
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 44 (2011) 295206 (13pp) doi:10.1088/1751-8113/44/29/295206

Involutivity of integrals of sine-Gordon, modified KdV
and potential KdV maps

Dinh T Tran, Peter H van der Kamp and G R W Quispel

Department of Mathematics, La Trobe University, Victoria, 3086, Australia

E-mail: dinhtran82@yahoo.com

Received 2 December 2010, in final form 19 May 2011
Published 21 June 2011
Online at stacks.iop.org/JPhysA/44/295206

Abstract
Closed form expressions in terms of multi-sums of products have been given
in Tran et al (2009 J. Phys A: Math. Theor. 42 225201) and van der Kamp et al
(2007 J. Phys. A: Math. Theor. 39 12789–98) of integrals of sine-Gordon,
modified Korteweg–de Vries and potential Korteweg–de Vries maps obtained
as so-called (p,−1)-travelling wave reductions of the corresponding partial
difference equations. We prove the involutivity of these integrals with respect
to recently found symplectic structures for those maps. The proof is based on
explicit formulae for the Poisson brackets between multi-sums of products.

PACS number: 02.30.Ik

1. Introduction

Integrable systems boast a long and venerable history. The history dates back to the 17th
century with the work of Newton on the two-body problem. The notion of integrability
was first introduced by Liouville in the 19th century in the context of finite-dimensional
continuous Hamiltonian systems. Since then, it has been expanded to classes of nonlinear
(partial) differential equations, see for example [4, 5]. More recently, there has been a shift
of interest into systems with discrete time, e.g. integrable ordinary difference equations (or
maps) and integrable partial difference (or lattice) equations. Some of the first examples
of discrete integrable systems appeared in [6, 11]. And a classification of integrable lattice
equations defined on a elementary square of the lattice has recently been obtained [1], based
on the notion of multi-dimensional consistency. For maps, there is the notion of complete or
Liouville–Arnold integrability [2, 8, 18], analogous to the same notion for continuous systems.
Briefly speaking, a mapping is said to be completely integrable if it has a sufficient number of
functionally independent integrals that are in involution, that is, they Poison commute.

In this paper, we study the involutivity of integrals of a certain class of integrable maps
related to the fully discrete sine-Gordon, modified Korteweg–de Vries (mKdV) and potential
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Korteweg–de Vries (pKdV) equations. These maps arise as travelling wave reductions from the
corresponding lattice equations. Such maps typically come in an infinite family of increasing
dimension, and for this reason it is not feasible to calculate Poisson brackets one by one
and show that they all vanish. One way to circumvent this problem is to use the so-called
Yang–Baxter structure, and that is the approach taken in [3, 9]. This approach was used to
prove the involutivity of integrals for the so-called (p,−p)-reduction of the lattice pKdV
equation. We refer to [10, 16] for the background on (p, q)-travelling wave reductions. In this
paper, we study (p,−1)-reductions and we take a different approach. Starting from recently
found symplectic structures [7, 12] and recently obtained closed-form expressions in terms of
multi-sums of products for integrals of our family of sine-Gordon, mKdV and pKdV maps
[14, 17], we proceed to prove involutivity of the integrals directly, using explicit formulae
for the Poisson brackets between multi-sums of products. These formulae will be proven by
induction on the number of variables, that is, on the dimension of the maps.

Recall, cf [2, 7, 18], that a 2n-dimensional discrete map L : x "→ x ′ is said to be
completely integrable if

• there is a 2n × 2n anti-symmetric non-degenerate matrix ! satisfying the Jacobi identity
∑

l

(
!li

∂

∂xl

!jk + !lj

∂

∂xl

!ki + !lk

∂

∂xl

!ij

)
= 0,

such that dL(x)!(x)dLT (x) = !(x ′), where dL is the Jacobian of the map, dLij := ∂x ′
i

∂xj
.

• There exist n functionally independent integrals I1, I2, . . . , In satisfying {Ir , Is}x = 0 for
all 1 ! r, s ! n, where the Poisson bracket is defined by

{f, g}x = ∇x(f ).!.(∇x(g))T , (1)

with ∇x =
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂x2n

)
. Note that we will encounter several (related) Poisson

brackets which are distinguished by the label x denoting the coordinates in which the
bracket is expressed. Also ∇x will always have the right number of components.

The families of ordinary difference sine-Gordon, mKdV and pKdV equations are given
as follows [14, 17]:

sine-Gordon : α1(vnvn+p+1 − vn+1vn+p) + α2vnvn+1vn+pvn+p+1 − α3 = 0, (2)

modified KdV : β1(vnvn+p − vn+1vn+p+1) + β2vnvn+1 − β3vn+pvn+p+1 = 0, (3)

potential KdV : (vn − vn+p+1)(vn+1 − vn+p) − γ = 0. (4)

These equations are obtained from the (p,−1)-travelling wave reductions of the corresponding
partial difference equations of the form

f (ul,m, ul+1,m, ul,m+1, ul+1,m+1) = 0, (5)

where we have taken vn = ul,m with n = l + mp, introducing the periodicity ul,m = ul+p,m−1,
cf [10, 16].

The corresponding (d = p + 1)-dimensional maps derived from equations (2), (3) and (4)
are Rd → Rd :

(v1, v2, . . . , vd) "→ (v2, v3, . . . , vd+1), (6)

where

vd+1 = v−1
1

α1v2vd + α3

α2v2vd + α1
, vd+1 = v1

β1vd + β2v2

β1v2 + β3vd

, vd+1 = v1 − γ

v2 − vd

,
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respectively. The integrals of sine-Gordon and mKdV maps can be expressed in terms of
multi-sums of products, which we call &:

&a,b
r,ε (fa, fa+1, . . . , fb) :=

∑

a!i1<i2<···<ir!b

r∏

j=1

(fij )
(−1)j+ε

, (7)

with fi = vivi+1. In [17], it was shown that 'd/2( integrals of the sine-Gordon map are given
by

I sG
r = α1

(
vd

v1
&1,d−1

2r,1 +
v1

vd

&1,d−1
2r,0

)
+ α2&

1,d−1
2r+1,1 + α3&

1,d−1
2r+1,0, 0 ! 2r < d − 1 (8)

and '(d − 1)/2( integrals of the mKdV map are given by

ImKdV
r = β1

(
v1vd&

1,d−1
2r−1,0 +

1
v1vd

&1,d−1
2r−1,1

)
+ β2&

1,d−1
2r,1 + β3&

1,d−1
2r,0 , 0 < 2r < d. (9)

In [14], it was shown that '(d − 1)/2( integrals of the pKdV map are given by

I pKdV
r = (2,d−2

r−1 + (vd − v2)(
2,d−3
r−1 + (vd−1 − v1)(

3,d−2
r−1

+(3,d−3
r−2 + ((vd−1 − v1)(vd − v2) − γ )(2,d−2

r , (10)

where 0 ! r < '(d − 1)/2( and

(a,b
r (ca, ca+1, . . . , cb+1) =




∑

a!i1,i1+1<i2,i2+1,...,<ir!b

r∏

j=1

1
cij cij +1




b+1∏

i=a

ci, (11)

with ci = vi−1 − vi+1. In this paper, we will prove that the integrals (8), (9) and (10) are in
involution with respect to accompanying symplectic structures.

The paper is organized as follows. In section 2, we prove the involutivity of integrals
of the sine-Gordon maps. Firstly, we consider the odd-dimensional maps. We introduce a
transformation to reduce the dimension of the map by 1 and we present a symplectic structure
of the reduced map. Then, we present properties of & with respect to the Poisson bracket
associated with this symplectic structure. To prove the involutivity of the integrals, we write
the Poisson bracket {Ir , Is} as a polynomial in α1,α2,α3. The coefficients of this polynomial
all vanish. Secondly, we consider the even-dimensional map. We provide a symplectic
structure for it and show that it relates to the symplectic structure for the odd-dimensional
map. Therefore, many properties of & with respect to the new Poisson bracket can be obtained
directly from the ones with respect to the old Poisson bracket. The proof of involutivity is
similar to the first case.

In section 3, we present relationships between symplectic structures of the sine-Gordon
and mKdV maps. We use these relationships to derive analogous properties of & with respect
to the Poisson bracket of the mKdV maps. Involutivity of the integrals of the mKdV follows
from these properties.

In section 4, we prove that the integrals of the pKdV map are in involution (with respect
to the appropriate symplectic structures). We again distinguish even- and odd-dimensional
maps and present a relationship of symplectic structures between the two cases. For the
even-dimensional map, we present the properties of multi-sums of products, (, which are
proved by induction. These properties are used to prove the involutivity of the integrals. For
the other case, the properties of ( with respect to its symplectic structure are derived from the
previous case. The involutivity of integrals (10) is proved by using these properties.

In section 5, we discuss results, obtained in [15], on the functional independence of the
sets of integrals (8), (9), (10), and conclude the integrability of the difference equations (2),
(3), (4) for any value of the order d.

3
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2. Involutivity of sine-Gordon integrals

In this section, we distinguish two cases: the odd-dimensional and even-dimensional sine-
Gordon maps. In [17], it is shown that for the even-dimensional map, we have enough integrals
for integrability. For the odd-dimensional map, we need to reduce the dimension of the map by
1. We expand the Poisson bracket between two integrals {Ir , Is} as a quadratic polynomial in
the parameters α1,α2,α3 and prove the involutivity of integrals (8) by showing its coefficients
vanish.

2.1. The case d = 2n + 1

Using a reduction fi = vivi+1, we obtain a 2n-dimensional map

sG : (f1, f2, . . . , f2n)

"→
(

f2, f3, . . . , f2n,
f2f4 . . . f2n(α1f2f4 . . . f2n + α3f3f5 . . . f2n−1)

f1f3 . . . f2n−1(α2f2f4 . . . f2n + α1f3f5 . . . f2n−1)

)
. (12)

This map has n integrals given by

I sG
r = α1

(
f2f4 . . . f2n

f1f3 . . . f2n−1
&1,2n

2r,1 +
f1f3 . . . f2n−1

f2f4 . . . f2n

&1,2n
2r,0

)
+ α2&

1,2n
2r+1,1 + α3&

1,2n
2r+1,0, (13)

where the argument of & is fi and 0 ! r ! n − 1.
A symplectic structure for the map (12) is given by !sG

2n , where

(!sG
p )ij =






fifj i < j,

0 i = j,

−fifj i > j,

(14)

cf [7, 12]. One can verify that dsG · !sG
2n · dsGT = !sG

2n ◦ sG. Let g and h be functions
differentiable with respect to the fi’s. The symplectic structure !sG

p defines the following
Poisson bracket:

{g, h}f = ∇f (g) · !sG
p · (∇f (h))T

=
∑

i<j

fifj

(
∂g

∂fi

∂h

∂fj

− ∂g

∂fj

∂h

∂fi

)
. (15)

We will prove that integrals (13) are in involution with respect to the symplectic structure !sG
2n ,

i.e {I sG
r , I sG

s }f = 0 for all 0 ! r, s ! n − 1. The proof is based on the following explicit
expressions for the Poisson bracket between & multi-sums.

Lemma 1. Let 1 ! r, s ! p and ε ∈ {0, 1}. We have

{&1,p
r,ε ,&1,p

s,ε }f =






0 r, s are both odd or both even,∑

i"0

(−1)i&
1,p
r+i,ε&

1,p
s−i,ε r even, s odd and r > s,

∑

i"1

(−1)i−1&
1,p
r−i,ε&

1,p
s+i,ε r even, s odd and r < s.

(16)

Note that the right-hand side of (16) is a finite sum.

Proof. Due to &a,b
r,ε (fa, fa+1, . . . , fb) = &a,b

r,ε+1

(
f −1

a , f −1
a+1, . . . , f

−1
b

)
it suffices to prove the

lemma taking ε = 1. The proof is done by induction using the recurrence relations given in
[14, 17]:

&a,b
r,ε = &a,b−1

r,ε + f
(−1)ε+r

b &a,b−1
r−1,ε , (17)

4
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&a,b
r,ε = &a+1,b

r,ε + f (−1)ε±1

a &a+1,b
r−1,ε±1, (18)

and the bracket

{
&1,p

r,ε , f
(−1)δ

p+1

}
f

=
{

0 r even,

(−1)δ+ε+1f
(−1)δ

p+1 &
1,p
r,ε r odd. "

The next proposition provides the Poisson bracket between two & multi-sums with
different values of ε.

Lemma 2. Let 1 ! r, s ! p.

(1) If r ≡ s (mod 2), we have

{
&

1,p
r,0 ,&

1,p
s,1

}
f

=






∑

i"0

(−1)i&
1,p
r−1−2'i/2(,i&

1,p
s+1+2'i/2(,i+1 r ! s,

∑

i"0

(−1)i&
1,p
s−1−2'i/2(,i&

1,p
r+1+2'i/2(,i+1 r > s.

(19)

(2) If r ,≡ s (mod 2), we have

{
&

1,p
r,0 ,&

1,p
s,1

}
f

=






∑

i"0

(−1)i&
1,p
s+i,i+1&

0,p
r−i,i r odd, s even,

∑

i"0

(−1)i−1&
1,p
s−i,i+1&

1,p
r+i,i reven, s odd.

(20)

This lemma is also proven by induction. For the details of this, and of other proofs, we
refer to [13].

Using lemma 1 and lemma 2, we have the following corollary.

Corollary 3. Let r and s be both even or both odd and let ε ∈ {0, 1}. Then,
{
&

1,p
r,0 ,&

1,p
s,1

}
f

+
{
&

1,p
r,1 ,&

1,p
s,0

}
f

= 0, (21)

{
&

1,p
r−1,ε,&

1,p
s,ε

}
f

+
{
&1,p

r,ε ,&
1,p
s−1,ε

}
f

=
{

0, r, s even,

&
1,p
r−1,ε&

1,p
s,ε − &

1,p
s−1,ε&

1,p
r,ε , r, s odd,

(22)

{
&

1,p
r−1,ε±1,&

1,p
s,ε

}
f

+
{
&1,p

r,ε ,&
1,p
s−1,ε±1

}
f
=

{
0, r, s even,

&
1,p
s−1,ε±1&

1,p
r,ε − &

1,p
s,ε &

1,p
r−1,ε±1, r, s odd.

(23)

Theorem 4. Let 0 ! r, s ! n − 1. Let I sG
r , I sG

s be given by formula (13). Then
{
I sG
r , I sG

s

}
f

= 0.

Proof. First of all, we denote

F = f1f3 . . . f2n−1

f2f4 . . . f2n

.

For any g(f1, f2, . . . , f2n), we find {F±1, g}f = ±F±1Ef g, where

Ef =
∑

i"1

fi

∂

∂fi

, (24)

5
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which scales any homogeneous expression by its total degree. Every term in the multi-sum
has total degree 0 if r is even and degree (−1)ε+1 if r is odd; hence,

{
F±1,&1,p

r,ε

}
f

=
{

0 if r even,

∓(−1)εF±1&
1,p
r,ε if r odd.

(25)

Now we expand
{
I sG
r , I sG

s

}
f

in terms of polynomials in α1,α2,α3 as follows:
{
I sG
r , I sG

s

}
f

= α2
1A1 + α2

2A2 + α2
3A3 + α1α2A12 + α1α3A13 + α2α3A23,

where e.g. A1 = {F−1&1,2n
2r,1 +F&1,2n

2r,0 , F−1&1,2n
2s,1 +F&1,2n

2s,0 }f . The coefficients Ai are expanded
and can be shown to vanish using lemma 1, corollary 3, and equations (16), (21), (22), (23),
and (25). "

2.2. The case d = 2n

In this section, we consider a 2n-dimensional map

s̃G : (v1, v2, · · · , v2n) "→
(

v2, v3, . . . , v2n, v
−1
1

α1v2v2n + α3

α2v2v2n + α1

)
. (26)

This map has n integrals given by

I s̃G
r = α1

(
v2n

v1
&1,2n−1

2r,1 +
v1

v2n

&1,2n−1
2r,0

)
+ α2&

1,2n−1
2r+1,1 + α3&

1,2n−1
2r+1,0 , (27)

where 0 ! r ! n − 1 and fi = vivi+1 in the argument of & (7). The sine-Gordon map (26)
has a symplectic structure !s̃G

2n , where

(
!s̃G

p

)
ij

=






vivj i < j, i + j odd,

0 i + j even,

−vivj i > j, i + j odd,

(28)

cf [7, 12]. The Poisson bracket 1
2∇v(g)!s̃G

p (∇v(h))T is denoted {g, h}v . Before we prove that
the integrals (27) are in involution with respect to this bracket, we first establish the following
Poisson brackets between & multi-sums:

{
&1,p

r,ε ,&
1,p
s,δ

}
v

=
{
&1,p

r,ε ,&
1,p
s,δ

}
f
|fi=vivi+1 , (29)

where the right-hand side is given by lemmas 1 and 2. Equation (29) follows as a corollary
from the next lemma. Consider the map Rp → Rp−1:

Gp : (v1, v2, . . . , vp) "→ (v1v2, v2v3, . . . , vp−1vp).

Lemma 5. With g, h differentiable functions on Rp−1, we have

{g ◦ Gp, h ◦ Gp}v = {g, h}f =Gp(v),

i.e. Gp is a Poisson map.

Proof. The (p − 1) × p Jacobian of the map Gp is

(dGp)ij =






vi+1 i = j,

vi i + 1 = j,

0 otherwise.

By direct calculation, we have

dGp · !s̃G
p · (dGp)T = 2!sG

p−1|f =Gp(v). (30)

6
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Applying ∇ to (g ◦ Gp)(v) = g(f )|f =Gp(v) (and omitting some arguments), we find

∇v(g ◦ Gp) = ∇f (g)dGp|f =Gp(v).

Hence, we have

{g ◦ Gp, h ◦ Gp}v = 1
2∇v(g ◦ Gp)!s̃G

p ∇v(g ◦ Gp)T

= 1
2∇f (g)dGp|f =Gp(v)!

s̃G
p (∇f (h)dGp)T |f =Gp(v)

= ∇f (g)!sG
p (∇f (h))T |f =Gp(v)

= {g, h}f =Gp(v). "

Now we will prove the involutivity of the integrals (27) of the sine-Gordon map (26).

Theorem 6. Let I s̃G
r and I s̃G

s , with 0 ! r, s ! n− 1, be given by formula (27). Then, we have

{I s̃G
r , I s̃G

s }v = 0.

Proof. With V = v1/v2n we have

{
V ±1,&1,p

r,ε

}
v

= V ±1Ev&
1,p
r,ε =

{
0 if r even,

∓(−1)εV ±&
1,p
r,ε if r odd.

The Poisson bracket between two integrals is expanded as
{
I s̃G
r , I s̃G

s

}
v

= α2
1B1 + α2

2B2 + α2
3B3 + α1α2B12 + α1α3B13 + α2α3B23,

where the coefficients BI are similar to the AI given in section 2.1, replacing F by V and 2n by
2n − 1. The rules for simplification are also similar. Therefore, {I s̃G

r , I s̃G
s }v = 0. "

3. Involutivity of mKdV integrals

We consider the d-dimensional mKdV map

(v1, v2, . . . , vd) "→
(

v2, v3, . . . , vd, v1
β1vd + β2v2

β1v2 + β3vd

)
. (31)

As shown in [17], this map has '(d − 1)/2( integrals given by formula (9) with 0 < 2r < d.
If d = 2n + 1, the map (31) reduces to a 2n-dimensional map with exactly n integrals via
a reduction zi = vi+1/vi . For the other case, where d = 2n + 2, the map (31) reduces to a
2n-dimensional map with exactly n integrals via the reduction zi = vi+2/vi . We will show that
the integrals of these reduced maps are in involution. In each case, we present a relationship
between the relevant symplectic structures and the symplectic structures of the sine-Gordon
map in the even case (14). This relation can be used to derive properties of & with new
symplectic structures.

3.1. The case d = 2n + 1

Using the reduction zi = vi+1/vi , we obtain the map

mKdV : (z1, z2, . . . , z2n) "→
(

z2, z3, . . . , z2n,
1

z1z2 . . . z2n

.
β1z2z3 . . . z2n + β2

β1 + β3z2z3 . . . z2n

)
. (32)

The integrals of this map are given by

ImKdV
r = β1

(
z1z2 . . . z2n&

1,2n
2r−1,0 +

1
z1z2 . . . z2n

&1,2n
2r−1,1

)
+ β2&

1,2n
2r,1 + β3&

1,2n
2r,0 , (33)

7
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where arguments for & are fi = z2
1z

2
2 . . . z2

i−1zi . Here we have used an ‘inverse reduction’,
vi = v1z1z2 · · · zi−1 to express fi = vivi+1 in terms of the zj and we omitted the v1 dependence
as both the integral and the map do not depend on it.

We obtain a symplectic structure !mKdV
2n for the map (32), with entries

(
!mKdV

p

)
ij

=






−(−1)i+j zizj i < j,

0 i = j,

(−1)i+j zizj i > j,

(34)

cf [7, 12]. This gives us a Poisson bracket {g, h}z = ∇z(g)!mKdV
2n (∇z(h))T . As before,

we can express the z-Poisson brackets between & multi-sums in terms of the corresponding
f -Poisson brackets. Consider the map

Mp : (z1, z2, . . . , zp) "→
(
z1, z

2
1z2, . . . , z

2
1z

2
2 · · · z2

p−1zp

)
.

We have the following result.

Lemma 7. With g, h differentiable functions on Rp we have

{g ◦ Mp, h ◦ Mp}z = {g, h}f =Mp(z),

i.e. Mp is a Poisson map.

Proof. The p × p Jacobian of the map Mp is

dMp =






0 i < j,∏i−1
k=1 z2

k i = j,

2ziz
−1
j

∏i−1
k=1 z2

k i > j

and a calculation shows

dMp.!mKdV
p .dMT

p = !sG
p |f =Mp(z) . (35)

The argument is finished along the lines of the proof for lemma 5. "

We are now ready to prove the following theorem.

Theorem 8. Let ImKdV
r and ImKdV

s be given by formula (33) with 1 ! r, s ! n. Then, we
have

{
ImKdV
r , ImKdV

s

}
z
= 0. (36)

Proof. With Z = (z1z2 . . . z2n)
−1 we have F±1 ◦ M2n = Z±1. Thus, lemma 7 implies

{
Z±1,&1,2n

r,ε

}
z
=

{
0 if r even,

∓(−1)εZ±1&1,2n
r,ε if r odd.

(37)

Writing the left-hand side of equation (36) as
{
ImKdV
r , ImKdV

s

}
z
= β2

1P1 + β2
2P2 + β2

3P3 + β1β2P12 + β1β3P13 + β2β3P23 (38)

yields coefficients PI similar to the AI given in section 2.1, replacing F by Z, 2r by 2r − 1,
and 2s by 2s − 1. Now that we know the brackets between Z, Z−1, and &1,2n

2s,1 , we can expand
the coefficients and show they vanish, using lemma 7 in conjunction with equations (16), (21)
and (37). "

8
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3.2. The case d = 2n + 2

Now using a reduction wi = vi+2/vi , we obtain the map

m̃KdV : (w1, w2, . . . , w2n) "→
(

w2, w3, . . . , w2n,
1

w1w3 . . . w2n−1
.
β1w2w4 . . . w2n + β2

β1 + β3w2w4 . . . w2n

)
.

(39)

Integrals of this map are given by

I m̃KdV
r = α1

(
w2w4 . . . w2n&

1,2n+1
2r−1,0 +

1
w2w4 . . . w2n

&1,2n+1
2r−1,1

)
+ α2&

1,2n+1
2r,1 + α3&

1,2n+1
2r,0 , (40)

where & = &[ei] with ei = fi−1, with f0 = 1 and fi = w1w2 . . . wi (i > 0). Note that we
have changed the notation in order to relate the next Poisson bracket to the bracket {, }f ; the
argument of &a,b (7) is (ea, . . . , eb) with ei = vivi+1. In the ‘inverse reduction’, we have

vn =
{

v1
∏i

j=1 w2j−1 n = 2i + 1,

v2
∏i−1

j=1 w2j n = 2i.

Therefore (similar to the case d = 2n + 1), both the reduced map and the reduced integrals
depend on the variables wi . Using (18), we obtain

&1,2n+1
s,ε [ei] = &2,2n+1

s,ε [ei] + &2,2n+1
s−1,ε+1[ei]

= &1,2n
s,ε [fi] + &1,2n

s−1,ε+1[fi].

Let Kp : (w1, w2, . . . , wp) "→ (w1, w1w2, . . . , w1w2 · · · wp) and W = w2w4 . . . w2n. Then,
the integrals can be written as

I m̃KdV
r = α1

(
W−1(&1,2n

2r−1,0 + &1,2n
2r−2,1

)
+ W

(
&1,2n

2r−1,1 + &1,2n
2r−2,0

))

+α2
(
&1,2n

2r,1 + &1,2n
2r−1,0

)
+ α3

(
&1,2n

2r,0 + &1,2n
2r−1,1

)
, (41)

where & = &[fi] with f = Kp(w).

The map (39) has a symplectic structure !m̃KdV
2n , where

(
!m̃KdV

p

)
ij

=
{
±wiwj j = i ± 1,

0 j ,= i ± 1.
(42)

This gives us a Poisson bracket {g, h}w = ∇w(g)!m̃KdV
2n (∇w(h))T . Once again we can

express the w-Poisson brackets between & multi-sums in terms of the corresponding
f -Poisson brackets.

Lemma 9. With g, h differential functions on Rp, we have

{g ◦ Kp, h ◦ Kp}w = {g, h}f =Kp(w),

i.e. Kp is a Poisson map.

Proof. This follows from

dKp!
m̃KdV
p dKT

p = !sG
p |f =Kp(w) . (43)

"

Because F±1 ◦ K2n = W±1, this lemma implies that {W,W−1}w = 0:

{
W±1,&1,2n

r,ε

}
w

=
{

0 if r even,

∓(−1)εW±1&1,2n
r,ε if r odd,

9
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and we can also evaluate the brackets between &1,2n
r,ε . Thus, the following theorem can be

proven by mechanical expansion and evaluation of the bracket.

Theorem 10. Let I m̃KdV
r and I m̃KdV

s be given by formula (40). Then,
{
I m̃KdV
r , I m̃KdV

s

}
w

= 0.

4. Involutivity of pKdV integrals

In this section, we prove the involutivity of the integrals of order-reduced pKdV maps. Similar
to the sine-Gordon map, we consider two cases depending on whether the dimension d of the
map (4) is even or odd. Here, in both cases, there are not enough integrals for integrability,
and therefore we perform reductions. We present symplectic structures for the reduced maps
in both cases and give a relationship between these symplectic structures. For the case where
d is even, properties of multi-sums of products, (, with respect to its symplectic structure
are proved in appendix B. For the case where d is odd, the Poisson bracket between ( multi-
sums are derived from those in the even case and the relationship between the two symplectic
structures.

4.1. The case d = 2n + 2

We have a (2n + 2)-dimensional map (6). The number of integrals Ir of this map given by
(10) with 0 ! r ! n − 1 is not enough for integrability in the sense of Liouville–Arnold.
We are not aware of any additional functionally independent integrals. Therefore, we use a
reduction ci = vi −vi+2 to reduce the dimension of the map by 2, while preserving the number
of integrals. From equation (4), we obtain the following map:

pKdV : (c1, c2, . . . , c2n) "→
(

c2, c3, . . . , c2n,
γ

c2 + c4 + · · · + c2n

− c1 − c3 − · · · − c2n−1

)
.

(44)

This map has exactly n integrals given by

I pKdV
r = (1,2n−1

r−1 − (c2 + c4 + · · · + c2n)(
1,2n−2
r−1 − (c1 + c3 + · · · + c2n−1)(

2,2n−1
r−1

+(2,2n−2
r−2 + ((c1 + c3 + · · · + c2n−1)(c2 + c4 + · · · + c2n) − γ )(1,2n−1

r , (45)

with r = 0, 1, . . . , n − 1. The map is symplectic; we have dpKdV · !pKdV
2n · dpKdVT =

!
pKdV
2n ◦ pKdV, where

(
!pKdV

p

)
ij

=
{
±1 j = i ± 1,

0 j ,= i ± 1.
(46)

which is given in [7, 12]. The corresponding Poisson bracket is denoted by {g, h}c =
∇c(g)!

pKdV
2n (∇c(h))T . We prove that the integrals of the map pKdV are in involution with

respect to this Poisson bracket. The proof is based on the knowledge of the Poisson brackets
between two ( multi-sums which is given as follows.

Lemma 11. Let p # 1 and 0 ! r, s ! '(p + 1)/2(. Then, we have the following identities:
{
(1,p

r ,(1,p
s

}
c
= 0, (47)

{
(1,p

r ,(1,p−1
s

}
c

+
{
(1,p−1

r ,(1,p
s

}
c
= 0. (48)

10
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This lemma can be proven by induction using the following recurrence relations:

(a,b
r = cb+1(

a,b
r + (a,b−1

r−1 and (a,b
r = ca(

a+1,b
r + (a+2,b

r−1 , (49)

and the following is implied.

Corollary 12. Let p # 1 and let r, s ∈ Z. Then,

(1)
{
(

1,p
r ,(

1,p−1
s−1

}
c

+
{
(

1,p−1
r−1 ,(

1,p
s

}
c
= (

1,p
r (

1,p−1
s − (

1,p
s (

1,p−1
r ,

(2)
{
(a,b

r ,(a,b
s

}
c
= 0 with 0 ! r, s ! '(b − a)/2( + 1,

(3)
{
(

1,p
r ,(

2,p
s−1

}
c

+
{
(

2,p
r−1,(

1,p
s

}
c
= (1,n

s (
2,p
r − (

1,p
r (

2,p
s ,

(4)
{
(

1,p
r ,(

2,p
s

}
c

+
{
(

2,p
r ,(

1,p
s

}
c
= 0,

(5)
{
(

1,p
r ,(

2,p+1
s

}
c

+
{
(

2,p+1
r ,(

1,p
s

}
c
= 0,

(6)
{
(

1,p
r ,(

2,p−1
s−1

}
c

+
{
(

2,p−1
r−1 ,(

1,p
s

}
c
= (

2,p
r (

1,p−1
s − (

2,p
s (

1,p−1
r ,

(7)
{
(

1,p
r ,(

1,p−1
s−1

}
c

+
{
(

1,p−1
r−1 ,(

1,p
s

}
c
= (

1,p
r (

1,p−1
s − (

1,p
s (

1,p−1
r ,

(8)
{
(

1,p+1
r ,(

2,p
s

}
c

+
{
(

2,p
r ,(

1,p+1
s

}
c
= 0,

(9)
{
(

1,p
r ,(

2,p−1
s−2

}
c

+
{
(

2,p−1
r−2 ,(

1,p
s

}
c

= (
2,p
r (

1,p−1
s−1 − (

2,p
s (

1,p−1
r−1 + (

2,p
r−1(

1,p−1
s −

(
2,p
s−1(

1,p−1
r .

If we define

C1 = c1 + c3 + · · · + c2n−1, C2 = c2 + c4 + · · · + c2n,

and g(c1, c2, . . . , c2n) is a differentiable function on R2n, then

{g,C1}c = − ∂g

∂c2n

, {g,C2}c = ∂g

∂c1
. (50)

Theorem 13. For all 0 ! r, s ! n − 1, we have {I pKdV
r , I

pKdV
s }c = 0, where I

pKdV
r , I

pKdV
s

are given by (45).

Proof. It is proved by expansion of the bracket, using lemma 11, corollary 12 and formulas
(49) and (50). "

4.2. The case d = 2n + 1

We introduce a reduction ui = vi − vi+1. We obtain a 2n-dimensional map

p̃KdV : (u1, u1, . . . , u2n) "→
(

u2, u3, . . . , u2n,
γ

u2 + u3 + · · · + u2n

− u1 − u2 − · · · − u2n

)

(51)

with n integrals (0 ! r ! n − 1)

I p̃KdV
r = (1,2n−2

r−1 − (u2 + u3 + · · · + u2n)(
1,2n−3
r−1 − (u1 + u2 + · · · + u2n−1)(

2,2n−2
r−1

+ (2,2n−3
r−2 + ((u2 + u3 + · · · + u2n)(u1 + u2 + · · · + u2n−1) − γ )(1,2n−2

r , (52)

where the argument of ( is fi = 1/(cici+1) with ci := ui + ui+1. Based on the method given

in [12], we obtain a symplectic structure !p̃KdV
2n for the map (51), where

(
!p̃KdV

p

)
ij

=






−(−1)i+j j > i,

0 j = i,

(−1)i+j j < i.

(53)

11
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The Poisson bracket is denoted {g, h}u = ∇u(g)!
p̃KdV
2n (∇u(h))T . Next we present a

relationship between the two symplectic structures (46) and (53) and the corresponding Poisson
brackets. Consider the map

Qp : (u1, u2, . . . , up) "→ (u1 + u2, u2 + u3, . . . , up−1 + up).

Lemma 14. The map Qp is a Poisson map, i.e.

{f ◦ Qp, g ◦ Qp}u = {f, g}c=Qp(u), (54)

where f (c) and g(c) are differentiable functions.

Proof. By calculation, we obtain

dQp!
p̃KdV
p dQT

p = !
pKdV
p−1 . (55)

"

Theorem 15. Let I
p̃KdV
r , I

p̃KdV
s be given by (52). Then, for all 0 ! r, s ! n − 1 we have

{I p̃KdV
r , I p̃KdV

s }u = 0.

Proof. As the following formulas hold:

{g, u2 + u3 + · · · + u2n}u = ∂g

∂u1
, (56)

{g, u1 + u2 + · · · + u2n−1}u = − ∂g

∂u2n

, (57)

and the properties of ( with respect to the bracket {, }u which are the same as those with
respect to the bracket {, }c, one can prove the involutivity of the integrals (52) similarly to what
we did for the case d = 2n + 2. "

5. Conclusion

In this paper, we have proved the involutivity of integrals of sine-Gordon, pKdV and mKdV
maps directly by using induction and recently found symplectic structures of these maps. In
order to prove that these maps are completely integrable in the sense of Liouville–Arnold
[2, 18], one also needs to prove the functional independence of their integrals. We now briefly
discuss some results that are based on different techniques which fall outside the scope of this
paper and will be published elsewhere [15].

To prove functional independence, due to the analyticity of the integrals it suffices to prove
linear independence of the gradients of the integrals at a certain point. It turns out that we can
evaluate the multi-sums of products at certain points in terms of binomial coefficients (counting
the number of terms in the multi-sums of products). Also using certain recursive formulas,
we can find the gradients at these points. The proof of functional independence thus boils
down to LU-decomposition of a matrix whose entries are expressed in binomials coefficients.
This has been performed in [15]. For the sine-Gordon, the integrals are independent at
v1 = v2 = · · · = vd = c when α2c

4 ,= α3 from which the result follows by varying c. For the
mKdV map, we have proved functional independence when β2 ,= β3. And for the pKdV map
the functional independence has been established for the generic case where γ ,= (d−2)2

4 + d−2
2 .

In these cases we conclude the integrability of equations (2), (3) and (4) for arbitrary order
d = p + 1.

12
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We also note that the integrals of maps obtained as (p,−1)-reductions of the equations
in the ABS list [1], with the exception of Q4, can be expressed in terms of multi-sums of
products, ( [14]. It would be interesting to study their symplectic structures and furthermore
their complete integrability.
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