call p the involution point of
ιp. If q is another base point, a Manin transformation is obtained by composition,
τp,q = ιq ◦ ιp.

This geometric construction can be generalised to pencils of degree N ≥ 2,
Pα,β(u, v) = 0, where

Pα,β(u, v) := αFa(u, v) + βFb(u, v), (2)

and Fe(u, v) is a polynomial in two variables u, v of fixed total degree N which
depends on parameters e1, e2, . . ., and Fa 6= Fb. If the degrees of Fa and Fb are
not equal then we take the degree of the pencil, N , to be the largest of the two
degrees. For all (u, v) there are α, β such that Pα,β(u, v) = 0, i.e. α

β = − Fb

Fa
(u, v).

For base points (u, v) we have Pα,β(u, v) = 0 for all α, β, and there are N2 of
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them (considering (u, v) to be projective coordinates in P2 and counting intersection
multiplicities1), namely the solutions of Fa = Fb = 0.

For N = 2 we are free to choose the involution points p, q and there are no
constraints on the pencil. For N = 3 (the Manin case) there are no constraints
on the pencil, the involution points are base points of the pencil. For N = 4 we
require the pencil to have two base points, p and q, which are singular points (of
multiplicity2 2), and which we choose to be the involution points. For N > 4 the
base points p and q are required to be singular points of multiplicity N − 2. This
ensures that any line through p or q intersects each curve of the degree N pencil
in only two points, and hence that the involutions ιp and ιq are well-defined. The
construction here is reminiscent of the construction in [32], page 99, where the group
of rational points becomes quite different if one uses a line through a singular point
of higher multiplicity.

Other geometric constructions of birational involutions have been found. In
[27], involutions are defined using a pencil of curves of degree M , such that the
intersection with a given pencil of curves of degree N at the common base points is
MN − 2. In [35], the current construction is generalised by allowing involutions of
the type ιp, where p is not fixed but lies on a so called involution curve. We note
that birational involutions of the plane have been classified by Bertini [3, 4]: every
non-trivial birational involution of P2 is birationally conjugate to exactly one of the
following: a de Jonquieres involution, a Geiser involution, or a Bertini involution.
In the work of Moody [22], the Bertini involution has been described as a Manin
transformation with an involution curve, although not in these terms. Using the
results of [9, 10], maps preserving an elliptic fibration were classified in [5]: they
i-m) preserve each fiber of a Halphen surface of index m, or ii-m) they do not
preserve each fiber. We mention that Manin involutions are de Jonquieres, cf. [27].
Furthermore, all transformations we construct are fiber preserving, of type i-m. The
precise birational equivalence to mentioned mappings is beyond the scope of this
paper.

We will now provide an explicit formula for the generalised Manin involution
ιp that preserves a pencil (2) of degree N , in terms of the polynomials Fa and Fb
and their first and second order partial derivatives. The formula (x, y) = (u+ (c−
u)z, v+ (d− v)z) gives a parametrization of the line going through (u, v), for z = 0,
and through p = (c, d), for z = 1. Below, in equation (5), we provide the value of z
such that (x, y) and (u, v) are on the same curve of the given pencil, i.e. such that
Fa(x, y)Fb(u, v) = Fa(u, v)Fb(x, y). Denote Fa(z) := Fa(u+ (c− u)z, v + (d− v)z),

and F
(z)
a := d

dzFa. A Taylor expansion, about z = 0, gives

Fa(z) = Fa(0) + F (z)
a (0)z +

1

2
F (z,z)
a (0)z2 + · · ·+ 1

N !
F (z,N...,z)
a (0)zN , (3)

where

F (z, n...,z)
a (0) =

n∑
i=0

(
n

i

)
F (u, i...,u,v,n−i... ,v)
a (u, v)(c− u)i(d− v)n−i.

1The reader should be aware that by doing so QRT-maps have generically 10 base points

including 2 singular points at (0,∞) and (∞, 0) yielding an intersection total of 8(1 ·1) + 2(2 ·2) =

4 · 4, instead of the 8 base points in P1 × P1, cf. [11, Lemma 3.1.1].
2A curve C(u, v) = 0 has a singular point of multiplicity m if m ≥ 1 is the smallest number

such that all k-th order partial derivatives with k < m vanish at (c, d) [31]. A singular point of

multiplicity m is also called a double point (m = 2), a triple point (m = 3), or an m-ple point.
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For N > 2 we have the following equations

Fa(1) = F (z)
a (1) = · · · = F (z,N−3... ,z)

a (1) = 0,

and similarly for Fb. These equations are used in appendix A to prove the explicit
formula for the generalised Manin involution, given in the following theorem.

Theorem 2.1. Let Pα,β(u, v) = 0 be a pencil of degree N ≥ 2 and let p be a point
which for N > 2 is a base point and has multiplicity N − 2. Then the generalised
Manin involution with involution point p = (c, d) is given by

ιp : (u, v)→ (u, v) + z(c− u, d− v), (4)

where z is given by

z = 2

(
2(2−N)−

Fa(0)F
(z,z)
b (0)− F (z,z)

a (0)Fb(0)

Fa(0)F
(z)
b (0)− F (z)

a (0)Fb(0)

)−1
. (5)

In Appendix B we derive a condition which enables one to verify that ιp is anti
measure preserving with density3

LN−3/Fa,

where L = 0 is a line through p, and we comment that the condition is satisfied for
N = 2, 3, 4.

The above construction provides an explicit formula for Manin involutions on
pencils of any degree N > 1, which (for N > 3) admit a base point that is a singular
point of multiplicity N − 2. From two distinct generalised Manin involutions (4),
one can compose a generalised Manin transformation:

τp,q = ιq ◦ ιp, (6)

which preserves a pencil of degree N . However, there are no generalised Manin
transformations which preserve an irreducible pencil of degree N > 4. According to
(1) the genus of a curve of degree N > 3 with two singular points of degree N −2 is
(N−2)(5−N)

2 , which is less than zero for N > 5 and hence such curves are reducible.
In Appendix C, we show by geometric means that curves with two singular points
p, q of degree N − 2 are reducible for N > 4 and that lines through p and q factor
out. As a corollary, it follows that the generalised Manin transformation (6), which
preserves pencils of total degree 4 is the most general.

Note that because a biquadratic polynomial is a special instance of a quartic
polynomial with double points at (∞, 0) and (0,∞), the full 18-parameter QRT map
is obtained as a special case of the degree N = 4 generalised Manin transformation.

3. Transforming a generalised Manin transformation into QRT form. For
N = 2, 3, 4 every generalised Manin transformation (6) can be brought into QRT
form (which can be regarded as a normal form for generalised Manin transforma-
tions) by a projective collineation which transforms the line through the involution
points to infinity. For a given map, if it preserves a pencil of degree 3 or 4, it is
easy to find the transformation: for N = 3 the involution points are base points of
the pencil, and for N = 4 they are singular base points. In any case, the involution
points are included in the set of base points of the map and its inverse.

3Recall [30, Section 2.2] that a map φ is (anti) measure preserving with density ρ if its Jacobian
J equals (−)ρ/(ρ ◦ φ).
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Consider the fractional affine transformation

ψ : (u, v)→ (U, V ) =

(
au+ bv + c

gu+ hv + i
,
du+ ev + f

gu+ hv + i

)
. (7)

Such a transformation maps lines to lines, which can be seen as follows. The
coordinates (u, v) can be taken as affine coordinates of a projective space and then
ψ (7) is induced by a linear transformation of the vector space it is derived from.
Indeed, we can write ψ = κφκ−1 where φ is a linear map and κ : (u, v, w) →
(u/w, v/w). Since κ(p+t(q−p)) = κ(p)+s(κ(q)−κ(p)), with sp3−tq3 = ts(p3−q3)
the maps κ, κ−1, and hence ψ (7), map lines to lines. Such a map is called a
homography, or, a projective collineation. The fundamental theorem of projective
geometry states that every map which sends lines to lines (in a projective space of
dimension at least two) is a projective collineation [1, Thm 2.26].

If p = (c, d) and q = (e, f) are points in the plane and

L(u, v) = (d− f)(u− e)− (c− e)(v − f), (8)

so that L = 0 is the line through p and q, then any projective collineation of the
form,

(u, v)→
(
A(u− e) +B(v − f)

L
,
C(u− c) +D(v − d)

L

)
, (9)

where neither (A,B) nor (C,D) is perpendicular to L (ensuring invertible), sends
p to (∞, 0), and q to (0,∞). Throughout this paper we will refer to the line L = 0
through p and q as the Manin line for the generalised Manin transformation (6).
Thus we have the following result.

Theorem 3.1. Let p = (c, d) and q = (e, f) be the involution points for a pencil of
curves Pα,β(u, v) = 0 of degree 2 ≤ N ≤ 4, so that if N > 2 then p, q are base points
of multiplicity N − 2. With L = 0 being the Manin line, and for all A,B,C,D,
the projective collineation (9) brings the generalised Manin transformation (6) into
QRT form.

In the remainder of this paper we consider the cases N = 2, 3, 4 separately, and
section 7 is devoted to the study of roots of generalised Manin transformations,
which are equivalent to the so called symmetric QRT maps. As we will show there,
the example considered in [39, section 3] turns out to be the root of a generalised
Manin transformation.

4. Quadratic pencils. In this section we consider the degree N = 2 case. Taking
two different involution points p and q, the 16-parameter map τ = ιq ◦ιp is measure-
preserving with density 1/ (L(u, v)Fa(u, v)), where L = 0 is the Manin line. Using
Pascal’s hexagrammum mysticum theorem, we show that for any r on the Manin
line the map ιr is a reversing symmetry of τ . This implies that the map τ has
uncountably many symmetries.

Let

Fa(u, v) := a1 + a2u+ a3v + a4u
2 + a5uv + a6v

2 (10)

be a polynomial of degree N = 2 in variables u, v, that is a4, a5 and a6 are not all
zero. We have a pencil Pα,β(u, v) = 0 of conics (i.e. curves of genus zero). Any
point p = (c, d) can be taken as involution point. An involution is defined by

ιp(u, v) = (u, v) + z(c− u, d− v), (11)
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with z given by (5) (or alternatively by (34)), where, explicitly,

Fa(0) = Fa(u, v),

F (z)
a (0) = F (u)

a (u, v)(c− u) + F (v)
a (u, v)(d− v),

F (z,z)
a (0) = F (u,u)

a (u, v)(c− u)2 + 2F (u,v)
a (u, v)(c− u)(d− v) + F (v,v)

a (u, v)(d− v)2,

(12)

and F
(u)
a (u, v) = a2 + 2a4u + a5v, F

(v)
a = a3 + a5u + 2a6v, F

(u,u)
a (u, v) = 2a4,

F
(u,v)
a (u, v) = a5, F

(v,v)
a (u, v) = 2a6.

Example 1. Ten curves from the pencil Pα,β(u, v) = 0 with

Fa(u, v) = u2 − uv + v2 + u− v − 2 and Fb(u, v) = uv, (13)

are plotted in Figure 1.

Figure 1. Ten curves from the quadratic pencil defined by (2)
and (13), labeled by the value of −β/α. The base points are (1, 0),
(0,−1), (−2, 0), (2, 0).

Taking p = (2,−2) yields the involution

ι2,−2(u, v) = − 2

u− v − 2
(v, u), (14)

and taking q = (−1, 1) yields the involution

ι−1,1(u, v) =
(−v(2u+ v + 1), u(u+ 2v − 1))

u2 + uv + v2 − 1
. (15)

The Manin line is u+ v = 0. Introducing new coordinates

(x, y) =

(
u+ 1

u+ v
,
v + 2

u+ v

)
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the involution ιp becomes

ι1 : (x, y)→ (y − x+
1

2
, y)

and the involution ιq becomes

ι2 : (x, y)→
(
x,
x+ 2− xy
x− y

)
.

The ratio Fa/Fb becomes

y2 + 14x (y − x) + 7x− 8 y − 2

(2x− y + 1)(2x− y − 2)
.

The QRT mapping τ = ι2 ◦ ι1 has matrices

A0 =

0 0 −14
0 14 7
1 −8 −2

 , A1 =

0 0 4
0 −4 −2
1 1 −2

 .

In general, the involution (11) has the form

ιp(u, v) =

(
N1(u, v), N2(u, v)

)
D(u, v)

,

where Ni and D are generically of degree t = 3. If t = 3 the point p = (c, d) is
a double point on N1 = 0, N2 = 0 and on D = 0, and all points on the curve C
defined by Fa(c, d)Fb(u, v) = Fb(c, d)Fa(u, v) are mapped to (c, d). When p is a
point on one line through two base points, the degree is lowered to t = 2, and p is a
simple point on N1 = 0, N2 = 0, and on D = 0. An example is given by (15). Here
the map ιp is an involution on the line that contains p, but the other line of the
union C is mapped to p. When p is the intersection of two straight lines through
two base points, the degree is lowered to t = 1 and p is not on N1 = 0, N2 = 0 or
on D = 0. The involution is an involution on both lines, (14) provides an example.
For base points p the degree is t = 0, i.e. we have ιp = id, the identity.

The involution ιc,d (11) is anti measure-preserving with density

1

(r(u− c) + s(v − d))Fa(u, v)
, (16)

where the first factor represents any straight line through (c, d). Taking the compo-
sition of two involutions (11), we construct the map τp,q (6). The following holds.

Proposition 1. The map τp,q defined by (6), which preserves each curve of the
quadratic pencil Pα,β(u, v) = 0 with (10), is an integrable map of the plane. It is
measure-preserving with density

1

L(u, v)Fa(u, v)
,

where L(u, v) = 0 is given by (8) and L = 0 is the Manin line through the involution
points p = (c, d) and q = (e, f).

Let us now define two special involutions,

ι1 = lim
c→∞

ιc,0, ι2 = lim
f→∞

ι0,f , (17)

the horizontal, respectively vertical, switch, cf. [11, page viii]. Considering the
involution (11), it is clear that z is of the form z = N/D where N is linear in c, d,
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and D quadratic. Hence, the involutions have the form ι1(u, v) = (u + cz, v), and
ι2(u, v) = (u, v + fz). In the respective limits we find

cz = −2
Fa(u, v)F

(u)
b (u, v)− Fb(u, v)F

(u)
a (u, v)

Fa(u, v)F
(u,u)
b (u, v)− Fb(u, v)F

(u,u)
a (u, v)

,

and

fz = −2
Fa(u, v)F

(v)
b (u, v)− Fb(u, v)F

(v)
a (u, v)

Fa(u, v)F
(v,v)
b (u, v)− Fb(u, v)F

(v,v)
a (u, v)

.

The map τ = ι2 ◦ ι1 is a special case of the asymmetric QRT map [28, 29], with
matrices

A0 =

 0 0 a4
0 a5 a2
a6 a3 a1

 and A1 =

 0 0 b4
0 b5 b2
b6 b3 b1

 ,

cf. page 1 of Duistermaat’s book [11]. The involutions ι1 and ι2 (17) are anti
measure-preserving with densities

1

Fa(u, v)(r1v + r2)
,

1

Fa(u, v)(s1u+ s2)

respectively, for arbitrary ri, si. This implies in particular that τ is measure-
preserving with density 1/Fa(u, v), and ιc,d ◦ ι1 is measure-preserving with density
1/ ((v − d)Fa(u, v)).

Symmetries. The following theorem follows from Pascal’s theorem [37], which is
illustrated by Figure 2.

Figure 2. Lines through opposite sides of a hexagon on a conic
meet in three points which lie on a straight line, called the Pascal
line.

Theorem 4.1. A map τp,q defined by (6), which preserves a quadratic pencil
Pα,β(u, v) = 0, has uncountably many symmetries.

Proof. We first show that the map τp,q has uncountably many reversing symmetries,
cf. [30]. Let r be on the line through p and q, and let

B = ιp(A), C = ιq(B), D = ιr(C), E = ιp(D), F = ιq(E),
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as in Figure 2. By construction A,B,C,D,E, F lie on a conic. The lines AB and
DE meet in p, the lines BC and EF meet in q. According to Pascal’s theorem the
lines CD and AF meet in a point s on the Pascal line pq. But r is on CD and on
pq, so we have s = r and hence A = ιr(F ). It follows that ιr ◦ ιq ◦ ιp is an involution.
Thus, we have ιrτp,q = τ−1p,q ιr showing that ιr is a reversing symmetry. Uncountably
many symmetries are obtained by composition of reversing symmetries (and more
reversing symmetries by composition of symmetries and reversing symmetries).

Corollary 1. Theorem 4.1 implies that QRT maps which preserve a pencil of qua-
dratic curves admit uncountably many reversing symmetries, namely all generalised
Manin involutions with involution point at infinity.

Example 2. For Example 1, other involutions in the (u, v)-plane (11), whose in-
volution point is on the line u + v = 0 give rise to mappings that are reversing
symmetries of the map τ . Examples are ι0,0 which in QRT coordinates gives rise to

(x, y)→ (x, y)− (y − 1

2
)(1, 2)

and ι1,−1 which gives rise to

(x, y)→ (x, y)− 4x2y − 10xy2 + 4 y3 − 2x2 + 6xy − y2 + 13x− 10 y − 2

2x2 − 2xy − 4 y2 − x+ 5 y + 8
(2, 1).

5. Cubic pencils. In this section, we consider the degree N = 3 case, where the
pencil comprises elliptic curves of genus 1. We parametrise the pencil in terms of
the coordinates of two distinct base points p and q, which we choose to be involution
points. The 20-parameter map we obtain explicitly, τ = ιq◦ιp, is measure-preserving
with density 1/Fa(u, v).

An irreducible plane curve of degree three with no singular points has genus
one. Two such curves generically intersect in nine points. To find these intersection
points, in general one needs to find the roots of a ninth order polynomial. However,
we use the coordinates of two distinguished, and distinct, intersection points, p =
(c, d) and q = (e, f), to parametrise the cubic curves. We require the cubics

Fa(u, v) := a1+a2u+a3v+a4u
2+a5uv+a6v

2+a7u
3+a8u

2v+a9uv
2+a10v

3 (18)

to vanish at p and q. Assuming that K := c3f3−d3e3 does not vanish4, we can solve
the constraints for the parameters a7 and a10. We find a7 = Ga/K, a10 = Ha/K
with

Ga = (d3 − f3)a1 + (d3e− cf3)a2 + df(d2 − f2)a3 + (d3e2 − c2f3)a4

+ df(d2e− cf2)a5 + d2f2(d− f)a6 + df(d2e2 − c2f2)a8 + d2f2(de− cf)a9,

Ha = (e3 − c3)a1 + ce(e2 − c2)a2 + (de3 − fc3)a3 + c2e2(e− c)a4
+ ce(de2 − fc2)a5 + (d2e3 − f2c3)a6 + c2e2(de− fc)a8 + ce(d2e2 − f2c2)a9.

We have chosen this parametrisation so we can easily set d = e = 0 and take a limit
where c or f goes to infinity, which yields a7 = 0, a10 = 0 respectively. If both
limits are taken we are left with a biquadratic

Fa(u, v) = u2va8 + uv2a9 + u2a4 + uva5 + v2a6 + ua2 + va3 + a1. (19)

4One can also consider the case where K = 0: if c 6= e one can solve for a1 and a2, or when
d 6= f one can solve for a1 and a3.
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For finite involution points p and q we obtain the following general form

Fa(u, v) =Gau
3 +Hav

3

+K(u2va8 + uv2a9 + u2a4 + uva5 + v2a6 + ua2 + va3 + a1)
(20)

We have two Manin involutions,

ιp(u, v) := (u, v) + z(c− u, d− v), ιq(u, v) := (u, v) + z(e− u, f − v), (21)

with z given by (5) and (12), where for the latter involution (c, d) should be replaced
by (e, f), and

F (u)
a (u, v) = 3Gau

2 +K(2uva8 + v2a9 + 2ua4 + va5 + a2),

F (v)
a (u, v) = 3Hav

2 +K(u2a8 + 2uva9 + ua5 + 2va6 + a3),

F (u,u)
a (u, v) = 6Gau+ 2K(va8 + a4),

F (v,v)
a (u, v) = 6Hav + 2K(ua9 + a6),

F (u,v)
a (u, v) = K(2ua8 + 2va9 + a5).

The involutions (21) are anti measure-preserving with density 1/Fa(u, v).

Proposition 2. The composition of the Manin involutions (21) is an integrable
map of the plane. It preserves each curve of the cubic pencil Pα,β(u, v) = 0 with
(20) (or (19)) and it is measure-preserving with density 1/Fa(u, v).

Taking d = e = 0, with ι1 = limc→∞ ιc,0 and ι2 = limf→∞ ι0,f , the map τ = ι2◦ι1
is a special case of the QRT map with

A0 =

 0 a8 a4
a9 a5 a2
a6 a3 a1

 and A1 =

 0 b8 b4
b9 b5 b2
b6 b3 b1

 .

Example 3. We choose particular values for the constants in Fa, Fb (20),

a1 = a9 = 1, a2 = a3 = a4 = −1, a5 = a6 = a8 = 0,

b1 = b9 = 0, b2 = b3 = b4 = −1, b5 = b6 = b8 = 1, c = 2, d = e = 0, f = 1.

This gives

Fa(u, v) = 5u3+8(uv2−u2−u−v+1), Fb(u, v) = 6u3+8(u2v−u2+uv+v2−u−v).
(22)

In Figure 3 we have drawn 10 curves of this cubic pencil. In addition to the
involution points (2, 0) and (0, 1) there is one other finite real base point5, near
−(1.140, 0.782). We have ι2,0(u, v) = (u, v)− g

h (u− 2, v), with

g = u5 + 3u4v + 21u3v2 + 24u2v3 + 8uv4 − 2u3v − 46u2v2 − 16uv3 − 16 v4

− 22u3 − 22u2v + 16uv2 + 24 v3 + 52u2 + 16uv − 16 v2 − 24u+ 24 v − 16,

h = (u− 2)
(
u4 + 3u3v + 21u2v2 + 24uv3 + 8 v4 − 3u3 − 7u2v − 44uv2 − 8 v3

−6u2 − 8uv + 4 v2 + 28u+ 20 v − 24
)
,

5Also, there are 4 finite complex base points and all curves on which (0, 1) is non-singular are
tangent at (0, 1).
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Figure 3. Ten curves from the cubic pencil defined by (2) and
(22), labeled by the value of −β/α.

and ι0,1(u, v) = (u, v)− k
l (u, v − 1), where

k = 6u5 + u4v − 11u3v2 + 8u2v3 + 8uv4 − u4 + 44u3v − 8u2v2 − 16uv3 − 33u3

− 16u2v + 24uv2 + 8 v3 + 16u2 − 32uv − 24 v2 + 16u+ 24 v − 8,

l = u
(
6u4 + u3v − 11u2v2 + 8uv3 + 8 v4 − u3 + 33u2v − 16uv2 − 24 v3 − 22u2

+8uv + 24 v2 − 8 v
)
.

As indicated in the figure, the image of the point (
√

2, 0) under the involution ι2,0
is (−

√
2, 0), and the image of (−

√
2, 0) under ι0,1 is ( 9

7 + 3
7

√
2, 107 + 9

14

√
2). The

image of the curve labeled -1 is the point (0, 1) as this is a singular point of that
curve.

The Manin line through (2, 0) and (0, 1) is given by L(u, v) = 2 − u − 2v = 0.
In terms of variables (x, y) = (u, v)/L(u, v) the involutions ι2,0 and ι0,1 become the
horizontal and vertical switches of the QRT map with matrices

A0 =

 0 6 5
2

−2 0 − 1
2

−2 −2 − 1
2

 , A1 =

0 3 4
2 4 1
2 1 0

 ,

i.e. we have

ι2,0 7→ ι1 : (x, y)→

(
−

(
18xy2 + 16xy + 10 y2 + 4x+ 5 y + 1

)
(2 y + 1)

36xy3 + 74xy2 + 36 y3 + 35xy + 50 y2 + 9x+ 24 y + 4
, y

)
,

ι0,1 7→ ι2 : (x, y)→
(
x,

33x4 − 26x3y − 5x3 − 28x2y − 14x2 + x+ 2 y + 1

2 (18x2y + 13x2 + 8xy + x− 2 y − 1) (x+ 1)

)
,

preserving the ratio of biquadratics

Fa
Fb

=
12x2y − 4xy2 + 5x2 − 4 y2 − x− 4 y − 1

2(3x2y + 2xy2 + 4x2 + 4xy + 2 y2 + x+ y)
.
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6. Quartic pencils. In this section, pencils of degree N = 4 are considered. With
p and q double base points, the 22-parameter map τ = ιq ◦ ιp is measure-preserving
with density L(u, v)/Fa(u, v).

Let the quartic curve Fa(u, v) = 0, with

Fa(u, v) := a1 + a2u+ a3v + a4u
2 + a5uv + a6v

2 + a7u
3 + a8u

2v + a9uv
2 + a10v

3

+ a11u
4 + a12u

3v + a13u
2v2 + a14uv

3 + a15v
4

have double points at p = (c, d) and q = (e, f), i.e. at these points we require the

function Fa as well as its first partial derivatives F
(u)
a , F

(v)
a to vanish. Generically

the genus of such a curve is 1, the same as in the cubic case. Assuming that

V := c3f3 − d3e3 6= 0, W := (cf − de)2((cf + de)2 + 2cdef) 6= 0,

we can solve for

a7 =
P

V
, a10 =

Q

V
, a11 =

R

VW
, a12 =

S

VW
, a14 =

T

VW
, a15 =

U

VW
,

where the functions P,Q,R, S, T, U can be found in Appendix D. If V or W vanishes
one has to solve for other parameters. If c 6= e one can solve for a1, a2, a3, a4, a5, a7
and if d 6= f one can solve for a1, a2, a3, a5, a6, a10. The parameters a7, a10, a11, a12,
a14, a15 vanish when d = e = 0 in the limit where both c and f go to infinity, leaving
us with the most general biquadratic. For finite p and q, we obtain

Fa(u, v) =
(
u2v2a13 + u2va8 + uv2a9 + u2a4 + uva5 + v2a6 + ua2 + va3 + a1

)
WV

+
(
Pu3 +Qv3

)
W + u4R+ u3vS + uv3T + v4U.

(23)

As in the previous section, we have two involutions,

ιp(u, v) := (u, v) + z(c− u, d− v), ιq(u, v) := (u, v) + z(e− u, f − v). (24)

Here z is again given by (5) and (12), where for the second involution (c, d) should
be replaced by (e, f), but now

F (u)
a (u, v) =

(
2uv2a13 + 2uva8 + v2a9 + 2ua4 + va5 + a2

)
WV

+ 3u2PW + 4u3R+ 3u2vS + v3T,

F (v)
a (u, v) =

(
2u2va13 + u2a8 + 2uva9 + ua5 + 2va6 + a3

)
WV

+ v3QW + u3S + 3uv2T + 4v3U,

F (u,u)
a (u, v) =

(
2v2a13 + 2va8 + 2a4

)
WV + 6uPW + 12u2R+ 6uvS,

F (v,v)
a (u, v) =

(
2u2a13 + 2ua9 + 2a6

)
WV + 3v2QW + 6uvT + 12v2U,

F (u,v)
a (u, v) = (4uva13 + 2ua8 + 2va9 + a5)WV + 3u2S + 3v2T.

Both involutions are anti measure-preserving, (s1(u− c) + s2(v − d)) /Fa(u, v) is
the density for ιp and (t1(u− e) + t2(v − f)) /Fa(u, v) is the density for ιq, where
si, ti are arbitrary.

Proposition 3. The composition of the generalised Manin involutions (24) is an
integrable map of the plane. It preserves the quartic pencil Pα,β(u, v) = 0 with
(23), and it is measure-preserving with density L(u, v)/Fa(u, v), where L = 0 is the
Manin line (8).
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Example 4. Consider the quartic pencil where

Fa(u, v) = u2
(
28u2 − 24uv + 12 v2 + 16u− 8 v − 7

)
(25)

is a product of a double line and an ellipse, and

Fb(u, v) = (u− 3 v) (2u+ v − 1) (3u+ v) (u+ 5 v − 5) . (26)

is a product of four lines. All 10 base points are finite, the involution points are
the singular base points (0, 0) and (0, 1). Some curves of the pencil are plotted in
Figure 4.

Figure 4. Ten curves from the quartic pencil defined by (2), (25)
and (26), labeled by the value of −β/α.

The curve which contains the point (− 3
2 ,

3
10 ) and some of its iterates are plotted

in Figure 5.
The involutions are explicitly given by:

ι0,0(u, v) = (u, v)A, ι0,1(u, v) = (0, 1)− 3(u, v − 1)B (27)

with

A =
154u2 − 43uv + 95 v2 + 3u− 110 v

340u3 + 176u2v − 116uv2 + 80 v3 − 154u2 + 43uv − 95 v2
,

and

B =
25u2 − 16uv + 15 v2 + 16u− 8 v − 7

200u3 + 88u2v − 152uv2 + 24 v3 − 13u2 + 256uv − 27 v2 − 104u− 18 v + 21
.
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Figure 5. Six iterations of the point (− 3
2 ,

3
10 ) under the Manin

transformation (27), ι0,1 ◦ ι0,0.

The set of base points of the pencil is the union of the disjoint sets of points
where A resp. B are undefined. This is made clear in Figure 6.

Figure 6. The base points lie on curves defined by the numera-
tors and denominators of A (pink) and B (grey).

We have ι0,1(b2) = b4, ι0,0(b7) = b9, ι0,1(b3) = b5, and ι0,0(b8) = b10. To define
the action of ι0,0 at b2, b3, b4 and b5, one needs to blow up at these points. Similarly,
for ι0,1 blow-ups are required at b7, b8, b9 and b10.

Performing a change of variables, (x, y) = (1 − u − v,−v)/u, the involutions
become

(x, y)→
(

15 y2x− 150 yx− 3 y2 − 157x− 58 y + 29

110 yx− 15 y2 + 3x+ 150 y + 157
, y

)



GENERALISED MANIN TRANSFORMATIONS 197

(x, y)→
(
x,−21x2y − 56x2 − 6 yx− 50x− 102 y + 206

21x2 − 66 yx− 6x− 66 y − 102

)
.

preserving the ratio of biquadratics

Fa
Fb

=
7x2 − 22 yx+ 3 y2 − 2x− 30 y − 37

(x− 1)(5x+ 4)(y − 3)(3y + 1)
,

i.e. we obtain the QRT map with matrices

A0 =

0 0 7
0 −22 −2
3 −30 −37

 , A1 =

 15 −40 −15
−3 8 3
−12 32 12

 .

The special involutions with base points at infinity, with d = e = 0,

ι1 = lim
c→∞

ιc,0, ι2 = lim
f→∞

ι0,f

are anti measure-preserving. The horizontal switch ι1 has (s1v + s2) /Fa(u, v) as
density, and the vertical switch ι2 has density (t1u+ t2) /Fa(u, v), for arbitrary
si, ti. This implies that ιc,d ◦ ι1 is measure-preserving with density (v − d) /Fa(u, v)
and, that τ = ι2 ◦ ι1 is measure-preserving with density 1/Fa(u, v). This map τ is
the QRT map.

7. Roots of generalised Manin transformations. In this section, we specify
subfamilies of generalised Manin transformations which admit a root, i.e. maps
that can be written as τ = ρ2, such as the 12-parameter symmetric QRT map.

Recall that the QRT map is obtained by considering a N = 4 pencil with double
base points at (0, z) and (z, 0) as involution points, and taking the limit where z →
∞. In that limit the quartic polynomials Fa(u, v) and Fb(u, v) become biquadratic
polynomials. A special case of the QRT map, the so called symmetric QRT map,
arises when the biquadratic polynomials are symmetric in u, v, i.e. they are invariant
under what Duistermaat calls the symmetry switch [11, Section 10.1]

σ(u, v) = (v, u). (28)

The symmetric QRT map τ = ι2 ◦ ι1 equals τ = ρ2, where ρ = σ ◦ ι1 = ι2 ◦ σ is
called the QRT-root.

We note that σ may arise as a Manin involution corresponding to the base point
(z,−z) in the limit where z →∞, and we provide an example of a map which can
be written as a Manin transformation in various different ways.

Example 5. The Lyness map

λ : (u, v)→
(
v,
v + a

u

)
leaves invariant the pencil of cubic curves

α(u+ 1)(v + 1)(u+ v + a) + βuv = 0.
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The pencil has finite base points p1 = (−1, 0), p2 = (0,−1), p3 = (−a, 0), p4 =
(0,−a), which gives rise to involutions

ιp1(u, v) =

(
a(u+ 1) + v

uv
,
a+ v

u

)
,

ιp2(u, v) =

(
a+ u

v
,
u+ a(v + 1)

uv

)
,

ιp3(u, v) =

(
u+ a(v + 1)

uv
,
a(uv + v + 1) + u

u(u+ a)

)
,

ιp4(u, v) =

(
a(uv + u+ 1) + v

v(v + a)
,
v + a(u+ 1)

uv

)
,

as well as base points at infinity p5 = limx→∞(0, x), p6 = limx→∞(x, 0) (these have
multiplicity two), and p7 = limx→∞(x,−x), which yield the involutions

ιp5(u, v) =

(
u,
a+ u

v

)
, ιp6(u, v) =

(
a+ v

u
, v

)
, ιp7(u, v) = (v, u).

The latter Manin involution, ιp7 = σ, is the symmetry switch of the pencil
of curves, it is a reversing symmetry for the Lyness map, and it corresponds to
negation in the group law of the cubic [2]. The other involutions are also reversing
symmetries, generated by λ and σ:

ιp1 = σ ◦ λ2, ιp2 = λ2 ◦ σ, ιp3 = λ3 ◦ σ, ιp4 = σ ◦ λ3, ιp5 = λ ◦ σ, ιp6 = σ ◦ λ.

Thus the Lyness map is a QRT root: we have ιp5 = ι2 and ιp6 = ι1, see (17), and
hence

λ = σ ◦ ι1 = ι2 ◦ σ.
On the other hand, it can also be written as the composition of two Manin involu-
tions which correspond to finite involution points

λ = ιp1 ◦ ιp4 = ιp3 ◦ ιp2 ,

or as the composition of a Manin involution which corresponds to a finite involution
point and a horizontal or vertical switch

λ = ιp2 ◦ ι2 = ι1 ◦ ιp1 .

In the sequel we call a transformation σ a symmetry switch of the pencil P = 0
if σ is a symmetry of P and it is an involution.

Theorem 7.1. Let σ be a symmetry switch of the pencil Pα,β(u, v) = 0 which maps
lines to lines. Then

τp = ισ(p) ◦ ιp = ρ2p, with ρp = σ ◦ ιp = ισ(p) ◦ σ.

We call ρp the root of τp.

Proof. Let q be a point on a curve C in a pencil of degree N , and let the involution
point p be a singular point of multiplicity N − 2. Note that σ(p) has the same
multiplicity as p. Defining r = ιp(q) ∈ C, the points p, q, r are collinear. Because
σ maps lines to lines the points σ(p), σ(q), σ(r) are also collinear. Because σ is a
symmetry, both σ(q), σ(r) are on the curve C. Therefore we must have σ(r) =
ισ(p)(σ(q)), cf. Figure 7. And hence τp = ισ(p) ◦ ιp = ισ(p) ◦σ2 ◦ ιp = σ ◦ ιp ◦σ ◦ ιp =

ρ2p.
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As Theorem 7.1 concerns symmetry switches which map lines to lines, it would
be worthwhile to determine which projective collineations are symmetry switches
and to study the corresponding pencils. In the next subsections we consider the
symmetric case, and we introduce a more general linear symmetry switch. In Ap-
pendix E we show that the highest dimensional solution yields pencils comprising
singular curves only.

7.1. Symmetric generalised Manin transformations. We require that the
symmetric quartic polynomials Fa and Fb, where

Fa = a1 + a2 (u+ v) + uva3 +
(
u2 + v2

)
a4 +

(
u2v + uv2

)
a5 + u2v2a6

+
(
u3 + v3

)
a7 +

(
u3v + uv3

)
a8 +

(
u4 + v4

)
a9,

have a singular point at p = (c, d). Solving the constraints for Fa for a7, a8, a9 gives

a7 = −
4 a1 + (3 c+ 3 d) a2 + 2 cda3 +

(
2 c2 + 2 d2

)
a4 +

(
c2d+ cd2

)
a5

(c+ d) (c2 − cd+ d2)

a8 = − 1

(c2 − cd+ d2) (c4 + 4 c2d2 + d4) (c+ d)
2

(
− 12 c2d2a1 +

(
c5 + dc4 − 8 d2c3

−8 d3c2 + d4c+ d5
)
a2 +

(
c6 + dc5 + d2c4 − 4 d3c3 + d4c2 + d5c+ d6

)
a3

+
(
2 dc5 − 4 d2c4 − 4 d4c2 + 2 d5c

)
a4 +

(
c7 + 3 dc6 + 3 d2c5 + d3c4 + d4c3

+3 d5c2 + 3 d6c+ d7
)
a5 +

(
2 c7d+ 2 c6d2 + 2 c5d3 + 4 c4d4 + 2 c3d5 + 2 c2d6

+2 cd7
)
a6

)
a9 =

1

(c2 − cd+ d2) (c4 + 4 c2d2 + d4) (c+ d)
2

( (
3 c4 + 3 c3d+ 12 c2d2 + 3 cd3

+3 d4
)
a1 +

(
2 c5 + 5 dc4 + 11 d2c3 + 11 d3c2 + 5 d4c+ 2 d5

)
a2 +

(
2 dc5

+2 d2c4 + 6 d3c3 + 2 d4c2 + 2 d5c
)
a3 +

(
c6 + dc5 + 7 d2c4 + 2 d3c3 + 7 d4c2

+d5c+ d6
)
a4 +

(
dc6 + 3 d2c5 + 4 d3c4 + 4 d4c3 + 3 d5c2 + d6c

)
a5 +

(
c6d2

+c5d3 + c3d5 + c2d6
)
a6

)
and similar expressions are obtained for b7, b8, b9. Taking σ(u, v) = (v, u), one
defines ρp = σ ◦ ιp and verifies that ρp = ισ(p) ◦ σ. The symmetric QRT-root is
obtained by considering the limit d → ∞ (in which a7, a8, a9, b7, b8, b9 → 0), or by
performing a fractional affine transformation explained in section 3.

One can also solve the constraints for other variables, depending on what vari-
ables one chooses to be non-zero

Example 6. Setting a4 = 1, a3 = a5 = a6 = a7 = a8 = 0 and b3 = 1, b4 = b5 =
b6 = b7 = b8 = 0, both polynomials Fa and Fb have singular points at both (0, 1)
and (1, 0) if

a1 = a9 = −1

2
, a2 = 0, b1 =

3

4
, b2 = −1, b9 =

1

4
.

Thus we obtain the map

(u, v)→ (v, u)− 2
u4 + v4 − 2u3 + 2u− 1

u4 + v4 − 4u3 + 6u2 − 4u+ 1
(v, u− 1),

which preserves the pencil

α
(
u4 + v4 − 2(u2 + v2) + 1

)
+ β

(
u4 + v4 + 4(uv − u− v) + 3

)
= 0.
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After the transformation, (x, y) = (u, v)/(1 − u − v), the map becomes the com-
position of (x, y) → (y, x) and the horizontal switch which preserves the ratio of
biquadratics

Fa
Fb

=
2x2y2 + 8x2y + 8xy2 + 4x2 + 12xy + 4 y2 + 4x+ 4 y + 1

2x2y2 + 8x2y + 8xy2 + 6x2 + 16xy + 6 y2 + 8x+ 8 y + 3
.

7.2. Linear symmetry switches. We introduce a symmetry switch that is more
general than (28), but which is still linear. In terms of

U = (u, v), V = (b,−a), W = (ad− bc, ae− bd), E = V ·W, G = G(U) = U ·W
we define

σa,b,c,d,e : U → U − 2G

E
V. (29)

The ‘symmetric switch’ given by (28) is a special case of (29), we have σ = σa,a,c,d,c
and the matrices of σ and σa,b,c,d,e are conjugate. In the sequel we will omit the
index a,b,c,d,e. The linear transformation σ given by (29) is a reflection in the line
through (0, 0) perpendicular to W along a line with direction V , i.e. we have

σ(V ) = −V, σ(JW ) = JW, J =

(
0 1
−1 0

)
.

Importantly, σ (29) leaves the linear respectively quadratic forms

L = L(U) = au+ bv, Q = Q(U) = cu2 + 2duv + ev2

invariant (and it also negates the linear form G), that is

L(σ(U)) = L(U), Q(σ(U)) = Q(U), G(σ(U)) = −G(U).

For N = 2 the most general pencil which admits σ (29) as a symmetry is given
by

Fa = a1 + a2L+ a3L
2 + a4Q, Fb = b1 + L+ L2 +Q. (30)

Note that the constants b2, b3, b4 can be absorbed by the other constants,

(a, b)→ 1

b2
(a, b)

(c, d, e)→ 1

b4
(c, d, e) +

(
1− b3

b22

)
1

b4
(a2, ab, b2).

We are still free to choose the coordinates of p, so in total the degree N = 2 family
of maps which admit a root has 12 parameters.

Proposition 4. The root ρp = σ ◦ ιp, where σ is given by (29) and ιp by (11),
is an integrable map of the plane. It preserves each curve of the quadratic pen-
cil Pα,β(u, v) = 0 with (2) and (30), and it is measure-preserving with density
(Fa(U)(L(U)− L(p))−1.

Example 7. Let (a, b, c, d, e) = (1, 2,−3, 4, 5), (a1, a2, a3, a4) = (1,−2,−3, 4), and
b1 = 1. Then

σ(u, v) =
1

23

(
−17 12
20 17

)(
u
v

)
(31)

and

Fa = −15u2 + 20uv + 8 v2 − 2u− 4 v + 1, Fb = −2u2 + 12uv + 9 v2 + u+ 2 v + 1.

The point s = (1/2,−1) is on the curve

0 = P8,7(u, v) = −134u2 + 244uv + 127 v2 − 9u− 18 v + 15. (32)
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Choosing p = (2,−1) we find r = ιp(s) = (−160/67,−1). The points

σ(p) = (−2, 1), σ(s) =

(
−41

46
,− 7

23

)
, σ(r) =

(
1916

1541
,−4339

1541

)
are collinear, and

ιp(σ(r)) =

(
259627

86963
,

118690

86963

)
, ισ(p)(r) =

(
−5651

3781
,

13630

3781

)
.

It can be seen, see Figure 7, that σ(ιp(σ(r))) = ισ(p)(r).

Figure 7. A degree 2 curve, given by (32), which admits the
symmetry switch (31). The symmetry switch is a reflection in the
line through (0, 0) perpendicular to W = (10,−3) (purple), in the
direction (2,−1) (dotted).

After a transformation, with new coordinates

(x, y) =

(
−3u− 23 + 29 v

2u+ 4 v
,−23

u− 1 + v

2u+ 4 v

)
,

we have that σ switches x and y, we have ιp → ι1 : (x, y) → (f(x, y), y), ισ(p) →
ι2 : (x, y)→ (x, f(y, x)), where

f(x, y) =
12 y3 − 213xy + 651 y2 − 5966x+ 12084 y − 3268

12xy + 213x+ 213 y + 5966
,

and the preserved ratio is

Fa
Fb

=
91x2 − 186xy + 91 y2 + 20x+ 20 y − 836

22x2 − 48xy + 22 y2 − 49x− 49 y − 1710
.
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For N = 3 the most general pencil left invariant by σ (29) is

Fa = a1 + a2L+ a3L
2 + a4Q+ a5L

3 + a6LQ, Fb = b1 +L+L2 +Q+ b5L
3 + b6LQ.

We require that the involution point p is a point on both Fa = 0 and Fb = 0 and
thus we have a 14 parameter family of maps which admit a root. In the cubic case
the root is measure-preserving with density 1/Fa(u, v).

For N = 4 the most general pencil invariant under σ (29) is defined by

Fa = a1 + a2L+ a3L
2 + a4Q+ a5L

3 + a6LQ+ a7L
4 + a8L

2Q+ a9Q
2,

Fb = b1 + L+ L2 +Q+ b5L
3 + b6LQ+ b7L

4 + b8L
2Q+ b9Q

2.

Here we require that the involution point p is a double point of Fa = 0 and Fb = 0,
which gives 6 constraints. Thus we are left with a 16-parameter family whose square
root can be taken. In the quartic case the root is measure-preserving with density
(L(U)− L(p))/Fa(U).

In [8, 36] it was shown that the Kahan discretisation for several classes of ODE
systems of the form

d

dt

(
x
y

)
= ϕ(x, y)

(
0 1
−1 0

)
∇H(x, y)

and ϕ(x, y) and H(x, y) are scalar functions, can be geometrically understood as
the root of a generalised Manin transformation. These classes of ODE systems
include physical applications such as: a two-dimensional sub-system of the three-
dimensional non-holonomic Suslov problem which describes the motion of a rigid
body under the constraint that a certain component of the angular velocity vector
vanishes, the reduced Nahm equations [14] corresponding to tetrahedrally sym-
metric monopoles of charge 3, and the reduced Nahm equations for octahedrally
symmetric monopoles of charge 4.

For canonical Hamiltonian system with cubic H, it was shown in [25] that the
Kahan map can be represented in six different ways as a composition of two Manin
involutions, and the geometry of the base points was shown to be characteristic for
Kahan maps. A similar geometric characterisation for the Kahan discretisation of
planar quadratic Hamiltonian vector fields with a linear Poisson tensor and with a
quadratic Hamilton function was given in [26].

We conclude with an example from the literature, [39, section 3], to illustrate
how the singularities of the pencil determine the QRT form of the mapping. Using
projective coordinates u = x/z, v = y/z, the map [39, equation (8)] reads

ρ (u, v) =

(
u(v + 1)(q2 − 1) + 2 v

uv(q − 1)− u(q + 1) + 2 v
,−uv(q + 1)− u(q − 1)− 2 v

uv(q − 1)− u(q + 1) + 2 v

)
.

It has an invariant of degree 4,

K =
(v + 1) (uv + u− 2 v) (2u− v − 1)

(v − 1)
2

(q2u(v + 1) + 2u(u− v − 1) + 2 v)
,

which has two singular base points, namely at p = (1, 1) and at (∞, 0). Geometri-
cally the map is understood as the root of a generalised Manin transformation,

ρ = σ ◦ ι1 = ιp ◦ σ,
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where ρ2 = ιp ◦ ι1. The horizontal switch takes the simple form ι1(u, v) = (v/u, v),
and the symmetry switch σ = ιq+1,1 is the projective collineation

σ(u, v) = (u, v)−
(

1 +
2q

2u+ (q − 1)v − (q + 1)

)
(u− q − 1, v − 1).

In coordinates

x = −qv − q + 2u+ v − 3

2q(v − 1)
, y =

q + 1− v
q(v − 1)

the points (1, 1) and (q+1, 1) are mapped to (0,∞) and (∞,−∞) respectively. The
map σ becomes the standard symmetry switch, and the integral K is symmetric in
x, y. Hence, in these coordinates the map is a symmetric QRT map.

8. Conclusions. Noting that both Manin transformations and QRT maps are
compositions of involutions that switch the 2 points in the intersection of a curve of
the invariant pencil with a straight line through a given point, we have constructed
classes of such maps which preserve pencils of degree N = 2, 3, 4. We have shown
how these maps are projectively equivalent to QRT maps, and we have identified
classes of maps which are equivalent to roots of QRT maps. For a special configu-
ration of the base points of a cubic pencil, Manin transformations have been shown
to arise as the Kahan discretisation of a quadratic planar Hamiltonian vector field
in [25, 26]. In [35], the current construction is generalised by allowing involutions
of the type ιp, where p is not fixed but lies on a special curve parametrised by the
parameter of the pencil, cf. [6] where Manin involutions of this kind were obtained
from an open boundary reduction from the Q1δ=0 lattice equation.

Acknowledgments. This research was supported by the Australian Research
Council [DP140100383]. We have extensively used the software Maple [23]. This
includes drawing the figures, and verifying the densities for the Manin involutions
in the cases N = 2, 3, 4.

Appendix A. We provide the proof of Theorem 2.1.

It is convenient to use abbreviated notation F
(i)
a := F

(z, i...,z)
a (0). We start with

the Taylor expansion about z = 0, equation (3), and Taylor expand it about z = 1:

Fa(z) =

N∑
i=0

ci(z − 1)i, with ci =

N∑
j=i

F
(j)
a

i!(j − i)!
.

As ci = 0 for i < N − 2 we have

Fa(z) =
(z − 1)N−2

N !

(
N(N − 1)(F (N−2)

a + F (N−1)
a +

1

2
F (N)
a ) +N(F (N−1)

a

+ F (N)
a )(z − 1) + F (N)

a (z − 1)2
)
.

Due to
∑N−3
i=0 (−1)ici = 0 we have

1

2
(N − 1)(N − 2)F (N)

a +N(N − 2)F (N−1)
a +N(N − 1)F (N−2)

a = (−1)NN !F (0)
a

and hence

Fa(z) =
(z − 1)N−2

N !

(
F (N)
a z2 + (NF (N−1)

a + (N − 2)F (N)
a )z + (−1)NN !F (0)

a

)
,

(33)



204 PETER H. VAN DER KAMP, D. I. MCLAREN AND G. R. W. QUISPEL

and similarly for Fb(z). Substituting these into the equation Fa(z)Fb(0) = Fb(z)
Fa(0), after dividing out z(z − 1)N−2 the constant term vanishes, and we are left
with a linear equation

(F (N)
a (z +N − 2) +NF (N−1)

a )F
(0)
b = (F

(N)
b (z +N − 2) +NF

(N−1)
b )F (0)

a ,

which provides

z = 2−N

(
1 +

Fa(0)F
(z,N−1... ,z)
b (0)− F (z,N−1... ,z)

a (0)Fb(0)

Fa(0)F
(z,N...,z)
b (0)− F (z,N...,z)

a (0)Fb(0)

)
. (34)

To get the expression (5) we solve the system ci = 0, 0 ≤ i ≤ N − 3. This can

be done as follows. Define x0,j = (N − j)!cj and xi+1,j =
xi,j−xi,j+1

i+1 . Explicitly we
have, for 0 ≤ i ≤ N − 3,

xi,0 =

N−i∑
j=0

∏N−i−j−1
k=0 (N − i− k)(i+ k + 1)

(N − i− j)!
F (j)
a ,

and the linear combination
k∑
h=3

(−1)h+k
(N − h)!

(N − k)!

(
k

h

)
xN−h,0 = F (k)

a − (−1)k
k!

2

((
N − 2

k − 2

)
F (2)
a

+2

(
N − 1

k − 1

)
(k − 2)F (1)

a +

(
N

k

)
(k − 1)(k − 2)F (0)

a

)
, (35)

and similar for F
(•)
b . In terms of

Gn = F (0)
a F

(n)
b − F (n)

a F
(0)
b (36)

= (−1)k
k!

2

((
N − 2

k − 2

)
G2 + 2

(
N − 1

k − 1

)
(k − 2)G1

)
one can show that

GN−1
GN

+ 1 =
2

N

(2N − 3)G1 +G2

(2N − 4)G1 +G2
.

Appendix B. We provide a condition that is equivalent to the generalised Manin
involution ιp given by (4) being anti measure-preserving with density

ρ =
LN−3

Fa
,

where L = 0 is a line through p.
It can be verified that the Jacobian determinant of the map ιp equals

Jac(ιp) =
(2 (N − 1)G1 +G2)X

(2 (N − 2)G1 +G2)
3 ,

with

X = 2
(

(c− u)G
(u)
2 + (d− v)G

(v)
2

)
G1 + 4 (N − 1) ((N − 2)G1 +G2)G1 −G2

2.

On the other hand, by substituting the expressions for F (N) and F (N−1) as given
by (35) into (33) with z given by (34) we find

− ρ(u, v)

ρ(ιp(u, v))
=

(2 (N − 1)G1 +G2)Y

(2 (N − 2)G1 +G2)
3 ,



GENERALISED MANIN TRANSFORMATIONS 205

with

Y = 2G1

(
F

(1)
a

Fa
G2 −

F
(2)
a

Fa
G1

)
− 2 (N − 2)G1 ((N − 1)G1 +G2)−G2

2.

We have Y = X if

(c− u)G
(u)
2 + (d− v)G

(v)
2 + F (1)

a F
(2)
b − F (2)

a F
(1)
b

= 2 (N − 1) ((N − 2)G1 +G2) + (N − 2) ((N − 1)G1 +G2) .
(37)

It is easy, using Maple [23], to verify that condition (37) is satisfied for pencils of
degree N = 2, 3, 4.

Appendix C. We prove that no new generalised Manin transformations of the
form (6) are obtained from pencils of degree N > 4.

Theorem 8.1. Higher degree N > 4 curves with two distinct points of multiplicity
N − 2 are products of the form C = LN−4Q, where L is the line through the two
points, and Q a quartic.

Proof. Consider a degree N = 5 curve C with two distinct points of multiplicity 3.
Let L be the line through these points. Near each triple point there is a line which
intersects the curve in at least three points, see Figures 8 and 9. Note that while
we have drawn the generic case where 3 tangents intersect at each triple point, the
statement is still true when some of these tangents are imaginary, e.g. when the
curve contains a cusp. If C does not contain L there is a line close to L which
intersects C in 6 points, which contradicts N = 5.

Figure 8. A degree 5 curve does not intersect a line in 6 points.

Figure 9. Any degree 5 curve with two triple points contains the
line through the triple points.

Next, let m be the multiplicity of L in a degree N curve C. We need 2(N − 2)−
m = N , which implies m = N − 4.

This implies that we obtain the same involutions as in the case N = 4.
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Corollary 2. For higher degree N > 4 curves with two distinct points of multiplicity
N − 2, the value of z, as given by equation (5), does not depend on N , for N ≥ 4.

Proof. Consider the degree N +1 pencil αF̂a(u, v)+βF̂b(u, v) = 0 where F̂a(u, v) =
Fa(u, v)L(u, v), where Fa has degree N and two singular points of multiplicity N−2,
(c, d) and (e, f), and L(u, v) = (d − f)(u − e) − (c − e)(v − f). We evaluate the

functions in (5) at u+(c̃−u)z, v+(d̃−v)z), we let ′ denote differentiation with respect

to z and we evaluate at z = 0. We have F̂ ′a = F ′aL+ L′Fa and F̂ ′′a = F ′′a L+ 2L′F ′a,
as L′′ = 0. Let

K =
FaF

′′
b − F ′′a Fb

FaF ′b − F ′aFb
.

Then

K̂ =
F̂aF̂

′′
b − F̂ ′′a F̂b

F̂aF̂ ′b − F̂ ′aF̂b
= K + 2

L′

L
,

and
L′

L
= −1 +

c̃(d− f) + d̃(e− c) + cf − de
L

= −1

when (c̃, d̃) equals (c, d) or (e, f). Therefore, from (5),

zN+1 = 2
(

2(2−N − 1)− K̂
)−1

= 2 (2(2−N)− 2− (K − 2))
−1

= zN .

Appendix D. Here we give the constants that appear in our formula for quartic
polynomials with two double points (c, d) and (e, f), (23):

P =
(
4 d3 − 4 f3) a1 + (3 d3e− 3 cf3) a2 + (3 d3f − 3 df3) a3 + (2 e2d3 − 2 c2f3) a4

+
(
2 d3ef − 2 cdf3) a5 + (2 d3f2 − 2 d2f3) a6 + (d3e2f − c2df3) a8 + (d3ef2 − cd2f3) a9

Q =
(
4 e3 − 4 c3

)
a1 +

(
3 ce3 − 3 c3e

)
a2 +

(
3 de3 − 3 c3f

)
a3 +

(
2 c2e3 − 2 c3e2

)
a4

+
(
2 cde3 − 2 c3ef

)
a5 +

(
2 e3d2 − 2 c3f2) a6 + (c2de3 − c3e2f) a8 + (cd2e3 − c3ef2) a9

R =
(
9 c3d4f3 − 12 c3d3f4 + 3 c3f7 + 18 c2d5ef2 − 24 c2d4ef3 + 6 c2def6 − 6 cd6e2f

+24 cd3e2f4 − 18 cd2e2f5 − 3 d7e3 + 12 d4e3f3 − 9 d3e3f4) a1 + (−2 c4d3f4 + 2 c4f7

+5 c3d4ef3 − 9 c3d3ef4 + 4 c3def6 + 12 c2d5e2f2 − 18 c2d4e2f3 + 18 c2d3e2f4

−12 c2d2e2f5 − 4 cd6e3f + 9 cd4e3f3 − 5 cd3e3f4 − 2 d7e4 + 2 d4e4f3) a2 + (6 c3d4f4

−9 c3d3f5 + 3 c3df7 + 12 c2d5ef3 − 18 c2d4ef4 + 6 c2d2ef6 − 6 cd6e2f2 + 18 cd4e2f4

−12 cd3e2f5 − 3 d7e3f + 9 d5e3f3 − 6 d4e3f4) a3 + (c5f7 − 4 c4d3ef4 + 2 c4def6

+c3d4e2f3 + 6 c3d3e2f4 − 6 c3d2e2f5 + 6 c2d5e3f2 − 6 c2d4e3f3 − c2d3e3f4 − 2 cd6e4f

+4 cd4e4f3 − d7e5
)
a4 +

(
−2 c4d3f5 + 2 c4df7 + 2 c3d4ef4 − 6 c3d3ef5 + 4 c3d2ef6

+6 c2d5e2f3 − 6 c2d3e2f5 − 4 cd6e3f2 + 6 cd5e3f3 − 2 cd4e3f4 − 2 d7e4f + 2 d5e4f3) a5
+
(
3 c3d4f5 − 6 c3d3f6 + 3 c3d2f7 + 6 c2d5ef4 − 12 c2d4ef5 + 6 c2d3ef6 − 6 cd6e2f3

+12 cd5e2f4 − 6 cd4e2f5 − 3 d7e3f2 + 6 d6e3f3 − 3 d5e3f4) a6 + (c5df7 − 4 c4d3ef5

+2 c4d2ef6 + 4 c3d4e2f4 − 3 c3d3e2f5 + 3 c2d5e3f3 − 4 c2d4e3f4 − 2 cd6e4f2 + 4 cd5e4f3

−d7e5f
)
a8 +

(
−2 c4d3f6 + 2 c4d2f7 − c3d4ef5 + c3d3ef6 + 6 c2d5e2f4 − 6 c2d4e2f5

−cd6e3f3 + cd5e3f4 − 2 d7e4f2 + 2 d6e4f3) a9 + (c5d2f7 − 2 c4d3ef6 + c3d4e2f5

−c2d5e3f4 + 2 cd6e4f3 − d7e5f2) a13
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S =
(
12 c4d2f4 − 12 c4d3f3 − 24 c3d4ef2 + 24 c3d3ef3 + 36 c2d4e2f2 − 36 c2d2e2f4

−24 cd3e3f3 + 24 cd2e3f4 − 12 d4e4f2 + 12 d3e4f3) a1 + (3 c5d2f4 − 6 c4d3ef3

+9 c4ef4d2 − 15 c3d4e2f2 + 18 c3d3e2f3 − 27 c3d2e2f4 + 27 c2d4e3f2 − 18 c2d3e3f3

+15 c2d2e3f4 − 9 ce4f2d4 + 6 cd3e4f3 − 3 d4e5f2) a2 + (−8 c4d3f4 + 9 c4d2f5 − c4f7

−16 c3d4ef3 + 18 c3d3ef4 − 2 c3def6 + 3 c2d5e2f2 + 27 c2d4e2f3 − 27 c2d3e2f4

−3 c2d2e2f5 + 2 cd6e3f − 18 cd4e3f3 + 16 cd3e3f4 + d7e4 − 9 d5e4f2 + 8 d4e4f3) a3
+
(
6 c5d2ef4 − 12 c4d2e2f4 − 6 c3d4e3f2 + 6 c3d2e3f4 + 12 c2d4e4f2 − 6 cd4e5f2) a4

+
(
3 c5d2f5 − c5f7 − 2 c4d3ef4 + 6 c4d2ef5 − 2 c4def6 − 7 c3d4e2f3 − 6 c3d3e2f4

−3 c3d2e2f5 + 3 c2d5e3f2 + 6 c2d4e3f3 + 7 c2d3e3f4 + 2 cd6e4f − 6 cd5e4f2 + d7e5

+2 cd4e4f3 − 3 d5e5f2) a5 + (−4 c4d3f5 + 6 c4d2f6 − 2 c4df7 − 8 c3d4ef4 + 12 c3d3ef5

−4 c3d2ef6 + 6 c2d5e2f3 − 6 c2d3e2f5 + 4 cd6e3f2 − 12 cd5e3f3 + 8 cd4e3f4 + 2 d7e4f

−6 d6e4f2 + 4 d5e4f3) a6 + (−c6f7 + 6 c5d2ef5 − 2 c5def6 − 5 c4d3e2f4 − 4 c3d4e3f3

+4 c3d3e3f4 + 5 c2d4e4f3 + 2 cd6e5f − 6 cd5e5f2 + d7e6
)
a8 +

(
3 c5d2f6 − 2 c5df7

+2 c4d3ef5 − c4d2ef6 − 8 c3d4e2f4 + 8 c2d4e3f4 + cd6e4f2 − 2 cd5e4f3 + 2 d7e5f

−3 d6e5f2) a9 + (−2 c6df7 + 2 c5d2ef6 + 2 c4d3e2f5 − 2 c2d5e4f3 − 2 cd6e5f2

+2 d7e6f
)
a13

T =
(
24 c4d3e2f − 36 c4d2e2f2 + 12 c4e2f4 + 12 c3d4e3 − 24 c3d3e3f + 24 c3de3f3

−12 c3e3f4 − 12 c2d4e4 + 36 c2d2e4f2 − 24 c2de4f3) a1 + (9 c5e2f4 − c7f4 − 2 c6def3

−3 c5d2e2f2 + 16 c4d3e3f − 27 c4d2e3f2 + 18 c4de3f3 − 8 c4e3f4 + 8 c3d4e4 + d4e7

−18 c3d3e4f + 27 c3d2e4f2 − 16 c3de4f3 − 9 c2d4e5 + 3 c2d2e5f2 + 2 cd3e6f
)
a2

+
(
15 c4d3e2f2 − 27 c4d2e2f3 + 9 c4de2f4 + 3 c4e2f5 + 6 c3d4e3f − 18 c3d3e3f2

+18 c3d2e3f3 − 6 c3de3f4 − 3 c2d5e4 − 9 c2d4e4f + 27 c2d3e4f2 − 15 c2d2e4f3) a3
+
(
−2 c7ef4 − 4 c6de2f3 + 6 c6e2f4 − 6 c5d2e3f2 + 12 c5de3f3 − 4 c5e3f4 + 8 c4d3e4f

−8 c4de4f3 + 4 c3d4e5 − 12 c3d3e5f + 6 c3d2e5f2 − 6 c2d4e6 + 4 c2d3e6f + 2 cd4e7
)
a4

+
(
−c7f5 − 2 c6def4 − 3 c5d2e2f3 + 6 c5de2f4 + 3 c5e2f5 + 7 c4d3e3f2 − 6 c4d2e3f3

−2 c4de3f4 + 2 c3d4e4f + 6 c3d3e4f2 − 7 c3d2e4f3 − 3 c2d5e5 − 6 c2d4e5f + 3 c2d3e5f2

+2 cd4e6f + d5e7
)
a5 +

(
6 c4d3e2f3 − 12 c4d2e2f4 + 6 c4de2f5 − 6 c2d5e4f − 6 c2d3e4f3

+12 c2d4e4f2) a6 + (−2 c7ef5 − c6de2f4 + 3 c6e2f5 + 2 c5de3f4 + 8 c4d3e4f2 + 2 cd5e7

−8 c4d2e4f3 − 2 c3d4e5f − 3 c2d5e6 + c2d4e6f
)
a8 +

(
−c7f6 − 2 c6def5 + 6 c5de2f5

+4 c4d3e3f3 − 5 c4d2e3f4 + 5 c3d4e4f2 − 4 c3d3e4f3 − 6 c2d5e5f + 2 cd5e6f + d6e7
)
a9

+
(
−2 c7ef6 + 2 c6de2f5 + 2 c5d2e3f4 − 2 c3d4e5f2 − 2 c2d5e6f + 2 cd6e7

)
a13

U =
(
3 c7f3 + 6 c6def2 − 18 c5d2e2f − 9 c4d3e3 + 24 c4d2e3f − 12 c4e3f3 + 12 c3d3e4

−24 c3de4f2 + 9 c3e4f3 + 18 c2de5f2 − 6 cd2e6f − 3 d3e7
)
a1 +

(
3 c7ef3 + 6 c6de2f2

−12 c5d2e3f − 9 c5e3f3 − 6 c4d3e4 + 18 c4d2e4f − 18 c4de4f2 + 6 c4e4f3 + 9 c3d3e5

+12 c3de5f2 − 6 c2d2e6f − 3 cd3e7
)
a2 +

(
2 c7f4 + 4 c6def3 − 12 c5d2e2f2 − 5 c4d3e3f

+18 c4d2e3f2 − 9 c4de3f3 − 2 c4e3f4 + 2 c3d4e4 + 9 c3d3e4f − 18 c3d2e4f2 + 5 c3de4f3

+12 c2d2e5f2 − 4 cd3e6f − 2 d4e7
)
a3 +

(
3 c7e2f3 + 6 c6de3f2 − 6 c6e3f3 − 6 c5d2e4f
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−12 c5de4f2 + 3 c5e4f3 − 3 c4d3e5 + 12 c4d2e5f + 6 c4de5f2 + 6 c3d3e6 − 6 c3d2e6f

−3 c2d3e7
)
a4 +

(
2 c7ef4 + 4 c6de2f3 − 6 c5d2e3f2 − 6 c5de3f3 − 2 c5e3f4 − 2 c4d3e4f

+2 c4de4f3 + 2 c3d4e5 + 6 c3d3e5f + 6 c3d2e5f2 − 4 c2d3e6f − 2 cd4e7
)
a5 +

(
c7f5

+2 c6def4 − 6 c5d2e2f3 − c4d3e3f2 + 6 c4d2e3f3 − 4 c4de3f4 + 4 c3d4e4f − 6 c3d3e4f2

+c3d2e4f3 + 6 c2d3e5f2 − 2 cd4e6f − d5e7
)
a6 +

(
2 c7e2f4 + c6de3f3 − 2 c6e3f4

−6 c5d2e4f2 − c5de4f3 + c4d3e5f + 6 c4d2e5f2 + 2 c3d4e6 − c3d3e6f − 2 c2d4e7
)
a8

+
(
c7ef5 + 2 c6de2f4 − 3 c5d2e3f3 − 4 c5de3f4 − 4 c4d3e4f2 + 4 c4d2e4f3 + 4 c3d4e5f

+3 c3d3e5f2 − 2 c2d4e6f − cd5e7
)
a9 +

(
c7e2f5 − 2 c6de3f4 + c5d2e4f3 − c4d3e5f2

+2 c3d4e6f − c2d5e7 )a13

Appendix E. We provide a class of pencils which admit a fractional linear sym-
metry switch and show that each curve of such a pencil is a product of lines.

The projective collineation (7) is an involution for solutions of

ab+ be+ ch = 0, ac+ bf + ci = 0, ad+ de+ fg = 0, ag + dh+ gi = 0

bg + eh+ hi = 0, cd+ ef + fi = 0, a2 + bd = fh+ i2, e2 + bd = cg + i2.

(38)

Assuming that b 6= 0, the highest dimensional family of solutions6 to (38) can be
parameterised in terms of b, c, e, h, i by

a = −e− ch

b
, g = −h (e+ i)

b
, f =

c (be− bi+ ch)

b2
, d = − (e+ i) (be− bi+ ch)

b2
.

(39)

We reparametrise7 the solution (39) in terms of parameters α, β, γ, P,Q

b = hP, c =
hP (βPQ− (α+ γ)Q− 2α)

α+ γ
,

e =
h (αQ+ γQ+ α)

α+ γ
, i =

h (βPQ− (α+ γ)Q− α)

α+ γ
.

The parameters P,Q play a special role; defining Y = (P,Q) the projective
collineation takes the form

σ : U → U + z(U − Y ), z = −1 +
α

(α+ γ)v − βQu+ δ
, (40)

with
δ = (βP − γ)Q− α(Q+ 1). (41)

The constraint (41) ensures that σ (40) is an involution. The form of (40) shows
that σ preserves lines throught Y . We take

P =
BF − CE
AE −BD

, Q =
CD −AF
AE −BD

,

so that Y = (P,Q) is the intersection point of the lines S = 0 and T = 0, where

S = Au+Bv + C, T = Du+ Ev + F,

6Lower dimensional solutions can be obtained by taking b = 0 and either c = 0 or h = 0.
7This reparametrisation is invertible when bh(bh + ch − bi)(be + ch − bi) 6= 0. In particular,

this means that the linear switch from the previous section (where h = 0) is not included.
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Having fixed Y , the four parameter family of projective collineations (40) leaves the
ratio S/T invariant, and a three parameter subfamily, defined by (41), consists of
involutions.

Using S, T we can build pencils of fixed degree which are invariant under σ (40).
For N = 2 we have Pα,β(u, v) = 0 where

Fa = a1S
2 + a2ST + a3T

2, Fb = b1S
2 + b2ST + b3T

2. (42)

The point Y is a double point of the pencil Pα,β(u, v) = 0. Because the degree of
the pencil is two, all curves are singular, i.e. each curve factorises into a product of
lines. If α, β are such that Pα,β(û, v̂) = 0, then Pα,β(u, v) = LK. If L = 0 is the

line through Y and Û = (û, v̂), then K = 0 is the line through Y with direction

(
a1b2 − a2b1 a2b3 − a3b2 a1b3 − a3b1

) −BŜ AŜ

−ET̂ DT̂

−(BT̂ + EŜ) AT̂ +DŜ

 .

Choosing involution points p and σ(p), for some α, β, γ, and δ given by (41), the
map ισ(p) ◦ ιp admits a root.

Theorem 8.2. The root ρp = σ ◦ ιp, where σ is given by (40), with (41), and ιp
by (11), is an integrable map of the plane. It preserves each curve of the quadratic
pencil Pα,β(u, v) = 0 with (2) and (42), and it is measure-preserving with density
(LFa)−1 where, with p = (c, d),

L = (d−Q)(u− P )− (c− P )(v −Q), (43)

so that L = 0 is the line through p and Y .

For N = 3 we have that

Pα,β(u, v) = α(a1S
3 + a2S

2T + a3ST
2 + a4T

3) + β(b1S
3 + b2S

2T + b3ST
2 + b4T

3)

admits the symmetry switch (40). We require that the involution point p = (c, d)
is a base point of the pencil. Because Y is a triple point, each curve is a product of
three lines, with common intersection point Y . Thus the line L through p and Y
(43) is contained in each curve, we have Pα,β(u, v) = LZ, where Z is a quadratic
polynomial with a double point at Y . No new maps which admit a root are obtained,
other than the ones already obtained in the N = 2 case. Similarly no other maps are
obtained in the N > 3 case where the requirement of the involution point p being a
singular point of multiplicity N − 2 leads to the factorisation Pα,β(u, v) = LN−2Z.

Example 8. We take S = u + 12v + 2 and T = 2u − 4v − 3, so the lines S = 0
and T = 0 intersect in Y = (1,−1/4). Taking N = 2, ai = i + 1, bi = 4 − i, the
point s = (1, 3/7) lies on the curve P34,−31(u, v) = 35(u − 1)(9u − 88v − 31) = 0.
Choosing α = −6, β = 20, γ = 6 gives d = 1 and

σ : (u, v)→
(

7− u
5u+ 1

,−1

4

5u+ 24v + 7

5u+ 1

)
.

One verifies that

P34,−31(σ(u, v)) =
1260(u− 1)(9u− 88v − 31)

(5u+ 1)2
.

We choose the point p = (2, 1) as involution point, and we find r = ιp(s) =
−(129, 115)/289. The points

σ(p) = (5/11,−41/44), σ(s) = (1,−13/14), σ(r) = (−538/89,−691/712)
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lie on a straight line, see Figure 10. It can also be checked that

σ(ιp(σ(r))) = σ(1, 4325/5728) = (1,−7189/5728) = ισ(p)(r).

Figure 10. A product of lines admitting fractional linear sym-
metries, cf. Example 8.
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