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Abstract
The discrete-time Toda equation arises as a universal equation for the relevant
Hankel determinants associated with one-variable orthogonal polynomials
through the mechanism of adjacency, which amounts to the inclusion of shifted
weight functions in the orthogonality condition. In this paper we extend
this mechanism to a new class of two-variable orthogonal polynomials where
the variables are related via an elliptic curve. This leads to a ‘higher order
analogue of the discrete-time Toda’ (HADT) equation for the associated Hankel
determinants, together with its Lax pair, which is derived from the relevant
recurrence relations for the orthogonal polynomials. In a similar way as the
quotient-difference (QD) algorithm is related to the discrete-time Toda equation,
a novel quotient–quotient-difference (QQD) scheme is presented for the HADT
equation. We show that for both the HADT equation and the QQD scheme, there
exists well-posed s-periodic initial value problems, for almost all s ∈ Z

2. From
the Lax-pairs we furthermore derive invariants for corresponding reductions to
dynamical mappings for some explicit examples.
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PACS numbers: 02.60.Dc, 02.30.Gp, 02.30.Ik, 05.45.Yv, 05.45.Ra, 45.90.+t,
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1. Introduction

The discrete-time Toda equation, i.e. the time-discretized version of the usual Toda chain,
which is given by the following partial difference equation (P�E):

τl−1,m−1τl+1,m+1 = τl+1,m−1τl−1,m+1 − τ 2
l,m, (1.1)
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plays an important role in many areas of mathematical physics. It is probably the first integrable
fully discrete equation that can be found in the literature: it appears, albeit in slightly different
form, for the first time in the paper by Frobenius [13] as an identity for certain determinants used
in the determination of rational approximations of functions given by power series. The latter
are nowadays known as Padé approximants, which, in fact, were introduced by Frobenius 10
years prior to Padé’s work (cf [14] for a more modern account). The discrete-time Toda equation
re-entered the modern era through the literature of integrable systems [18]. Hirota in [18]
introduced the equation as a natural time discretization of the famous Toda chain equation,
generalizing the latter to a partial difference equation on the space–time lattice (here the lattice
sites are labelled by the discrete independent variables (l, m) ∈ Z

2). Equation (1.1) exhibits the
prominent integrability features, such as the existence of multi-soliton type solutions and the
existence of an underlying linear problem (Lax pair). This P�E has also appeared in physics,
namely as the nonlinear equation governing the spin–spin correlation functions of the two-
dimensional Ising model, cf [26, 31]. The connection we investigate and generalize in this paper
is the emergence of (1.1) in the theory of formal orthogonal polynomials, where equation (1.1)
is connected to the well-known quotient-difference (QD) algorithm of Rutishauser [33], cf [30],

el,m+1 + ql+1,m+1 = ql+1,m + el+1,m,

el,m+1ql,m+1 = ql+1,mel,m. (1.2)

The theory of formal orthogonal polynomials is a subject central to modern numerical
analysis, in which orthogonalities are investigated on their general properties regarding the
recurrence structure from a formal point of view (i.e. without specifying particular classes
of weight functions), with a sight on the construction of numerical algorithms, rather than
on the analytic properties (such as the moment problem or the problem of the behaviour of
the zeros of the polynomial) arising from the particular properties of the weight functions.
In this area of research general constructions such as those of vector Padé approximants,
adjacent orthogonal families (where connected sequences of orthogonality functionals are
postulated), and associated convergence acceleration algorithms, and factorization methods
have been developed, cf e.g. [5, 12]. In this context, the QD algorithm emerges as a prominent
method to locate the zeros of analytic functions or to compute convergence factors for
asymptotic expansions through formal power series, using a finite-difference scheme and
continued fractions, cf [17]. It was pointed out in [30] that both the QD algorithm and certain
convergence algorithms [15] are intimately related to integrable discrete systems. In fact, the
famous ε-algorithm of Wynn [41], surprisingly turns out to be identical to the lattice potential
Korteweg–de Vries (KdV) equation, a well-known exactly integrable P�E, thus allowing us
to interpret this numerical algorithm as a symplectic dynamical system with a rich solution
structure. Similarly, the famous ‘missing identity of Frobenius’ appearing as the rhombus rule
in the Padé tables and governing the stability of the ε-algorithm, cf [42], can be identified
as an exactly solvable P�E closely related to the Toda lattice and discretizations of the KdV
equation.

In this paper we introduce a novel integrable P�E:

σl+1,m−2σl−1,m+1
(
σl,m+2σl,m−1 − σl,mσl,m+1

)
= σl,m−1σl−1,m+2

(
σl−1,m+1σl+2,m−2 − σl,mσl+1,m−1

)
(1.3)

+ σl,m+1σl+1,m−1
(
σl,m−2σl−1,m+2 − σl+1,m−2σl−2,m+2

)
,

which we argue can be regarded as a higher order analogue of the discrete-time Toda equation
and therefore name it the HADT equation. It is defined on a stencil of 11 points in the lattice
as depicted in figure 1.
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Figure 1. The stencil of the HADT equation (1.3).

The derivation of the HADT equation is parallel to the way in which the discrete-time Toda
equation emerges in the theory of orthogonal polynomials: in fact, we introduce a family of
two-variable orthogonal polynomials restricted by an elliptic curve and exploit the recurrence
structure for the relevant Hankel determinants. The general problem of orthogonal polynomials
on algebraic curves was discussed in the monograph by Suetin [35, chapter 7] and has also been
addressed in the context of the study of formal orthogonalities, cf e.g. [8]. The construction
of the associated two-variable orthogonal polynomials on the elliptic curve is pursued in [34],
whereas in this paper we will concentrate on the HADT equation (1.3) itself and its reductions.
Nevertheless, we will present the derivation from the adjacency structure of elliptic two-variable
orthogonal polynomials, as it produces not only the nonlinear equation itself but also its Lax
pair. Furthermore, the recurrence structure of the relevant Hankel determinants also yields
a novel type of QD formalism, namely the following so-called quotient–quotient-difference
(QQD) scheme:

ul+2,m + vl+1,m + wl+1,m+1 = ul,m+3 + vl+1,m+1 + wl+1,m,

ul,m+3vl,m+1 = vl+1,mul+1,m, (1.4)

ul,m+3wl,m+1 = wl+1,m+1ul+1,m+1,

which we believe may have future applications in numerical analysis.
Once we have obtained the HADT equation, the QQD scheme and their Lax pairs, we

address the issue of periodic reductions. A periodic solution of a (system of) lattice equation(s)
is a solution which satisfies ul,m = ul+s1,m+s2 for some s1, s2 ∈ Z. By imposing periodicity
a lattice equation reduces to a system of ordinary difference equations, or, equivalently, a
mapping. The so-called staircase method utilizes the Lax pair of the lattice equation to construct
integrals for the mapping. The method was introduced in [29], where it was applied to the KdV
equation and to a mixed modified KdV–Toda equation, taking s1 = s2 and s1 = s2 + 1. In [32]
a two-parameter family of periodic reductions was studied, with s1 and s2 being co-prime
integers. Recently, in [37] a unified and geometric picture for periodic reductions, with non-
zero s = (s1, s2) ∈ Z

2 has been provided. In [37] it was shown, for any given scalar lattice
equation on some arbitrary stencil of lattice points, there exists a well-posed, or nearly well-
posed, s-periodic initial value problem, for all nonzero s ∈ Z

2. Therefore, the trace of the
monodromy matrix provides integrals for any periodic reduction of any integrable scalar lattice
equation, and it is expected that the same is true for systems of lattice equations, see [37, 38].
In this paper we generalize the approach of [37] and develop a systematic method to construct
well-posed periodic initial value problems for systems of lattice equations. This method is
applied to the QQD scheme as well as to an intermediate system of P�Es, cf equation (3.19).

On general principles, one expects periodic reductions of integrable lattice equations to
lead to integrable maps in a precise sense, namely to complete integrability in the sense of
Liouville–Arnold [9, 39]. This requires, in addition to the existence of a sufficient number
of integrals, some global properties as well the existence of a symplectic structure which is
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preserved by the discrete dynamics, and with respect to which the integrals are in involution.
The latter are issues which we are not addressing in this paper, where we have developed the
basic structures and classified the consistent reductions from the lattice equation together with
the explicit form of the integrals.

Furthermore, there is the problem of counting the number of independent integrals to
ensure that in principle a 1–1 map to the relevant number of degrees of freedoms exist for
the mappings concerned. In fact, typically some reduced variables, i.e. suitable combinations
of the variables on the vertices, need to be introduced, leading to a dimensional reduction
of the mappings. This issue is addressed in section 5. For the reductions we obtained from
the HADT equation, as well as those from the QQD scheme, we are able to find a sufficient
number of independent integrals, that is, equal to at least half the dimensionality (i.e. number of
components) of the mapping. For the reductions obtained from the intermediate system (3.19)
this, however, is not the case. In [38] a systematic method was presented, which exploits
symmetries of the (system of) lattice equation(s) to reduce the dimension of the mappings.
For all cases that were considered in [38], the staircase method provides a sufficient number
of integrals for the dimensionally reduced mappings to be in principle completely integrable.
We arrive at a similar conclusion, however, in certain cases the staircase method provides a
product of 2-integrals JJ ′, from which a missing integral can be obtained4.

2. The discrete-time Toda equation and the QD algorithm from orthogonal polynomials

We present here the derivation of the bilinear discrete-time Toda equation using formal
orthogonal polynomials. Recurrence relations for adjacent one-variable orthogonal
polynomials provide a Lax pair for this equation, as well as for the associated QD algorithm.
The results presented here are known, see for example [30]; however, they outline the main
idea which we employ in the setting of two-variable elliptic orthogonal polynomials in the
next section.

Let Pn = Pn(x) be a family of polynomials of a variable x orthogonal with respect to a
weight function w(x) on a curve � in the complex plane. The weight function defines a linear
functional L with respect to which we can define the moments cn as

cn = L(en) =
∫

�

xnw(x) dx i = 0, 1, . . . , (2.1)

where en are the monomials. The Pns, which are assumed to be monic, satisfy a three-term
recurrence relation of the form

xPn = Pn+1 + SnPn + RnPn−1 (2.2)

(where Sn and Rn are finite) and in order to ensure their existence we assume that the
corresponding Hankel determinants are nonzero.

We introduce a family of adjacent orthogonal polynomials (which are orthogonal with
respect to a shifted weight xmw(x)) [3]:

P (m)
n (x) ≡ 1

�
(m)
n−1

∣∣∣∣∣∣∣∣∣

cm . . . . . . cn+m

...
...

cn+m−1 c2n+m−1

1 . . . . . . xn

∣∣∣∣∣∣∣∣∣
, (2.3a)

4 Recall, a function J is an k-integral, or k-symmetry, of a mapping if it is an integral, or symmetry, of the kth power
of that mapping [16]. If one has one k-integral, then one can construct k of them, or, even better, k integrals. For
example, it is easy to see that J ′′ = J implies that both JJ ′ and J + J ′ are integrals.
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with the corresponding Hankel determinant:

�(m)
n (x) ≡

∣∣∣∣∣∣∣∣∣∣

cm . . . . . . cn+m

...
...

...
...

cn+m . . . . . . c2n+m

∣∣∣∣∣∣∣∣∣∣
, (2.3b)

and the two row/column Sylvester identity5 [4, 27],∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
. (2.4)

Applying two different forms of the Sylvester identity to the determinant for P (m)
n leads to the

derivation of two xP (m)
n recurrence relations

P
(m)
n+1 = xP (m+1)

n − V (m)
n P (m)

n , (2.5a)

P
(m)
n+1 = xP (m+2)

n − W(m)
n P (m+1)

n , (2.5b)

with

V (m)
n = �(m+1)

n �
(m)
n−1

�
(m+1)
n−1 �

(m)
n

, W(m)
n = �(m+1)

n �
(m+1)
n−1

�
(m)
n �

(m+2)
n−1

. (2.6)

The combination of these relations leads to the monic recurrence relation of the form (2.2),

xP (m)
n = P

(m)
n+1 + (V (m)

n + V
(m+1)
n−1 − W(m)

n )P (m)
n + (V

(m+1)
n−1 − W

(m)
n−1)V

(m)
n−1P

(m)
n−1.

From this approach the coefficients Sn and Rn can be further simplified (in terms of the Hankel
determinants):

Sn = �(m+1)
n �

(m)
n−1

�
(m)
n �

(m+1)
n−1

+
�

(m+1)
n−2 �(m)

n

�
(m+1)
n−1 �

(m)
n−1

, (2.7a)

Rn = �(m)
n �

(m)
n−2

�
(m)
n−1�

(m)
n−1

, (2.7b)

where we have suppressed the m-dependence in the symbols Rn and Sn. We achieve this
simplification by making use of a bilinear relation that exists between the Hankel determinants
�(m)

n . This bilinear relation is found by applying the Sylvester identity to �(m)
n :∣∣∣∣∣∣∣∣∣

�(m)
n

∣∣∣∣∣∣∣∣∣
⇒ �(m)

n �
(m+2)
n−2 = �

(m+2)
n−1 �

(m)
n−1 − �

(m+1)
n−1 �

(m+1)
n−1 . (2.8)

5 This identity has many different names including the Jacobi identity, Lewis Carroll’s identity and the window-pane
identity; however, we will just refer to it as the Sylvester identity.
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We will refer to equation (2.8) as the discrete-time Toda equation. Indeed, substituting
�(m)

n = τ−2n−m−1,m−1 and taking l = −2n − m as new independent variable yields the
more standard form of this equation (1.1). The continuum limit leading to the usual Toda
chain is most easily seen starting from equation (1.1), multiplying with 4pq and applying a
point transformation τl,m �→ τl,mαl2

βlm with

α =
√

p2 − q2

4pq
, β =

√
p − q

p + q

leads to

(p − q)2τl−1,m−1τl+1,m+1 − (p + q)2τl−1,m+1τl+1,m−1 + 4pqτ 2
l,m = 0, (2.9)

in which p, q are lattice parameters (associated with shifts on the lattice in l- and m directions,
respectively). Performing a changes of variables, (l, m) �→ (n = l + m, m) and taking a
limit l → ∞, m → ∞, n fixed, q − p = ε → 0, εm → t , Taylor expansion yields
τl,m = τn(t0 + εm) ⇒ τl,m+1 = τn+1 + ετ̇n+1 + · · · and we obtain the semi-discrete bilinear
equation:

4p2
(
τnτ̈n − τ̇ 2

n

) = τn+2τn−2,

which is related to the usual Toda chain equation by setting φn = log(τn/τn−2).
Thus, the shadows of integrability already appear in the underlying structure of the standard

theory of orthogonal polynomials.

2.1. A Lax pair for the QD algorithm and the discrete-time Toda equation

We now view equation (2.8) as an integrable lattice equation, as opposed to an identity for
Hankel determinants (2.3b). To this end we write �(m)

n = τn,m, and similarly V (m)
n = vn,m,

W(m)
n = wn,m. The variable x will play the role of spectral parameter and will be denoted

x = λ.
Relations (2.5a) and (2.5b) constitute a Lax pair for equation (2.8). Working with the

fields v, w we first derive a related QD system. Let �n,m = (P (m)
n , P (m+1)

n ), then using the
recurrence relations we derive

�n+1,m = Ln,m�n,m and �n,m+1 = Mn,m�n,m,

with

Ln,m =
(−vn,m λ

−vn,m λ + wn,m − vn,m+1

)
, (2.10a)

Mn,m =
(

0 1
−λ−1vn,m 1 + λ−1wn,m

)
. (2.10b)

The compatibility of the two linear systems is then equivalent to the discrete Lax equation:

0 = Ln,m+1Mn,m − Mn+1,mLn,m

=
(

0 0
−λ−1vn,mE E + λ−1(wn,m(vn+1,m + E) − vn,m+1wn+1,m)

)
,

where

E = vn,m+2 − vn+1,m + wn+1,m − wn,m+1.

Thus L, M provide a Lax pair for the QD scheme

vn,m+2 + wn+1,m = vn+1,m + wn,m+1, (2.11a)

wn,mvn+1,m = vn,m+1wn+1,m. (2.11b)
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This scheme is related to the (more standard) QD algorithm (1.2), by qn,m = vn,m, en,m =
vn,m+1 − wn,m.

Upon substitution of (2.6) into (2.11a) this equation is a consequence of (2.8), whereas
substitution of (2.6) into (2.11b) turns into an identity. To find a good Lax pair for equation
(2.8), one substitutes equations (2.6) into the above Lax matrices, and one uses (2.8) to simplify

en,m = vn,m+1 − wn,m = τn−1,m+1τn+1,m

τn−1,m+1τn,m

.

Using the same simplification, equation (2.11a) can be written as

0 = en,m+1 + wn+1,m − vn+1,m

= τn+1,m+1

τn,m+2τn,m+1τn+1,m

(
τn+1,mτn−1,m+2 − τn,m+2τn,m + (τn,m+1)

2
)
,

where one recognizes the discrete-time Toda equation (2.8).

3. The HADT equation and a QQD scheme from elliptic orthogonal polynomials

In this section we derive the HADT equation. We follow a similar route as in the previous
section, except that here we consider two-variable orthogonal polynomials, where the variables
are restricted by the condition that they form the coordinates of an elliptic curve. The recurrence
relations for these elliptic orthogonal polynomials yield both a Lax pair and the QQD scheme.

3.1. Two-variable elliptic orthogonal polynomials

As a starting point for our construction we introduce the sequence of elementary monomials
[34], associated with a class of two-variable orthogonal polynomials. We consider a sequence
of monomials where the x and y are given different weight, namely x ∼ 2 and y ∼ 3:

e0 = 1, e2 = x, e3 = y, e4 = x2, e5 = xy, e6 = x3, · · ·
or, in general:

e0(x, y) = 1, e2k(x, y) = xk, e2k+1(x, y) = xk−1y, k = 1, 2, . . . .

In comparison with the polynomials of Krall and Scheffer [21], their two-variable orthogonal
polynomials consist of x ∼ 1 and y ∼ 1 of equal weight. The reason for choosing different
weights is that the variables x and y are related through a Weierstrass elliptic curve. We use this
sequence as our basis for the expansion of a new class of two-variable orthogonal polynomials
taking the form

Pk(x, y) =
k∑

j=0

p
(k)
j ej (x, y), (3.1)

which are monic if the leading coefficient p
(k)
k = 1.

In the spirit of the formal approach to orthogonal polynomials, cf e.g. [5, 7], we assume
that a bilinear form 〈 , 〉 exists and can be derived from a linear functional L and consequently
we can define the associated moments by

ck = L(ek). (3.2)

The assumption of the existence of an inner product 〈 , 〉 on the space V spanned by the
monomials ek , is such that

〈xP, Q〉 = 〈P, xQ〉,
for any two elements P, Q ∈ V .
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Under the assumption of orthogonality and using the standard Gram–Schmidt
orthogonalization (through the use of Cramer’s rule), leads to the following expression for
the adjacent elliptic orthogonal polynomials l �= 0:

P
(l)
k (x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el , e0〉 〈el , e2〉 · · · · · · 〈el , ek〉
〈el+1, e0〉 〈el+1, e2〉 · · · · · · 〈el+1, ek〉

...
...

...

...
...

...

〈el+k−2, e0〉 〈el+k−2, e2〉 · · · · · · 〈el+k−2, ek〉
e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
�

(l)
k−1, (3.3)

together with the corresponding Hankel determinant l �= 0:

�
(l)
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el , e0〉 〈el , e2〉 · · · · · · 〈el , ek〉
〈el+1, e0〉 〈el+1, e2〉 · · · · · · 〈el+1, ek〉

...
...

...

...
...

...

〈el+k−1, e0〉 〈el+k−1, e2〉 · · · · · · 〈el+k−1, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.4)

where for l = 0:

P
(0)
k (x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈e0, e0〉 〈e0, e2〉 · · · · · · 〈e0, ek〉
〈e2, e0〉 〈e2, e2〉 · · · · · · 〈e2, ek〉

...
...

...

...
...

...

〈ek−1, e0〉 〈ek−1, e2〉 · · · · · · 〈ek−1, ek〉
e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
�

(0)
k−1, (3.5)

with

�
(0)
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈e0, e0〉 〈e0, e2〉 · · · · · · 〈e0, ek〉
〈e2, e0〉 〈e2, e2〉 · · · · · · 〈e2, ek〉

...
...

...

...
...

...

〈ek, e0〉 〈ek, e2〉 · · · · · · 〈ek, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.6)

In addition to the polynomials (3.3), we also need to introduce the polynomials:

Q
(l)
k (x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el , e0〉 〈el , e2〉 · · · · · · 〈el , ek〉
〈el+2, e0〉 〈el+2, e2〉 · · · · · · 〈el+2, ek〉

...
...

...

...
...

...

〈el+k−1, e0〉 〈el+k−1, e2〉 · · · · · · 〈el+k−1, ek〉
e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
�

(l)
k−1, (3.7)
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together with its corresponding Hankel determinant:

�
(l)
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el , e0〉 〈el , e2〉 · · · · · · 〈el , ek〉
〈el+2, e0〉 〈el+2, e2〉 · · · · · · 〈el+2, ek〉

...
...

...

...
...

...

〈el+k, e0〉 〈el+k, e2〉 · · · · · · 〈el+k, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.8)

noting that

Q
(0)
k = P

(0)
k , �

(0)
k = �

(0)
k .

Remark. We note that for l �= 0, 1 the polynomials P
(l)
k do not form an orthogonal family. In

fact, from the determinantal definition (3.3) we immediately observe that

〈el , P
(l)
k 〉 = 〈el+1, P

(l)
k 〉 = · · · = 〈el+k−2, P

(l)
k 〉 = 0, 〈el+k−1, P

(l)
k 〉 = �

(l)
k

�
(l)
k−1

,

whereas

〈el−1, P
(l)
k 〉 = (−1)k−1 �

(l−1)
k

�
(l)
k−1

.

We now proceed using determinantal identities of Sylvester type (appendix A) to derive
relations between the polynomials P

(l)
k and the Hankel determinants.

3.2. Recurrence relations in P
(l)
k and Q

(l)
k

Using a 3 row/column Sylvester identity we find it is possible to find x-recurrence relations
and linear relations in P

(l)
k and Q

(l)
k . To achieve the former it is necessary to fix the columns, so

that e0 = 1 and e3 = y are removed from the determinant and the position of the row removal
is dependent on restricting the introduction of new objects. Hence we apply the following
cutting of three rows and columns (A.6) to the determinant for P

(l)
k :∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(where the small red line indicates a space between the first column and the third). We are led
to the recurrence relation

P
(l)
k = xP

(l+3)
k−2 − V

(l)
k−2P

(l)
k−1 + W

(l)
k−2P

(l+1)
k−1 , l �= 0, 1, (3.9)

where

V
(l)
k = �

(l)
k �

(l+3)
k

�
(l)
k+1�

(l+3)
k−1

, W
(l)
k = �

(l+1)
k �

(l+2)
k

�
(l)
k+1�

(l+3)
k−1

. (3.10)
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For l = 0 we have

P
(0)
k = xP

(4)
k−2 − �

(0)
k−2�

(4)
k−2

�
(0)
k−1�

(4)
k−3

P
(0)
k−1 +

�
(2)
k−2�

(2)
k−2

�
(0)
k−1�

(4)
k−3

P
(2)
k−1, (3.11)

whilst obviously, since P
(1)
k is not defined, there is no relation for l = 1.

By making use of intermediate determinant expressions (appendix B) we can derive
additional relations in terms of P

(l)
k and Q

(l)
k . Thus in addition to the recurrence relation

(3.9) we have also derived the following relation in terms of P
(l)
k (equation (B.1)):

P
(l)
k = P

(l+1)
k + U

(l)
k−1P

(l+1)
k−1 , (3.12)

with

U
(l)
k = �

(l)
k+1�

(l+1)
k−1

�
(l)
k �

(l+1)
k

. (3.13)

Similarly, we derived recurrence formulae for the set {P (l)
k , Q

(l)
k } (appendix B.3,

equations (B.9), (B.11) and (B.15), respectively),

P
(l)
k = xQ

(l+2)
k−2 − �

(l)
k−2�

(l+2)
k−2

�
(l)
k−1�

(l+2)
k−3

P
(l)
k−1 +

�
(l)
k−2�

(l+2)
k−2

�
(l)
k−1�

(l+2)
k−3

Q
(l)
k−1, l �= 0, 1 (3.14)

Q
(l)
k = P

(l+1)
k +

�
(l)
k �

(l+2)
k−2

�
(l)
k−1�

(l+1)
k−1

P
(l+2)
k−1 , (3.15)

Q
(l)
k = P

(l)
k − �

(l)
k �

(l)
k−2

�
(l)
k−1�

(l)
k−1

Q
(l)
k−1. (3.16)

3.3. Bilinear Hankel identities

In appendix B.2 we construct a pair of bilinear relations: a four-term bilinear relation (derived
by applying a 3 row/column Sylvester identity to the determinant �

(l)
k ), and a three-term

bilinear relation (resulting from the combination of other Hankel identities):∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
⇒ �

(l)
k �

(l+4)
k−3 = �

(l)
k−1�

(l+4)
k−2 − �

(l)
k−1�

(l+3)
k−2 + �

(l+1)
k−1 �

(l+2)
k−2 , (3.17a)

�
(l)
k �

(l+2)
k−1 = �

(l)
k �

(l+1)
k−1 − �

(l)
k−1�

(l+1)
k . (3.17b)

3.4. The HADT equation

System (3.17) can be rearranged to eliminate the �
(l)
k . Thus, we have

�
(l)
k �

(l+4)
k−3

�
(l+1)
k−1 �

(l+3)
k−2

− �
(l)
k−1�

(l+4)
k−2

�
(l+1)
k−1 �

(l+3)
k−2

= �
(l+2)
k−2

�
(l+3)
k−2

− �
(l)
k−1

�
(l+1)
k−1

,

�
(l)
k �

(l+2)
k−1

�
(l+1)
k �

(l+1)
k−1

= �
(l)
k

�
(l+1)
k

− �
(l)
k−1

�
(l+1)
k−1

,
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Figure 2. The stencils of the discrete-time Toda equation (2.8) and the HADT equation (3.18).

which can be expressed in a simpler way using

X
(l)
k = �

(l)
k − �

(l)
k−1,

Y
(l)
k = �

(l+2)
k−2 − �

(l)
k−1,

where �
(l)
k = �

(l)
k /�

(l+1)
k . From these two expressions we have

Y
(l)
k+3 + X

(l)
k+2 + X

(l)
k+1 = �

(l+2)
k+1 − �

(l)
k ,

X
(l+2)
k+1 + Y

(l)
k+2 + X

(l)
k+1 = �

(l+2)
k+1 − �

(l)
k

and by rearranging, we find a quadrilinear relation in terms of �
(l)
k on an 11-point stencil, the

HADT equation:

�
(l)
k+1

(
�

(l+4)
k �

(l+1)
k �

(l+3)
k−1 − �

(l+2)
k �

(l+3)
k �

(l+3)
k−1 + �

(l+4)
k−2 �

(l+3)
k �

(l+1)
k+1

)
= �

(l+4)
k−1

(
�

(l)
k+2�

(l+1)
k �

(l+3)
k−1 − �

(l+2)
k �

(l+1)
k �

(l+1)
k+1 + �

(l)
k �

(l+3)
k �

(l+1)
k+1

)
. (3.18)

The HADT equation bears its name as a higher order analogue of the discrete-time Toda
equation, due to the similarities between how both equations arise in the theory of formal
orthogonal polynomials. We expect the HADT equation to also be integrable and derive a Lax
pair for it in the next section. Also note the similarity between the stencils of the two equations
(2.8) and (3.18), as displayed in figure 2.

It would be interesting to know how to enter lattice parameters (i.e. parameters associated
with the grid steps) into the HADT equation, as we did for the discrete-time Toda equation,
see equation (2.9), and then to study its continuum limit. However, there is a lot of freedom
here to enter lattice parameters through point transformations, and this should be properly
investigated. We leave that issue to a future work.

Next we follow a similar approach as in section 2.1 and derive Lax pairs for the several
Hankel identities viewed as integrable systems, using the recurrence relations for the two-
variable elliptic orthogonal polynomials. As before the fields will carry two sub-indices; we
denote x = λ, �

(m)
l = σl,m, �

(m)
l = ρl,m, U

(l)
k = uk,l , etc. By not evaluating the coefficients

in the recurrences (3.12) and (3.9), we will find a novel QQD scheme.

3.5. A Lax pair for the system of lattice equations (3.17)

We derive a Lax pair for the system of equations (3.17) which in terms of σ, ρ reads

σl+1,m−2σl−2,m+2 + ρl,m−2σl−1,m+1 = σl,m−2σl−1,m+2 + σl,m−1ρl−1,m, (3.19a)

σl,m−1σl−1,m+1 + ρl−1,m−1σl,m = ρl,m−1σl−1,m. (3.19b)
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Taking �l,m = (Q
(m+1)
l , P

(m+1)
l+1 , Q

(m)
l+1 , P

(m)
l+2 ) we derive �l+1,m = Ll,m�l,m, and �l+1,m =

Ml,m�l,m, with

Ll,m =




−σl+1,m+1ρl−1,m+1

σl,m+1ρl,m+1
1 0 0

0
−σl+2,mσl,m+1

σl+1,mσl+1,m+1
0 1

0 0
−σl+2,mρl,m

σl+1,mρl+1,m

1

0
−σl+1,m+2σl,m+1

σl+3,mσl+1,m

0
σl+1,m+2σl+1,m+1 − σl+1,mσl+1,m+3

σl,m+3σl+2,m




+ λ




0 0 0 0
0 0 0 0
0 0 0 0

σl+1,m+2ρl−1,m+1

σl,m+1σl,m+3
1 +

ρl+1,m+1ρl,m

σl,m+3σl+1,m

−ρl+1,m+1ρl,m

σl,m+3σl+1,m

0


 ,

and

Ml,m =




−ρl,m+2σl,m+2ρl−1,m+1

ρl−1,m+2σl,m+1σl,m+3

−ρl,m+2ρl,m+1ρl,m

ρl−1,m+2σl+1,mσl,m+3

ρl,m+2ρl,m+1ρl,m

ρl−1,m+2σl+1,mσl,m+3
0

0
ρl+1,mσl,m+1

σl+1,mσl,m+2

−σl+1,m+1ρl,m

σl+1,mσl,m+2
0

−σl+1,m+1ρl−1,m+1

σl,m+1ρl,m+1
1 0 0

0
−σl+2,mσl,m+1

σl+1,mσl+1,m+1
0 1




+ λ−1




0
σl,m+1ρl,m+2σl,m+2

ρl−1,m+2σl+1,mσl,m+3

−ρl,mσl,m+2

ρl−1,m+2σl+1,m

1 − ρl,m+2σl−1,m+3

ρl−1,m+2σl,m+3

0 0 0 0
0 0 0 0
0 0 0 0


 .

Here we have used equations (3.19a) and (3.19b) to reduce the number of terms in the entries of
the Lax matrices as much as possible. The compatibility condition Ll,m+1Ml,m −Ml+1,mLl,m =
0 is equivalent to system (3.19). However, to verify that the left-hand side vanishes modulo the
system, some work has to be done. The equations do not factor out as nicely as in section 2.1.

3.6. A Lax pair for the HADT equation, and the QQD scheme

We first derive a Lax pair for the following QQD scheme, satisfied by the coefficients
(U(m)

l = ul,m, etc) in the recurrence equations (3.9) and (3.12):

ul+2,m + vl+1,m + wl+1,m+1 = ul,m+3 + vl+1,m+1 + wl+1,m, (3.20a)

ul,m+3vl,m+1 = vl+1,mul+1,m, (3.20b)

ul,m+2wl,m = wl+1,mul+1,m. (3.20c)
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Figure 3. The stencil of Ll,m.

Let �l,m = (P
(m+3)
l , P

(m+2)
l+1 , P

(m+1)
l+2 , P

(m)
l+3 ). We use (3.9) and (3.12) to find �l+1,m =

Ll,m�l,m, and �l,m+1 = Ml,m�l,m, where L and M are given

Ll,m =




−ul,m+2 1 0 0
0 −ul+1,m+1 1 0
0 0 −ul+2,m 1
0 0 −wl+2,mul+2,m −vl+2,m + wl+2,m




+ λ




0 0 0 0
0 0 0 0
0 0 0 0

ul+1,m+2ul,m+2 −ul+1,m+1 − ul+1,m+2 1 0


 ,

and

Ml,m =




−ul,m+2

ul,m+3

1

ul,m+3
0 0

−ul,m+2 1 0 0
0 −ul+1,m+1 1 0
0 0 −ul+2,m 1




+ λ−1




0 −wl,m+1 1 +
wl+1,m − vl+1,m

ul,m+3
− 1

ul,m+3

0 0 0 0
0 0 0 0
0 0 0 0


 .

Here we have used the scheme (3.20) to simplify the λ−1-part of Ml,m. The compatibility of
these linear systems is equivalent to the QQD scheme (3.20). Note, by substituting expressions
(3.13), (3.10) for u, v, w in terms of σ into the QQD scheme, the first equation is equivalent to
the HADT equation, whereas the later two are satisfied identically. Therefore, after the same
substitution, the matrices L, M provide a good Lax pair for the HADT equation (3.18). The
stencils of the Lax matrices L(�), M(�) are depicted in figures 3 and 4.

4. Periodic reduction

In [37] a method was given to obtain initial value problems for scalar equations on arbitrary
stencils. The question was raised whether a similar construction can be done for systems,
and one example was given (the QD algorithm) where this is the case indeed. Here we will
present a systematic approach towards constructing initial value problems for systems of partial
difference equations.
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Figure 4. The stencil of Ml,m.

Figure 5. The 11-point stencil of the HADT equation, its convex hull, and two regions in the plane.

Using the method of [37] it is easily shown that the dimension of the s-periodic initial
value problem for the HADT equation is given by the piecewise linear function

4 max{|s1 + s2|, |s1|}. (4.1)

We will show that the s-periodic straight band initial value problems for the intermediate
system (3.19) as well as those for the QQD scheme are of the same dimension as the initial
value problems for the HADT equation, namely (4.1).

Although we do give a method to construct s-periodic initial value problems for systems,
the question remains whether this can be done algorithmically. As we will see, one cannot
easily determine the dimensionality of the reductions, nor which regions for s should be
distinguished, by simply looking at the stencils on which the equations of the system are
defined.

4.1. Initial value problems for the HADT equation

To pose initial value problems for equation (1.3) we use the method developed in [37]. By
the S-polygon of the equation we mean the boundary of the convex hull of the stencil S of
the equation (the dotted parallelogram in figure 5). The S-directions are the directions in the
S-polygon of the equation: (1, 0) and (1, −2). Therefore, we distinguish two regions in the
plane

R1 = {s ∈ Z
2 : a � 0, b > 0, ε = 1 or b > 2a, ε = −1},

R2 = {s ∈ Z
2 : 0 < b < 2a, ε = −1},

as in figure 5. If s ∈ R1 or s ∈ R2, then performing an s-periodic reduction yields a well-posed
initial value problem, i.e. the s-periodic solution is obtained by iteration of a single valued
mapping. If on the other hand s is on a boundary between R1 and R2 one needs to impose
periodicity on the solution, and then one obtains a multi-valued mapping, or correspondence.
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Figure 6. (2,−1)-periodic initial values.

To each of the regions Ri we associate a vector di which is a difference between the two points
of S, where a line with direction s ∈ Ri intersects the S-polygon in a single point. For the
HADT equation we have

d1 = (0, 4), d2 = (4, −4). (4.2)

Hence the dimension of the s-periodic initial value problem is, cf [37, equation 8],

max
i=1,2

{∣∣∣∣Det

(
s

di

)∣∣∣∣
}

= 4 max{|s1 + s2|, |s1|}.

We give two examples before we present the general s-periodic initial value problem in terms
of s-reduced variables.

4.1.1. (2,−1)-reduction of the HADT equation. We specify initial values between two parallel
lines that squeeze the stencil as in figure 6. Clearly, given the 8 values x1, x2, . . . , x8 at the
black dots one is able to determine the value x9 at the white dots on the fat-dotted line, using
the HADT equation. Thus we obtain an eight-dimensional mapping:

xi �→ xi+1, 1 � i < 8,

x8 �→ x1x4x7x8

x2x3x6
+

x5x7

x3
+

x3x8

x2
− x4x5x8

x2x6
− x4x

2
7

x3x6
.

(4.3)

We can calculate integrals for this mapping by constructing a so-called monodromy matrix,
which is a product of Lax matrices along a staircase over a one period long distance. Taking the
point at the bottom left corner to be the origin (l, m) = (0, 0), we define the monodromy matrix
to be the inversely ordered product of Lax matrices along a staircase from (l, m) = (1, 0) to
(l, m) = (3, −1),

L = M−1
3,−1L2,0L1,0.

Using the stencils of the Lax matrices, see figures 3 and 4, the reader can verify that the matrices
in L depend on initial values only. The characteristic polynomial of L is

Det(µI − L) = µ2((µ − λ)2 + 1) + µI1(µ
2 − λµ − λ) − λ(I2µ

2 + I3µ + 1),

where

I1 = x3x6

x2x7
+

x2x7

x6x3
− x1x8

x6x3
+

x1x4

x2x3
+

x8x5

x6x7
− x5x4

x2x7
,

I2 =
(

x2
5

x4x6
+

x2
3

x2x4
+

x1x7

x2x6
− x3x5

x2x6

) (
x2

6

x5x7
+

x2
4

x3x5
+

x2x8

x3x7
− x4x6

x3x7

)
,

I3 = x2x5

x3x4
+

x6x3

x4x5
+

x4x7

x5x6
+

x1x8

x3x6
− x2x7

x3x6
.
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Figure 7. (2,−3)-periodic initial values.

Because we subtracted I1 from the coefficient of µ2λ in the definition of I2 it factorizes nicely
as JJ ′, where J is a 2-integral of the map and J ′ is the image of J under the map. Remember
a k-integral is an integral of the kth power of the map [16]. Indeed, given that J ′′ = J , we find
that the product JJ ′ = J ′′J ′ = (JJ ′)′ is an invariant. But now, we can write down another
(functionally independent) invariant, namely J +J ′. Moreover, the integrals I1, I2, I3, I4, with

I4 = x2
5

x4x6
+

x2
3

x2x4
+

x1x7

x2x6
− x3x5

x2x6
+

x2
6

x5x7
+

x2
4

x3x5
+

x2x8

x3x7
− x4x6

x3x7
,

are functionally independent.

4.1.2. (2,−3)-reduction of the HADT equation. We specify initial values between two parallel
lines that squeeze the stencil as in figure 7.

Clearly, given the 8 values x1, x2, . . . , x8 at the black dots one is able to determine the
value x9 at the white dots on the thick-dotted line, using the HADT equation. Thus we obtain
an eight-dimensional mapping:

xi �→ xi+1, 1 � i < 8,

x8 �→ x2
6

x2
4

(
x1x7

x3
− x5

)
+

x7x5

x3
.

(4.4)

To be able to evaluate monodromy matrix

L = M−1
1,0L0,1M

−1
0,1M

−1
0,2L−1,3,

we first have to determine the value x10. Using the stencils of the Lax matrices, see figures 3
and 4, it seems we also need to to determine the value x0, as both L0,1 and M−1

0,1 depend on x0.
However, their product does not depend on x0. The characteristic polynomial is given by

Det(µI − L) = µ2((µ − λ)2 + (µ − λ)I2 − µJJ ′ + 1) + (µ − λ)3 − µ(µ − λ)2I1

where

I1 = x4x5

x3x6
+

x3x8

x5x6
+

x1x6

x3x4
+

x2x7

x4x5
,

I2 = x2x7

x3x6

(
x1x

2
6

x2
4x5

+
x2

3x8

x4x
2
5

+ 1

)
+

x1x8

x4x5
− x6x2

x2
4

− x3x7

x2
5

,

J = x1x7 − x5x3

x2
4

,

where J is a 2-integral of the mapping. The four integrals I1, I2, JJ ′ and J +J ′ are functionally
independent.
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4.1.3. General s-reduction. By imposing s-periodicity, that is,

σl,m = σl+s1,m+s2 ,

our P�E reduces to a system of r = gcd(s1, s2) O�Es. We perform so-called s-reduction,
which is basically a change of variables (l, m) → (n, p).

Definition 1. We define a, b, c, d ∈ N and ε = ±1 by a/b = |s1/s2| = εs1/s2; gcd(a, b) = 1;
b = 0 ⇒ c = 0, d = 1; b = 1 ⇒ c = 1, d = 0; b > 1 ⇒ c is the smallest positive integer
such that bc − ad = 1. Now we specify

nl,m := bl − εam, pl,m := −dl + εcm mod r, (4.5)

The variable n tells us on which line with direction (a, εb) the point is and p distinguishes the
r inequivalent points on each line, see also [37]. The important properties are

(n, p)l+a,m+εb = (n, p + 1)l,m, (n, p)l+c,m+εd = (n + 1, p)l,m

where the latter shift is the standard way to update the initial values.
We adopt the notation of [37], where reduced variables carry one upper and one lower

index, that is, the reduction will be denoted σl,m � σ
p
n . When specifying (periodic) initial

value problems in terms of reduced variables we specify sets of variables σ
p
n where n runs over

a specific range and p runs over the full range p ∈ Nr := {0, 1, . . . , r − 1}, cf [37].
The range of n is determined by the differences associated with each region. For the

HADT equation, when s ∈ R1 (where ε = −1, see figure 5) the range of n will be from 0 to
n(d1) − 1 = b · 0 + a · 4 − 1, and when s ∈ R2 we take 0 � n < 4(b + εa) − 1, using the
differences (4.2).

Thus, we obtain

Proposition 2. The HADT equation admits a well-posed s-periodic initial value problem if
(a, b) is not equal to (1, 0) or (1, −2).

• For s ∈ R1 the set {σp
n : n ∈ N4a, p ∈ Nr} provides a well-posed initial value problem of

dimension 4|s1|.
• For s ∈ R2 the set {σp

n : n ∈ N4(b+εa), p ∈ Nr} provides a well-posed initial value problem
of dimension 4|s1 + s2|.

Remark. In section 4.1.1 the initial values {σ 0
0 , . . . , σ 0

7 } are conveniently denoted σ 0
n = x8−n

and the mapping is the backward shift n �→ n − 1, or (l, m) �→ (l − 1, m). In section 4.1.2
the initial values {σ 0

0 , . . . , σ 0
7 } are denoted σ 0

n = xn+1 and the mapping is the standard one
n �→ n + 1, that is (l, m) �→ (l + 1, m − 1).

4.2. Initial value problems for the system of lattice equations (3.19)

The stencils of system (3.19) are depicted in figure 8. The S-directions in the S-polygons of
the equations are (0, 1), (1, 0), (1, −1), and (1, −2). Therefore, we distinguish four regions
in the plane, as in figure 9.

For each of the distinguished regions Ri we will project each stencil of the system onto
a line with direction s ∈ Ri . On these lines we will indicate (schematically) the ranges of
n-values for both field variables σ, ρ (our ranges start at 0). This procedure is similar to
the scalar case, where the difference di is equivalent to a range for n. For every equation
in a system we need a range (and hence a difference) for every field, and also their relative
positions. Moreover, once we have these data, there is still some freedom left how to position
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Figure 8. The 5-point and 7-point stencils of system (3.19), and their convex hulls.

Figure 9. Distinguished regions for system (3.19).

Figure 10. s-Reduction for system (3.19), with s ∈ N
2.

the equations with respect to each other. In fact, as we will show in appendix C, we have to
split region R4 into two regions where the two equations are positioned differently with respect
to each other. Also we will see that for regions R2 and R3 we may take the same initial values.
However, updating the initial values is done differently in those regions.

For s ∈ R1 the ranges are given in figure 10. We now have to find a range of n for each
variable σ, ρ such that each equation can be used to update one of the variables. Moreover, we
want to minimize the number of field values that have to be calculated to update both fields.
Therefore, we move the first equation in figure 10 over a distance b with respect to the other,
see figure 11.

For system (3.19) with s ∈ R1 one can see that if we take the range 0 � n < 4a + 3b for
σ and the range 2a + b � n < 2a + 2b for ρ, then using equation (3.19a) we can determine the
values of ρ at 2a + 2b � n � 4a + 2b. Subsequently, equation (3.19b) can be used to calculate
the values of σ at n = 4a + 3b. We have obtained the first item in the following proposition,
whose complete proof is given in appendix C.
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Figure 11. Alternative s-reduction for system (3.19), with s ∈ N
2.

Figure 12. (2,−1)-periodic initial values.

Proposition 3. Let s ∈ Z
2 be such that (a, b) is not equal to (1, 0) or (1, −2), and let Ri be

as in figure 9. Then system (3.19) admits a well-posed s-periodic initial value problem.

• For s ∈ R1 the set

{σp
n , ρp

m : n ∈ N4a+3b, m − 2a − b ∈ Nb, p ∈ Nr}
provides a well-posed initial value problem of dimension 4|s1 + s2|.

• For s ∈ R2 ∪ R3 (including the boundary between R2 and R3) the set

{σp
n , ρp

m : n ∈ N4a−b, m ∈ Nb, p ∈ Nr}
provides a well-posed initial value problem of dimension 4|s1|.

• For s ∈ R4, b � 3a, the set

{σp
n , ρp

m : n ∈ N3b−4a, m + 5a − 2b ∈ Nb, p ∈ Nr}
provides a well-posed initial value problem of dimension 4|s1 + s2|.

• For s ∈ R4, b � 3a, the set

{σp
n , ρp

m : n ∈ N3b−4a, m + 4a − b ∈ Nb, p ∈ Nr}
provides a well-posed initial value problem of dimension 4|s1 + s2|.

4.2.1. (2,−1)-reduction of system (3.19). We specify initial values between two parallel
lines that squeeze the σ -stencil, as in figure 12. The initial values are denoted σ 0

n = xn+1

and ρ0
n = yn+1. Clearly, from these initial values we can calculate the values y4 and y2,

y1, using equation (3.19b). Then we know enough ρ-values to be able to calculate, using
equation (3.19a), x8, which (to our surprise) does not depend on y3. Therefore, the σ -field is
determined by a seven-dimensional mapping, namely

xi �→ xi+1, 1 � i < 7,

x7 �→ x2x7

x1
− x2x5x6

x1x4
− x3x4x7

x1x5
− x2

3x2
6

x1x4x5
.

(4.6)
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Figure 13. (2,−3)-periodic initial values.

We know enough values to determine the monodromy matrix L = L1
0(M

1
0 )−1L1

0. Its
characteristic polynomial is given by

Det(µI − L) = µ2((µ − λ)2 + (µ − λ)I1 + 1) − λ(µ2JJ ′ + µI1 + 1),

where

I1 = −x3x4

x1x6
+

x3x6

x4x5
− x4x5

x7x2
+

x1x4

x2x3
+

x5x2

x3x4
+

x4x7

x5x6
+

x5x2

x1x6
+

x6x3

x7x2
− x2

5x2

x7x1x4
− x6x

2
3

x7x1x4
,

J = x1x7 − x5x3

x2x6
+

x2
3

x2x4
+

x2
5

x4x6
.

The integrals I1, JJ ′, J + J ′ are functionally independent.

4.2.2. (2,−3)-reduction of system (3.19). We specify initial values between two parallel
lines that squeeze the σ -stencil, as in figure 13. From these initial values we can calculate the
σ -value (x6) on the dashed line. And once we have done that we can calculate y4. We find an
eight-dimensional mapping, namely

xi �→ xi+1, 1 � i < 5,

x5 �→ x ′
5 = x4x3 + y1x4 − x3y2

x1
,

yi �→ yi+1, i = 1, 2,

y3 �→ x4x5 + y1x
′
5

x3
.

(4.7)

One has to calculate quite a few other points to be able to evaluate the monodromy matrix,
whose characteristic polynomial is given by6

Det(µI − L) = µ2((µ − λ)2 + µI1 + λ(JJ ′ − I1 − 1) + 1) − λ3,

where

I1 = − x3x2

x1x4
+

y3y1

x5x3
+

y3y2

x5x4
+

y2y1

x3x4
− y2

2

x2
4

− x5x1

x2
3

+
x3x2y2

x1x
2
4

− x3x4

x5x2
− x2y1

x1x4
− x3y2

x5x2
+

x3x4y3

x2
5x2

− y2
1

x2
3

− y2
3

x2
5

J = x1x5y2

x2
4x2

− y3x1

x4x2
+

x5x1

x4x2
− x5x3

x2
4

.

The integrals I1, JJ ′, J + J ′ are functionally independent.

6 The factorization of I2 + I1 + 1 where I2 is the coefficient of µ2λ is due to Viallet [40].
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Figure 14. Distinguished regions for the QQD scheme.

4.3. Initial value problems for the QQD scheme

We define regions in the plane as follows:

R1 = {s ∈ Z
2 : a � 0, b > 0, ε = 1},

R2 = {s ∈ Z
2 : 0 < b � a, ε = −1},

R3 = {s ∈ Z
2 : a � b < 2a, ε = −1},

R4 = {s ∈ Z
2 : 2a < b � 3a, ε = −1},

R5 = {s ∈ Z
2 : 3a � b, ε = −1},

see figure 14. We prove proposition 4 in appendix D.

Proposition 4. The QQD scheme (3.20) admits a well-posed s-periodic initial value problem
if (a, b) is not equal to (1, 0) or (1, −2).

• For s ∈ R1 the set

{up
n , vp

m, w
p

l : n ∈ N3a+2b, m − 2a ∈ Na+b, l − 2a − b ∈ Nb, p ∈ Nr}
provides a well-posed initial value problem of dimension 4|s1 + s2|.

• For s ∈ R2 the set

{up
n , vp

m, w
p

l : n − b ∈ N3a−b, m ∈ Na, l ∈ Nb, p ∈ Nr}
provides a well-posed initial value problem of dimension 4|s1|.

• For s ∈ R3 the set

{up
n , vp

m, w
p

l : n + a − b ∈ N3a−b, m ∈ Na, l ∈ Nb, p ∈ Nr}
provides a well-posed initial value problem of dimension 4|s1|.

• For s ∈ R4 the set

{up
n , vp

m, w
p

l : n − 3a + b ∈ N2b−3a, m ∈ Nb−a, l ∈ Nb, p ∈ Nr}
provides a well-posed initial value problem of dimension 4|s1 + s2|.

• For s ∈ R5 the set

{up
n , vp

m, w
p

l : n − 2a ∈ N2b−3a, m − a ∈ Nb−a, l ∈ Nb, p ∈ Nr}
provides a well-posed initial value problem of dimension 4|s1 + s2|.
In the following reductions we adopt the notation u0

n = xn, v
0
n = yn, w

0
n = zn.
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4.3.1. (2,−1)-reduction of the QQD scheme. Updating the initial values as described in
appendix D yields the following mapping:

xi �→ xi+1, 1 � i < 5,

x5 �→ x1y1

y ′
1

,

y0 �→ y1,

y1 �→ y ′
1 = x1 + y0 − x5 − z0 +

x5x4z0

x1x2
,

z0 �→ x4z0

x1
.

(4.8)

The characteristic polynomial of the monodromy matrix is given by

Det(µI − L) = µ2((µ − λ)2 + (µ − λ)I1 − λJJ ′ + I2) + λ(µI3 − I4),

where

I1 = (y0 − z0 + x1)
z0x4

x1
+ y1(z0 + x5 − y0),

I2 = z0x4x5y1,

I3 = (z0x2 − x5y1 − x2x1 − y0x2)x3x4 − x1y1(x5x4 + x2x5 + x2x3),

I4 = x1x2x3x4x5y1,

J = x1 + x3 + y0 − z0.

The integrals I1, I2, I3, I4, I5 = JJ ′, I6 = J + J ′ are functionally independent.

4.3.2. (2,−3)-reduction of the QQD scheme. Updating the initial values as described in
appendix D yields the following mapping:

xi �→ xi+1, i = 1, 2,

x3 �→ x ′
3 = y1x1

y0
,

y0 �→ y1,

y1 �→ y0 + z2 − z0,

zi �→ zi+1, i = 0, 1,

z2 �→ x ′
3z0

x3
.

(4.9)

The characteristic polynomial of the monodromy matrix is given by

Det(µI − L) = µ2((µ − λ)2 + µ((I4 − I2 + 1)I1 − I3 − JJ ′) + λ(I3 + (2I2 − 3)I1))

+ λ2(µ(3 − I2) − λ)I1,

where

I1 = x2x1x3

y0
,

I2 = z2

x3
+

y0

x3
+

y0

x1
+

y1

x2
,

I3 = x2z0 − x2y0 − x2z2 + z1x3 − x3y1 − y1x1,

I4 = z0z1z2

x3
,

J = y0 − z0.
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5. Dimensional reduction

In this section we present the explicit formulae for the reduced variables, required to implement
the dimensional reduction of the mappings obtained in section 4 from periodic reduction from
the HADT equation and from system (3.19). These formulae arise from the symmetries of the
partial difference equations. In certain cases an extra scaling symmetry of the integrals has to
be used to obtain the dimensional reduction.

Whereas the dimensions of the s-reductions from the HADT equation, of the intermediate
system, and of the QQD scheme all coincide, these reductions differ both with regard to
the number of integrals we found in the previous section and with regard to the number of
symmetries we will encounter in this section. The question whether the s-reductions of the
various equations are related, e.g. through a change of variables, is left open.

5.1. The HADT equation

Equation (3.18) is invariant under the following continuous symmetries: u �→ uε and
u �→ uε(−1)l . The first yields a symmetry of the mappings, whereas the second gives us a
2-symmetry of the mappings. Their generators are

8∑
i=1

xi

∂

∂xi

,

8∑
i=1

(−1)ixi

∂

∂xi

.

A set of joint invariants of these vector fields is given by{
w1 = x1x4

x2x3
, w2 = x2x5

x3x4
, w3 = x3x6

x4x5
, w4 = x4x7

x5x6
, w5 = x5x8

x6x7
, w6 = x6x1

x7x8

}
.

In these variables the s = (2, −1) mapping (4.3) reads f = w2 − w5 + (w3 − w2)w4 +
w1w2w3w4w5,

wi �→ wi+1, 1 � i < 5,

w5 �→ f

w2w3w4w5
,

w6 �→ w2w4w6

w1f
.

(5.1)

which has three functionally independent invariants

I1 = w1 + w5 + w2w4(1 − w1w3w5) +
w3 − 1

w2w3w4
, (5.2a)

I2 = (w1w2w3w4 + w2 + w3 − 1)(w2w3w4w5 + w3 + w4 − 1)

w2w3w4
, (5.2b)

I3 = w2 + w3 + w4 − w4w2 + w1w2w3w4w5. (5.2c)

The 2-integral J is scaled by the generator of the second symmetry and so it does not survive
the reduction. The s = (2, −3) mapping (4.4) reduces to the six-dimensional mapping

wi �→ wi+1, 1 � i < 5,

w5 �→ g

w4w5
, g = w1w2w3 +

1

w3
− 1

w4
,

w6 �→ w4w6

w1w3g

(5.3)
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and has three functionally independent invariants

I1 = w3(w1w2 + w2w4 + w4w5) +
1

w3
,

I2 = w2w
2
3w4(w1w2 + w1w5 + w4w5) − w2w3 − w3w4 + w2w4,

JJ ′ = w3(w1w2w3w4 − 1)(w2w3w4w5 − 1).

5.2. The lattice system (3.19)

For the case s = (2, −1) the mapping has a symmetry and a 2-symmetry, which arise from
scaling symmetries of the system. Their generators are given by

7∑
i=1

xi

∂

∂xi

,

7∑
i=1

(−1)ixi

∂

∂xi

.

The integrals admit an extra scaling, which is neither a symmetry, nor a k-symmetry, of the
mapping, namely

x1
∂

∂x1
+ x2

∂

∂x2
− x5

∂

∂x5
− x6

∂

∂x6
− 2x7

∂

∂x7
.

Still, we can use joint invariants of these three vector fields,

w1 = x1x4

x2x3
, w2 = x5x2

x3x4
, w3 = x3x6

x5x4
, w4 = x4x7

x5x6
,

to reduce the dimension of the mapping by three dimensions. This is due to the fact that if
we reduce the third vector field by the first two the resulting vector field is a symmetry of the
reduced mapping. The mapping (4.6) reduces to a four-dimensional mapping

wi �→ wi+1, 1 � i < 4,

w4 �→ w2w4 − w2 − w3 − w4

w1w2w3w4
,

(5.4)

which admits two functionally independent integrals

I1 = w1 + w2 + w3 + w4 +
w1w3 + w2w4 − w1 − w2 − w3 − w4

w1w2w3w4
,

JJ ′ = (w1 + w2 + w3 + w4 − w1w3 − w1w4 − w2w4)
w1w2w3w4 + w2 + w3 − 1

w1w2w3w4
.

Similarly we find three reductions for the s = (2, −3) case. Here choosing variables

w1 = y1

x3
, w2 = y2

x4
, w3 = y3

x5
, w4 = x2x3

x1x4
, w5 = x3x4

x2x5

reduces the mapping (4.7) to the five-dimensional mapping

wi �→ wi+1, i = 1, 2, 4,

w3 �→ w1 + w′
5,

w5 �→ w′
5 = 1

(1 + w1 − w2)w4w5
.

(5.5)

This mapping admits the two integrals

I1 = w1(w2 − w1) + w2(w3 − w2) + w3(w1 − w3) + w4(w2 − w1 − 1)

+ w5(w3 − w2 − 1) − 1

w4w5
,

JJ ′ = (1 + w2 − w3 − w4)
(

1 − w2 + w3 − w5 − (w1 − w3 + w5)(w1 − w2) − 1

w4w5

)
.
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We note that in both cases the function J is no longer a 2-integral of the reduced mapping,
and that J +J ′ cannot be the expression in the reduced variables. Also, in the s = (2, −3) case
we have only two integrals for a five-dimensional mapping which is not enough for complete
integrability. The reduction was done using 3 (scaling) symmetries of the integrals, but the
function J is only invariant under one of them. It turns out it is also invariant under a linear
combination of the other two. Using this, we can then perform 2-reduction for mapping (4.7),
retaining all three integrals. Choosing variables

z1 = x2
2

x3x1
, z2 = x2

3

x4x2
, z3 = x2

4

x5x3
, z4 = y2

x4
, z5 = y3

x5
, z6 = y1x5

y2
2

,

the mapping reads

zi �→ zi+1, i = 1, 2, 4,

z3 �→ z′
3 = z1z

2
2z

2
3(1 + z6z

2
4z3 − z4),

z5 �→ z3(z
′
3 + z2

4z6),

z6 �→ z4

z′
3z

2
5

,

(5.6)

which has three invariants:

z6z3z
2
4(z6z

2
4z3 + z1z2 − z4 − z5) + z2

4 + z2
5 − z4z5

+
1

z1z
2
2z3

− (z4 − 1)z1z2 − (z5 − z4 − 1)z3z2,

and J + J ′ and JJ ′, where J = (1 + z4 − z5 − z1z2)(z1z2z3)
−1.
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Appendix A. Some determinantal identities

In the establishment of the recursive structure we need a number of determinantal identities,
which we derive using the Sylvester identity. So we present a proof of the Sylvester identity,
which was first presented by Kowalewski [20], Bareiss [2] and Malaschonok [24, 25] and these
seven proofs are presented together in [1].

We consider an (n + m) × (n + m) matrix R with elements rij and determinant |R|, also
written Det(R). Then we partition R and factor by block triangularization such that

R =
(

A B

C D

)
=

(
A 0
C 1

)
.

(
1 A−1B

0 D − CA−1B

)
, (A.1)

where A is a nonsingular square matrix of order n, then

|R| = |A|.|D − CA−1B|. (A.2)

If we multiply both sides by |A|m−1, this becomes

|A|m−1|R| = ||A|(D − CA−1B)|
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because the determinant on the right-hand side of (A.2) is of order m. We can reduce this
equation further to

|A|m−1|R| = ||A|D − CÃB|, (A.3)

since A−1 = (Ã/|A|) (where Ã represents the adjugate matrix of the inverse matrix A−1), and
the determinant of A is assumed to be �= 0. Specifying some entries in (A.1), taking A to be
an n × n block and D to be an m × m block, we have the formula

(Det(A))m−1

∣∣∣∣∣∣∣∣∣∣∣

A | b1 . . . bm

− + − − −
ct

1 |
... | D

ct
m |

∣∣∣∣∣∣∣∣∣∣∣
= Detm×m

{
Detn×n(A)Dij − (ct

i Ã bj )
}

i,j=1,...,m

(A.4)

in which the full matrix is supplemented with m n-component column vectors bi and m n-
component row-vectors ct

i . If we consider the case m = 2, i.e. the removal of two rows and
columns, then we obtain the determinant identity

(Det(A))

∣∣∣∣∣∣∣∣
A | b1 b2

− + − −
ct

1 | d11 d12

ct
2 | d21 d22

∣∣∣∣∣∣∣∣
= Det2×2

{
(Det(A))

(
d11 d12

d21 d22

)
−

(
ct

1Ãb1 ct
1Ãb2

ct
2Ãb1 ct

2Ãb2

)}

= [Det(A)d11 − ct
1Ãb1] [Det(A)d22 − ct

2Ãb2]

− [Det(A)d21 − ct
2Ãb1] [Det(A)d12 − ct

1Ãb2],

which can be symbolically written as

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(A.5)

(where the red lines denote rows and columns omitted from the original determinant). It
is then necessary to reorder the position of the row and column to tailor the identity to our
requirements.

While (A.5) is the key identity by which the recurrence structure for ordinary one-variable
orthogonal polynomials is obtained, for the elliptic two-variable orthogonal polynomials we
need (in addition to (A.5)), determinantal identities involving the simultaneous removal of
more than two rows and columns. Thus, the main identity we use from the general formula
(A.4) will be the case m = 3, leading to the different recurrence relations for (3.3) and (3.7). So
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considering m = 3 we obtain from (A.4) the following 3-row/column Sylvester type identity:∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
,

(A.6)

which is obtained from the expansion of (A.4) for m = 3 after recombination of terms using
the earlier 2-row/column Sylvester identity (A.5).

Appendix B. Intermediate determinants

Previously we have chosen to apply a 3 row/column Sylvester identity to the P
(l)
k and Q

(l)
k

polynomials since this identity (A.6) does not introduce new determinants. However for
some 2 row/column Sylvester identities it is possible to control new determinants, which
can be removed to still give equations in terms of P

(l)
k and Q

(l)
k only. These ‘intermediate’

determinants are introduced here.

B.1. The linear P
(l)
k equation

By considering the P
(l)
k with the first column and penultimate row removed we obtain the

intermediate quantity:

T
(l)
k−1(x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el , e2〉 〈el , e3〉 · · · · · · 〈el , ek〉
〈el+1, e2〉 〈el+1, e3〉 · · · · · · 〈el+1, ek〉

...
...

...

...
...

...

〈el+k−3, e2〉 〈el+k−3, e3〉 · · · · · · 〈el+k−3, ek〉
e2 e3 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
�

(l)
k−2, (B.1)

together with a corresponding Hankel determinant:

�
(l)
k−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el , e2〉 〈el , e3〉 · · · · · · 〈el , ek〉
〈el+1, e2〉 〈el+1, e3〉 · · · · · · 〈el+1, ek〉

...
...

...

...
...

...

〈el+k−2, e2〉 〈el+k−2, e3〉 · · · · · · 〈el+k−2, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (B.2)

Using the usual Sylvester identity we can now derive the following two equations:∣∣∣∣∣∣∣∣∣
P

(l)
k

∣∣∣∣∣∣∣∣∣
⇒ P

(l)
k = T

(l+1)
k−1 − �

(l+1)
k−2 �

(l)
k−1

�
(l)
k−1�

(l+1)
k−2

P
(l+1)
k−1 , (B.3a)
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P

(l)
k

∣∣∣∣∣∣∣∣∣
⇒ P

(l)
k = T

(l)
k−1 − �

(l)
k−2�

(l)
k−1

�
(l)
k−1�

(l)
k−2

P
(l)
k−1 . (B.3b)

Eliminating the T
(l)
k polynomials in favour of the P

(l)
k polynomials and using a Hankel identity∣∣∣∣∣∣∣∣∣

�
(l)
k

∣∣∣∣∣∣∣∣∣
⇒ �

(l)
k �

(l+3)
k−2 = �

(l)
k−1�

(l+3)
k−1 − �

(l+1)
k−1 �

(l+2)
k−1 (B.4)

allows the derivation of the linear relation in P
(l)
k (3.12).

B.2. The bilinear relation in �
(l)
k , �

(l)
k

It is possible to combine some three-term bilinear Hankel relations, to give a three-term relation
in terms of �

(l)
k , �

(l)
k . This particular identity is achieved with the introduction of a new

intermediate determinant � which is essentially � with the first column and last row removed.

∣∣∣∣∣∣∣∣∣
�

(l)
k

∣∣∣∣∣∣∣∣∣
⇒ �

(l)
k �

(l+2)
k−2 = �

(l)
k−1�

(l+1)
k−1 − �

(l+1)
k−1 �

(l)
k−1, (B.5a)

∣∣∣∣∣∣∣∣∣
�

(l)
k

∣∣∣∣∣∣∣∣∣
⇒ �

(l)
k �

(l+2)
k−2 = �

(l)
k−1�

(l+2)
k−1 − �

(l+2)
k−1 �

(l)
k−1, (B.5b)

where

�
(l)
k−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el , e2〉 〈el , e3〉 · · · · · · 〈el , ek〉
〈el+2, e2〉 〈el+2, e3〉 · · · · · · 〈el+2, ek〉

...
...

...

...
...

...

〈el+k−1, e2〉 〈el+k−1, e3〉 · · · · · · 〈el+k−1, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (B.6)

� is then eliminated in the combination of the two bilinear relations (B.5).

�
(l+1)
k−1 (�

(l)
k−1�

(l+2)
k−1 − �

(l)
k �

(l+2)
k−2 ) = �

(l+2)
k−1 (�

(l)
k−1�

(l+1)
k−1 − �

(l)
k �

(l+2)
k−2 ). (B.7)

This equation can be expanded (in the third term) using a third bilinear equation∣∣∣∣∣∣∣∣∣
�

(l)
k

∣∣∣∣∣∣∣∣∣
⇒ �

(l)
k �

(l+1)
k−2 = �

(l)
k−1�

(l+1)
k−1 − �

(l+1)
k−1 �

(l)
k−1 . (B.8)

Thus we are left with an equation in terms of � and � only.

�
(l+1)
k−1 (�

(l)
k−1�

(l+2)
k−1 − �

(l)
k �

(l+2)
k−2 ) = �

(l)
k−1(�

(l+1)
k−1 �

(l+2)
k−1 − �

(l+1)
k �

(l+2)
k−2 ) − �

(l+2)
k−1 �

(l)
k �

(l+2)
k−2 .

After we have cancelled the necessary terms, we are left with (3.17b).
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B.3. Relations in P
(l)
k and Q

(l)
k

For relations involving the Hankel determinants P
(l)
k and Q

(l)
k we can derive a recurrence

relation xQ
(l)
k and two linear relations. By implementing a cutting of rows and columns on

the matrix for P
(l)
k according to∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
and applying the 3-row/column Sylvester identity in that situation, we obtain

P
(l)
k = xQ

(l+2)
k−2 − �

(l)
k−2�

(l+2)
k−2

�
(l)
k−1�

(l+2)
k−3

P
(l)
k−1 +

�
(l)
k−2�

(l+2)
k−2

�
(l)
k−1�

(l+2)
k−3

Q
(l)
k−1, l �= 0, 1. (B.9)

For the linear relations we first obtain∣∣∣∣∣∣∣∣∣
Q

(l)
k

∣∣∣∣∣∣∣∣∣
⇒ Q

(l)
k = T

(l+2)
k−1 − �

(l+2)
k−2 �

(l)
k−1

�
(l)
k−1�

(l+2)
k−2

P
(l+2)
k−1 , (B.10)

which by eliminating the T
(l)
k using (B.3a) together with the Hankel identity (B.5a) leads to

Q
(l)
k = P

(l+1)
k +

�
(l)
k �

(l+2)
k−2

�
(l)
k−1�

(l+1)
k−1

P
(l+2)
k−1 . (B.11)

This three-term equation in terms of Q
(l)
k and P

(l)
k is similar to (3.12). To find another of this

type of equation we must first introduce the intermediate polynomials S
(l)
k−1 :

S
(l)
k−1(x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el , e2〉 〈el , e3〉 · · · · · · 〈el , ek〉
〈el+2, e2〉 〈el+2, e3〉 · · · · · · 〈el+2, ek〉

...
...

...

...
...

...

〈el+k−2, e2〉 〈el+k−2, e3〉 · · · · · · 〈el+k−2, ek〉
e2 e3 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
�

(l)
k−2. (B.12)

Then applying the following Sylvester identities to P
(l)
k and Q

(l)
k , we subsequently obtain the

relations: ∣∣∣∣∣∣∣∣∣
Q

(l)
k

∣∣∣∣∣∣∣∣∣
⇒ Q

(l)
k = S

(l)
k−1 − �

(l)
k−1�

(l)
k−2

�
(l)
k−2�

(l)
k−1

Q
(l)
k−1 , (B.13a)
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Figure 15. s-Reduction for system (3.19), with s ∈ R2.

Figure 16. s-Reduction for system (3.19), with s ∈ R3.

∣∣∣∣∣∣∣∣∣
P

(l)
k

∣∣∣∣∣∣∣∣∣
⇒ P

(l)
k = S

(l)
k−1 − �

(l)
k−1�

(l)
k−2

�
(l)
k−2�

(l)
k−1

Q
(l)
k−1 . (B.13b)

We eliminate S
(l)
k−1 and making use of the Hankel determinant identity∣∣∣∣∣∣∣∣∣

�
(l)
k

∣∣∣∣∣∣∣∣∣
⇒ �

(l)
k �

(l)
k−2 = �

(l)
k−1�

(l)
k−1 − �

(l)
k−1�

(l)
k−1, (B.14)

which leaves

Q
(l)
k = P

(l)
k − �

(l)
k �

(l)
k−2

�
(l)
k−1�

(l)
k−1

Q
(l)
k−1 . (B.15)

Appendix C. s-Periodic initial value problems for system (3.19)

Proposition 3 is obtained by considering the ranges of the n-values for the equations with
periods taken in the remaining regions. When s ∈ R2 (see figure 9) we obtain the
following reduction given in figure 15. So we first need to calculate the values of ρ for
b � n � 2a − b. This can be done using equation (3.17a) because the values of σ at n smaller
than 2a + (2a − b − b) = 4a − 2b are given initially. Then the values of σ at n = 4a − b

are determined by (3.17b). When s ∈ R3 we obtain the reduction given in figure 16. Here,
the dashed line indicates that a + b can either be to the left, or to the right of 4a − b. We
have a + b < 4a − b in the region 3a > 2b > 2a. Here it does not matter whether one first
calculates the values of ρ at n = b, using equation (3.17a), or the values of σ at n = 4a − b,
using equation (3.17b). In the region 3a � 2b < 4a we have a + b � 4a − b. Here we need
first calculate the values of σ for 4a − b � n � a + b, using equation (3.17b). This can be
done indeed, because the values of ρ with n � 2a − b + (a + b) − (4a − b) = b − a are given
initially. Subsequently the values of ρ at n = b can be obtained.

When s ∈ R4 we also need to distinguish two cases, but here this leads to different initial
value problems. When 2a > b � 3a we can first calculate the values of σ at n = 3b − 4a,
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Figure 17. s-Reduction for system (3.19), with s ∈ R4, b � 3a.

Figure 18. s-Reduction for system (3.19), with s ∈ R4, b � 3a.

Figure 19. Graphical representation of the QQD scheme.

and then the values of ρ at n = 3b − 5a, see figure 17. When b � 3a we need first calculate
the values of ρ at n = 2b − 4a, and then the values of σ at n = 3b − 4a, see figure 18.

We leave it to the reader to check that the given initial value problems can also be updated in
the negative n-direction. In appendix E we illustrate with an example that this is not necessarily
the case, and thus has to be verified separately.

Appendix D. s-Periodic initial value problems for the QQD scheme

The stencils of the QQD scheme (3.20) are depicted in figure 19. To describe initial value
problems for the QQD scheme we follow the following procedure. We project the stencils of
the three equations onto lines with directions in different regions and translate them in such
a way that, given the values of the fields for certain ranges of n, each equation determines a
value for an update of one of the fields. The proof of proposition consists of five pictures, one
for each region (see figure 14). For every picture one has to check the following:

(1) that the ranges of n-values for u, v, w correspond to each equation in the system, for any
chosen direction s in the particular region, this includes checking the order of the linear
expressions in a, b.

(2) that, given the initial values for u, v, w, every equation can be used to update one of the
fields (in both directions).

We will perform check (1) and check (2, positive direction) for the first picture, and check
(2, positive direction) for the other pictures. This enables one to perform s-reduction for any
given s ∈ ∪iR

i . The rest of the proof is left to the reader.
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Figure 20. s-Reduction of the QQD scheme, s ∈ R1.

Figure 21. The equations of the QQD scheme on top of each other, and a line with direction
(2, 1) ∈ R1.

When ε = 1, as in region R1, with one step to the right (downwards) n increases by b

(by a). Let n be equal to 0 on a line with direction s ∈ R1 through the first point u in the
first equation of the system (the upper-left point in figure 19). We let the upper-left point from
the second equation coincide with the one of the first equation and we let the upper-left point
from the third equation be one step to the right, so that it is at distance b from the others, as in
figure 21. Moving the line over figure 21 in downward direction, depending on the direction
s, the line will either first cross this point at distance b, or the point in the second equation at
distance 2a. This is indicated in figure 20 by the dashed line between b and 2a. Next the line
moves over the point with distance 2a + b, and then it depends on s whether 2a + 2b or 3a + b

is encountered first. This is again indicated by a dashed line. Thus, figure 20 represents the
ranges of the n-values of the three fields of the three equations in the QQD scheme and their
relative positions, for s ∈ R1.

Next, suppose initially we are given the values of u at 0 � n < 3a + 2b, of v at
2a � n < 3a + b, and of w at 2a + b � n < 2a + 2b. Then, for all s ∈ R1, we can
use the second equation to determine the value of v at n = 3a + b. If a < b, then we know all
values of w at 2a+b � n < 3a+b, and hence we can use the first equation to calculate the value
of u at n = 3a + 2b. Then, we can calculate the value of w at n = 2a + 2b. However, if a � b,
then we first have to use the last equation to calculate all values of w at 2a + 2b � n � 3a + b,
before we can use the first equation to calculate the value of u at n = 3a + 2b. In both cases,
the initial value problem is well-posed.

In R2 we first use the third equation to determine the values of w at b � n � a, then
the first equation to determine the values of v at n = a, and finally the second equation to
determine the values of u at n = 3a (figure 22).

In R3 the values of u at n = 2a and the values of v at n = a can be determined
independently, using the second and first equation, respectively. After having determined
the values of u at n = 2a we are able to find the w at n = b, using the third equation
(figure 23).
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Figure 22. s-Reduction of the QQD scheme, s ∈ R2.

Figure 23. s-Reduction of the QQD scheme, s ∈ R3.

Figure 24. s-Reduction of the QQD scheme, s ∈ R4

Figure 25. s-Reduction of the QQD scheme, s ∈ R5.

In R4 the values of u at n = b and the values of v at n = b − a can be determined
independently, using the first and second equation, respectively. After having determined the
values of u at n = b we are able to find the w at n = b, using the third equation (figure 24).

In R5 the values of v and w at n = b can be determined independently, using the second
and third equation, respectively. Next the values of u at n = 2b − a can be determined using
the first equation (figure 25).
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Appendix E. A noninvertible reduction of the QQD scheme

Using the same notation as in section 4.3, consider initial values {x0, x1, x2, x3, x4,

y0, y1, z0, z1} for the (2, −1) reduction of the QQD scheme. We use equation (3.20b) to
determine x5, equation (3.20c) to determine z2 and equation (3.20a) to determine y2. Thus we
find the nine-dimensional mapping

xi �→ xi+1, 0 � i < 5,

x4 �→ x5 = y0x0

y0
,

y0 �→ y1,

y1 �→ x1 + y0 − z0 + z2 − x5,

z0 �→ z1,

z1 �→ z2 = x5

x2
z1

(D.1)

for which the staircase method does yield five functionally independent integrals. However,
the mapping is not invertible and so the initial value problem is not well-posed. This example
illustrates that in order to prove the well-posedness of an initial value problem one has to show
the initial values can be updated in both directions.
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[12] Draux A 1983 Polynômes Orthogonaux Formels, Applications (Lecture Notes in Mathemtics vol 974) (Berlin:

Springer)
[13] Frobenius G 1881 Uber Relationen zwischen den Nährungsbruchen von Potenzreihen J. Reine Angew. Math.
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