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We study mappings obtained as s-periodic reductions of the lattice Korteweg–de Vries
equation. For small s [ N2, we establish upper bounds on the growth of the degree of
the numerator of their iterates. These upper bounds appear to be exact. Moreover, we
conjecture that for any s1, s2 that are co-prime, the growth is , ð2s1s2Þ21 n 2, except
when s1 þ s2 ¼ 4, where the growth is linear, n. Also, we conjecture the degree of the
nth iterate in projective space to be , ðs1 þ s2Þð2s1s2Þ21n 2.
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1. Introduction

Integrable mappings are characterized by low complexity [2,19]. This idea culminated in
the notion of algebraic entropy, introduced by Viallet and collaborators [4,6,8]. Low
complexity means vanishing algebraic entropy which corresponds to polynomial growth
of degrees of iterates of the mapping. A first proof of such a polynomial bound on the
degrees was given in [5]. In [3] it was proven that foliation by invariant curves implies zero
algebraic entropy. Examples show that degree growth is a better indication of integrability
than singularity confinement [8,9], cf. the discussion in [13]. Recently, the notion has been
extended to lattice equations [16,17] and used to find new integrable models [10].

In practice, one calculates the growth of degrees dn of the first n iterates of a mapping.
Then one guesses the pattern by fitting the generating function gðxÞ ¼Pdnx

n with a
rational function pðxÞ=qðxÞ ¼ gðxÞ, and the algebraic entropy limn!1logðdnÞ=n is obtained
as the logarithm of the inverse of the smallest zero of q(x), see [17]. We present an
elementary method that enables one to derive upper bounds for the growth of degrees. Our
formulae exactly produce all degrees that we have been able to calculate.

2. Outline

We will perform s-periodic reductions of the lattice Korteweg–de Vries equation

ðul;m 2 ulþ1;mþ1Þðulþ1;m 2 ul;mþ1Þ ¼ a: ð1Þ

This corresponds to studying solutions that satisfy the periodicity condition
ul;m ¼ ulþs1;mþs2 . We choose s1 and s2 # s1 to be co-prime natural numbers. Under this
assumption, the lattice equation reduces to a single ordinary difference equation (ODE) of
order q U s1 þ s2 (or a q-dimensional mapping). For background on periodic reductions
we refer to [11,14]. There are q initial values, which we denote by x1; x2; . . . ; xq. The ODE,
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or the mapping, can be used to generate a solution xn[Z, which are rational functions in the
initial values.

One aim is to find a formula for the degree of the numerator (or denominator) of xn, as a
function of n. We set xn ¼ an=bn and derive a system of two ODEs for an and bn, which are
polynomials in the initial values. By choosing bn ¼ 1 for n ¼ 1; 2; . . . ; q, the degree (i.e.
total degree in the variables x1 ¼ a1; . . . ; xq ¼ aq) of the numerator of xn is given by
dan 2 dgn. Here, d

p
n denotes the degree of a polynomial pn and gn is the greatest common

divisor gn ¼ gcdðan; bnÞ. First, we obtain a recursive formula for dan ¼ dbn þ 1. Then, we
look at the growth of gn. After a number of iterates, a miracle occurs: any divisor of bn will
divide gnþqðq – 4Þ. This statement has been verified for a range of periodicities s, but
seems to be difficult to prove in general. Next, we find a recurrence formula for the growth
of the multiplicities of divisors: a divisor of gn divides gnþi with multiplicity ti, where t
is an integer sequence satisfying a linear recurrence relation. We define a new set of
polynomials cn ¼ bn=f , where f is the product of all divisors of bi,n with the right
multiplicities as given by the integer sequence t. Multiplying by f (which is a product
ci,ns) and taking the degree on both sides of cn f ¼ bn, we find that dcn þ ðd c * tÞn ¼ dbn,
where * denotes discrete convolution

ðd * tÞnþ1 ¼ d1tn þ d2tn21 þ · · ·þ dnt1: ð2Þ

Using the recursive formulae for d b and t, we find a recursive formula for d c, which can be
solved to find polynomial growth of degree 2. Moreover, we obtain the coefficient of the
leading term: ð2s1s2Þ21.

We also consider the projective analogues of these mappings. We introduce
homogeneous coordinates and derive a polynomial mapping in q-dimensional projective
space. Here, the aim is to find a formula for the degrees of the components of this mapping.
The strategy is similar as the above. Once one has a divisor ci of certain components of the
mapping, one can derive a recursive formula for the multiplicities at higher iterates of
themapping. At a certain point thesemultiplicities are (miraculously) higher than expected,
after which the growth can be described recursively again. As before, a convolution
formula provides us with a recurrence for the degrees of the divisors. In this case the degree
of the nth iterate is given by the sum 1þ dcn21 þ dcn22 þ · · ·þ dcn2q. This growth can also be
described recursively and the leading term is found to be ðs1 þ s2Þð2s1s2Þ21n2.

The case s ¼ ð3; 1Þ is exceptional. Here the growth is linear , n, and the mapping is
linearizable. We provide its explicit solution in terms of an interesting sequence of
polynomials, see Section 3.3 and the Appendix.

3. Growth of degrees of rational mappings

We first illustrate our approach by considering a low-dimensional example, taking
s ¼ ð2; 1Þ.

3.1 A low-dimensional example

We take initial values x1, x2, x3 on a staircase as shown in Figure 1. The xn are rational
functions of x1, x2, x3, a which can be calculated recursively using

xn ¼ Pðxn21; xn22; xn23Þ; ð3Þ
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where P solves equation (1) for ulþ1;m,

ulþ1;m ¼ Pðul;m; ulþ1;mþ1; ul;mþ1Þ U ul;mþ1 þ
a

ul;m 2 ulþ1;mþ1
: ð4Þ

We write xn ¼ an=bn. The recurrence (3) yields the following recurrences for a, b:

an ¼ an23wn 2 abn21bn22bn23; ð5aÞ

bn ¼ bn23wn; ð5bÞ

where wn ¼ an22bn21 2 an21bn22. We choose b1 ¼ b2 ¼ b3 ¼ 1, so that an and bn are
polynomials in the variables (initial values) a1, a2 and a3. Their total degree will be
denoted dan and dbn, respectively. From (5) it follows that the degrees are at most

dan ¼ max dbn21 þ dan22 þ dan23; d
a
n21 þ dbn22 þ dan21; d

b
n21 þ dbn22 þ dbn23

! "
;

dbn ¼ max dbn21 þ dan22 þ dbn23; d
a
n21 þ dbn22 þ dbn23

! "
:

Given the initial degrees dan ¼ dbn þ 1 ¼ 1 ðn ¼ 1; 2; 3Þ, we find that

dan ¼ dan21 þ dan22 þ dan23 2 1;

dbn ¼ dbn21 þ dbn22 þ dbn23 þ 1
ð6Þ

are upper bounds for the degrees of an and bn, and dan ¼ dbn þ 1 ðn [ NÞ. The sequence db
comprises sums of tribonacci numbers, cf. [15, seq. A008937]. Certainly, these sequences
grow exponentially. However, there will be a lot of cancellations in xn ¼ an=bn due to
common factors of an,bn. We will prove that the degree of the greatest common divisor

gn ¼ gcdðan; bnÞ

is sufficiently large to ensure that dan 2 dgn grows polynomially.
Suppose that f tk divides gk with k [ {n2 1; n2 2; n2 3}. Then from (5) it follows

that f tn divides gn, where

tn ¼ tn21 þ tn22 þ tn23: ð7Þ

x1 x2

x4x3x2x1

x3 x4 x5 x6

x8x7x6x5x4x3

x1 x2

Figure 1. Staircase with (1, 2) periodic initial values (x1, x2, x3) solved to the right.
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We define an integer sequence t by t1 ¼ t2 ¼ t3 2 2 ¼ 0 and the above recursion. Such
numbers t are called tribonacci numbers, cf. [15, seq. A000073]. Thus, we have the
following:

f 2jgn ) f t3þi jgnþi; i [ N:

By direct calculation, using Maple and the recurrences (5), we find that the polynomial
w2
n divides gnþ3 (n . 3). This implies that wti

n divides gnþi. We can now write symbolically

bi ¼ ci ¼ 1; i ¼ 1; 2; 3;

bi ¼ ci; i ¼ 4; 5; 6;

b7 ¼ c7c
2
4;

b8 ¼ c8c
2
4c

2
5 ¼ c8c

t4
4 c

t3
5 ;

b9 ¼ c9c
4
4c

2
5c

2
6 ¼ c9c

t8
1 c

t7
2 c

t6
3 c

t5
4 c

t4
5 c

t3
6 c

t2
7 c

t1
8 ;

..

.

bn ¼ cn
Yn21

i¼1

ctn2i
i ; ð8Þ

which defines polynomials cn. Taking the degree on both sides of equation (8), we find
dbn ¼ dcn þ ðd c * tÞn where * denotes discrete convolution, see (2). From this we infer,
using the recurrence for t (7), that

dbn 2 dcn ¼ dc1tn21 þ · · ·þ dcn24t4 þ dcn23t3

¼ dc1ðtn22 þ tn23 þ tn24Þ þ · · ·þ dcn24ðt3 þ t2 þ t1Þ þ dcn23t3

¼ ðd c
* tÞn21 þ ðd c

* tÞn22 þ ðd c
* tÞn23 þ 2dcn23

¼ dbn21 2 dcn21 þ dbn22 2 dcn22 þ dbn23 þ dcn23;

which, using the recursion for db (6), shows that

dcn ¼ dcn21 þ dcn22 2 dcn23 þ 1:

Together with dc1 ¼ dc2 ¼ dc3 ¼ 0, this gives a sequence of quarter squares, cf. [15, seq.
A033638],

dcn ¼ b ðn2 2Þ2
4

c:

Note that the ci,ns in (8) are divisors of gn. Thus the quantity dan 2 dgn is bounded from
above by dbn þ 12 ðdc * tÞn ¼ dcn þ 1, which grows asymptotically , n2=4.

3.2 More general periodic reductions

Next, we consider the mapping obtained from s-periodic reduction taking s1 and s2 to be
co-prime. Without loss of generality we may assume s1 $ s2. Remember we denote
s1 þ s2 ¼ q. Initial values x1; x2; . . . ; xq are given on a standard staircase [14], see also
[11] in which a general theory of periodic reductions for equations not necessarily defined
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on a square has been developed. The initial values are updated by a recurrence of order q:

xn ¼ Pðxn2s2 ; xn2s1 ; xn2qÞ; ð9Þ

cf. equation (4). For example, when s ¼ ð3; 2Þ, we pose initial values as in Figure 2. These
are updated by shifting over (2, 1), e.g. x5 7! x6 ¼ Pðx4; x3; x1Þ.

By setting xn ¼ an=bn, we derive for n . q as follows:

an ¼ an2qwn 2 abn2s1bn2s2bn2q; ð10Þ

bn ¼ bn2qwn; ð11Þ

where wn ¼ an2s1bn2s2 2 an2s2bn2s1 . We choose bi ¼ 1, i ¼ 1; 2; . . . ; q, so that an and bn
are polynomials in a1; a2; . . . ; aq. As before, from initial degrees dan ¼ dbn þ 1 ¼ 1 ðn ¼
1; 2; . . . ; qÞ we find that dan ¼ dbn þ 1 ðn [ NÞ, and that

dan ¼ dan2s1
þ dan2s2

þ dan2q 2 1; dbn ¼ dbn2s1
þ dbn2s2

þ dbn2q þ 1

are upper bounds for the degrees of an and bn. If f
tk divides gk with k , n, then f tn divides

gn, where

tn ¼ tn2s1 þ tn2s2 þ tn2q: ð12Þ

If initially ti ¼ 0, i ¼ 1; 2; . . . ; q2 1, tq ¼ 2, then

f 2jgn ) f tqþi jgnþi; i [ N:

Conjecture 1. The polynomial w2
n divides gnþq (for n . q).

It turns out that this conjecture is more difficult to verify for s2 ,, s1. We verified the
conjecture in the following ranges of values s2 , s1: s2 ¼ 1; . . . ; 5 with s2 , s1 # 9s2 and
s1 ¼ s2 þ 1 with s2 ¼ 6; 7; . . . ; 25; 50; 100; 150; 200; 250; 1000.

x1 x3 x5

x8x6x4x2

x1 x3 x5 x7 x9 x11

x14x12x10x8x6x4

Figure 2. (3, 2) periodic initial value problem updated in direction (2, 1).
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The conjecture would imply that wti
n divides gnþi. Assuming it, we can define

polynomials ci by

bn ¼ cn
Yn21

i¼1

ctn2i
i ;

which yields dbn ¼ dcn þ ðd c * tÞn. Using the recurrences for t and d b, we find

dcn ¼ dcn2s1
þ dcn2s2

2 dcn2q þ 1:

In the case s ¼ ð3; 2Þ, the sequence [15, seq. A001399]

0; 0; 0; 0; 0; 1; 1; 2; 3; 4; 5; 7; 8; 10; 12; 14; 16; 19; 21; 24; . . .

is given by

dcn ¼
47

72
þ ð21Þn

8
þ zn þ z2n

9
2

1

2
nþ 1

12
n2; z3 ¼ 1:

In general, the quantity dan 2 dgn is bounded from above by dcn þ 1, whose asymptotic
growth is

, ð2s1s2Þ21n2:

3.3 The exceptional case

The case s ¼ ð3; 1Þ is an exceptional case. Here the growth is linear, which resembles the
fact that the mapping can be linearized. Introducing h ¼ ðx1 2 x3Þðx2 2 x4Þ, the mapping

ðx1; x2; x3; x4Þ 7! x2; x3; x4; x1 þ
a

x4 2 x2

# $

reduces to h 7! a2 h, which is an involution.1 Nevertheless, it is interesting to see what
cancellations cause the growth to become linear.

We set xn ¼ an=bn to find

an ¼ an24ðan23bn21 2 an21bn23Þ2 abn21bn23bn24; ð13Þ

bn ¼ bn24ðan23bn21 2 an21bn23Þ: ð14Þ

Taking initial values ða1; a2; a3; a4Þ ¼ ðx2 w; yþ z;2w; zÞ and b1 ¼ b2 ¼ b3 ¼ b4 ¼ 1,
we have found that (see Appendix)

an ¼ y tn22ða2 xyÞtn23x tn24cn; ð15Þ

bn ¼ ysnþ1 ða2 xyÞsnx sn21 ; ð16Þ
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where t0 ¼ t1 ¼ s0 ¼ s1 ¼ 0 and

tnþ2 ¼ tnþ1 þ tn þ b n
4
c; ð17Þ

snþ2 ¼ snþ1 þ sn þ ð21Þnb n
4
c:

Define rn ¼ snþ4 2 tnþ1. One can show that rn ¼ nð1þ ð21ÞnÞ=4, which is non-negative.
It follows that the an=cn is a common divisor of an and bn. Dividing out this factor we are
left with denominator growth ðn $ 4Þ

dbn 2 da=cn ¼ rn23 þ 2rn24 þ rn25 ¼ n2 4:

Note that in this case the common divisor of an and bn consists of three different factors
only, whereas for other values of s the number of common divisors grows linearly with n.
Here, the multiplicity grows faster than what can be expected from the form of the
recurrence. In other words, a ‘miracle’ happens at every iterate: from (17) one can derive

tnþ4 ¼ tnþ3 þ tnþ1 þ tn þ b n
2
c;

which should be compared to (12), taking s1 ¼ 1; s2 ¼ 3, q ¼ 4.

4. Growth of degrees of projective mappings

The entropy of a rational mapping has also been defined in terms of the growth of the
degree of its equivalent in projective space [4]. Again we first consider the case s ¼ ð2; 1Þ.

4.1 A low-dimensional example

The 3D mapping is

ðx1; x2; x3Þ 7! x2; x3; x1 þ
a

x3 2 x2

# $
:

We set xi ¼ ai=a4, i ¼ 1; 2; 3. If we denote the image by bi=b4, then the homogenized
mapping is a 7! b:

a1

a2

a3

a4

0

BBBBB@

1

CCCCCA
7!

b1

b2

b3

b4

0

BBBBB@

1

CCCCCA
¼

a2ða3 2 a2Þ
a3ða3 2 a2Þ

a1ða3 2 a2Þ þ aa24

a4ða3 2 a2Þ

0

BBBBB@

1

CCCCCA
: ð18Þ

Note that the first, second and fourth components of the image share a common divisor.
We are interested in the growth of the multiplicities of such a divisor. Suppose that c
divides a1, a2 and a4. From (18) it follows that c is a common divisor of b1, b3 and b4.
We continue the argument

cjða1; a3; a4Þ ) cjðb2; b3; b4Þ;

Journal of Difference Equations and Applications 7
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and

cjða2; a3; a4Þ ) c2jðb1; b2; b4Þ; cjb3:

However, if we denote the common divisor of b1, b2, b4 by c, then miraculously c3 divides
all four components of the fourth iterate of a 7! b. At the next iterates the multiplicities
double. Denoting the multiplicity of c in the fourth component of the ith iterate by ti, we
have t1 ¼ t2 ¼ t3 ¼ 1, t4 ¼ 3 and (at least) tn.4 ¼ 2tn21. We now introduce two sets of
polynomials ci; di as follows:

a1

a2

a3

a4

0

BBBBBB@

1

CCCCCCA
7!

a2c1

a3c1

d1

a4c1

0

BBBBBB@

1

CCCCCCA
7!

a3c1c2

d1c2

d2c1

a4c1c2

0

BBBBBB@

1

CCCCCCA
7!

d1c2c3

d2c1c3

d3c1c2

a4c1c2c3

0

BBBBBB@

1

CCCCCCA
7!

d2c
3
1c3c4

d3c
3
1c2c4

d4c
3
1c2c3

a4c
3
1c2c3c4

0

BBBBBBB@

1

CCCCCCCA

7!

d3c
6
1c

3
2c4c5

d4c
6
1c

3
2c3c5

d5c
6
1c

3
2c3c4

a4c
6
1c

3
2c3c4c5

0

BBBBBBB@

1

CCCCCCCA

7! · · · 7!

dn22

Qn23
i¼1 c

tnþ12i

i cn21cn

dn21

Qn22
i¼1 c

tnþ12i

i cn

dn
Qn21

i¼1 c
tnþ12i

i

a4
Qn

i¼1c
tnþ12i

i

0

BBBBBBB@

1

CCCCCCCA

7! · · ·: ð19Þ

As an ordinary polynomial map, the degree of the nth iterate is

2n ¼ 1þ ðd c
* tÞnþ1:

Subtracting 2n ¼ 2þ 2ðd c * tÞn from this equation, and using the recursion for t, we find
that

dcn ¼ dcn21 þ dcn22 2 dcn23 þ 1:

Projectively, the nth iterate (with n . 2) is

ðdn22cn21cn; dn21cn22cn; dncn22cn21; a4cn22cn21cnÞ;

after division by the common factor
Qn23

i¼1 c
tnþ12i

i . We define

pn U a4
Yn21

i¼max ð1;n23Þ
ci:
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The projective degree is

dpn.3 ¼ 1þ dcn21 þ dcn22 þ dcn23:

The recursion for d c yields dpn ¼ dpn21 þ dpn22 2 dpn23 þ 3. Together with initial values
dpi ¼ 2i21, i ¼ 1; 2; 3, this gives the sequence [15, seq. A084684]

1; 2; 4; 8; 13; 20; 28; 38; 49; 62; . . . ;

which agrees with computations in projective space. The growth

dpn ¼
15

8
þ ð21Þn

8
2

3

2
nþ 3

4
n2

is the same as for a mapping connected to the discrete Painlevé I equation [4,9].

4.2 More general periodic reductions

Now we consider the projective mapping that corresponds to s-periodic reduction with
s1 and s2 co-prime. We take s1 # s2, and q ¼ s1 þ s2. It is convenient to take initial
values x0; x2; . . . ; xq21. They are updated using the recurrence (9), or equivalently, the
q-dimensional mapping

ðx0; x1; . . . ; xq21Þ 7! ðx1; . . . ; xq21;Pðxs1 ; xs2 ; x0ÞÞ:

Denoting the image of xi ¼ ai=aq by bi=bq, we find a mapping a 7! b in q-dimensional
projective space

a0

a1

· · ·

aq21

aq

0

BBBBBBBB@

1

CCCCCCCCA

7!

a1ðas1 2 as2 Þ
a2ðas1 2 as2 Þ

· · ·

a0ðas1 2 as2 Þ þ a2q

aqðas1 2 as2 Þ

0

BBBBBBBB@

1

CCCCCCCCA

:

As in the case s ¼ ð2; 1Þ, there is a common factor dividing all components but 1. When
s1 . 1, we have

cjða0; a1; . . . ; aq22; aqÞ )
c2jðb0; b1; . . . ; bq23; bq21; bqÞ
cjbq22:

8
<

:

When s1 . 2, we have

c2jða0; a1; . . . ; aq23; aq21; aqÞ;
cjaq22

8
<

: )
c 4jðb0; b1; . . . ; bq24; bq22; bq21; bqÞ
c3jbq23:

8
<

:

This doubling in most components continues until after s1 2 1 iterations we are led to
(if s2 . s1 þ 1)

c2
s121 jða0; a1; . . . ; as221; as2þ1; . . . ; aqÞ;

c2
s12121jas2

8
<

: )
c2

s121jðb0; b1; . . . ; bs222; bs2 ; . . . ; bqÞ
c2

s122jbs221:

8
<

:

Journal of Difference Equations and Applications 9
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Then we have doubling again, until after s2 2 1 iterations where the growth is similar to
the above. Doubling continues until . . .

Conjecture 2. The ‘miracle’ happens after q iterations where suddenly the multiplicity is
one higher than double the previous one.

Thus, we have only verified for a couple of small values of s1, s2. Conjecture 2 is harder
to verify, using direct calculation, than Conjecture 1. We will assume it in the sequel. We
define integer sequences by t1 ¼ 1 and

tnþ1 ¼

2tn 2 1; n ¼ s1; s2;

2tn þ 1; n ¼ s1 þ s2;

2tn; otherwise:

8
>><

>>:

We now introduce two sets of polynomials ci; di as follows:

a0

a1

..

.

aq22

aq21

aq

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

7!

a1c
t1
1

a2c
t1
1

..

.

aq21c
t1
1

d1c
t121
1

aqc
t1
1

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

7!

a2c
t2
1 c

t1
2

a3c
t2
1 c

t1
2

..

.

d1c
t221
1 ct12

d2c
t2
1 c

t121
2

aqc
t2
1 c

t1
2

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

7! · · · 7!

d1c
tq21
1 c

tq21

2 · · · ct1q

d2c
tq
1 c

tq2121
2 · · · ct1q

..

.

dq21c
tq
1 · · · ct221

q21 c
t1
q

dqc
tq
1 · · · ct2q21c

t121
q

aqc
tq
1 · · · ct2q21c

t1
q

0

BBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCA

7!

d2c
tqþ1

1 c
tq21
2 · · · ct1q

d3c
tqþ1

1 c
tq
2 c

tq2121
3 · · · ct1q

..

.

dqc
tqþ1

1 · · · ct221
q ct1qþ1

dqþ1c
tqþ1

1 · · · ct2q c
t121
qþ1

aqc
tqþ1

1 · · · ct2q c
t1
qþ1

0

BBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCA

7! · · · 7!

dn2qþ1

Qn
i¼1c

tnþ12i

i =cn2qþ1

dn2qþ2

Qn
i¼1c

tnþ12i

i =cn2qþ2

..

.

dn21

Qn
i¼1c

tnþ12i

i =cn21

dn
Qn

i¼1c
tnþ12i

i =cn

aq
Qn

i¼1c
tnþ12i

i

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

7! · · · : ð20Þ

P.H. van der Kamp10

Do
wn

lo
ad

ed
 B

y:
 [

va
n 

de
r 

Ka
mp

, 
Pe

te
r 

H.
] 

At
: 

02
:2

1 
13

 M
ay

 2
01

1



As an ordinary polynomial map, the degree of the nth iterate is

2n ¼ 1þ ðdc * tÞnþ1:

Subtracting 2n ¼ 2þ 2ðdc * tÞn from this equation and using the recursion for t, we find

dcn ¼

1; 1 # n # s1;

dcn2s1
þ 1; s1 , n # s2;

dcn2s1
þ dcn2s2

þ 1; s2 , n # q;

dcn2s1
þ dcn2s2

2 dcn2q þ 1; q , n;

8
>>>>><

>>>>>:

or dcn ¼ dcn2s1
þ dcn2s2

2 dcn2q þ 1 for all n, taking dcn,1 ¼ 0.
Projectively, the last component of the ðn2 1Þst iterate is

pn U aq
Yn21

i¼maxð1;n2qÞ
ci;

which has degree

dpn ¼ 1þ
Xn21

i¼maxð1;n2qÞ
dci :

We find

dpn ¼

n; 1 # n # s1 þ 1;

dpn2s1
þ n2 1; s1 þ 1 , n # s2 þ 1;

dpn2s1
þ dpn2s2

þ n2 2; s2 þ 1 , n # q;

dpn2s1
þ dpn2s2

2 dpn2q þ q; q , n:

8
>>>>><

>>>>>:

ð21Þ

For example, in the case s ¼ ð2; 3Þ the sequence of degrees

1; 2; 3; 5; 8; 12; 16; 22; 28; 35; 43; 52; 61; 72; 83; 95; 108; 122; 136; . . .

is given by

dpn ¼
127

72
þ ð21Þn

8
2

zn21 þ z12n

9
2

5

6
nþ 5

12
n2; z3 ¼ 1:

In general, the recursion (21) yields asymptotic growth

, ðs1 þ s2Þð2s1s2Þ21n2:

5. Conclusion

In [18] Viallet discussed two approaches: the heuristic method, where no proofs are
obtained, and serious singularity analysis, which is limited to 2Dmaps, or some exceptional
higher dimensional cases. The question was raised, how can we go further, in particular
to high dimensions? The arithmetical approach was given as one suggestion, cf. [1,7].
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In this paper, we have presented a different approach and showed that it works for high
dimensions, at least for (most) mappings obtained as reductions from an integrable lattice
equation. The only condition on the dimension is that one has to be able to iterate the q-
dimensional map q times to verify Conjecture 1 or 2. The scope of this approach is left open
for future research, e.g. to consider other reductions, other lattice equations and non-
integrable or almost integrable maps.
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Note

1. The function h is a 2-integral of the mapping. In [12] k-symmetries are used to perform explicit
dimensional reduction of mappings related to ðs1; 1Þ periodic reductions of lattice Korteweg–de
Vries. The dimension s1 þ 1 is reduced to s1 or s1 2 2, when s1 is even or odd, respectively.
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space, Solitons and Fractals 11 (2000), pp. 29–32.
[10] J. Hietarinta and C.-M. Viallet, Searching for integrable lattice maps using factorization,

J. Phys. A 40 (2007), pp. 12629–12643.
[11] P.H. van der Kamp, Initial value problems for lattice equations, J. Phys. A: Math. Theor. 42

(2009), 404019, 16 pp.
[12] P.H. van der Kamp and G.R.W. Quispel, The staircase method, in preparation.
[13] Y. Ohta, K.M. Tamizhmani, B. Grammaticos, and A. Ramani, Singularity confinement and

algebraic entropy: The case of the discrete Painlevé equations, Phys. Lett. A 262 (1999),
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Appendix: Solution of the (3,1)-map

We prove that the recurrences (13,14) yield expressions (15,16), with

c2nþ1 ¼ yðx2 wÞðxyÞn22 2 Pn; c2nþ2 ¼ ðz2 yÞða2 xyÞn21 2 yPn; ð22Þ

where

Pn U
Xn21

k¼0

Tn
n2kðxyÞkan212k;

with

Tnþ1
kþ1 ¼ Tn

k 2 Tnþ1
k ; Tn

0 ¼ Tn
n ¼ 1;

that is [15, seq. A112468],

Tn
k ¼

Xn

i¼k

ð21Þn2i
nþ k2 i2 1

n2 i

 !

:

Proof. Substituting (15,16) in (14) yields

c2n ¼ ða2 xyÞc2n22 2 yðxyÞn22; c2nþ1 ¼ xyc2n21 2 ða2 xyÞn21: ð23Þ

Substituting (22) in (23) yields

Pn ¼ ða2 xyÞPn21 þ ðxyÞn21; Pn ¼ ðxyÞPn21 þ ða2 xyÞn21;

which can be verified using the definition of P and T. Substituting (15,16) in (13) yields

ðxyÞi24 yðc2iþ1 2 ða2 xyÞi22Þ ¼ 2c2i23ðc2i 2 ða2 xyÞc2i22Þ

and

ða2 xyÞi24ðc2i 2 aðxyÞi23 yÞ ¼ 2c2i24ðc2i21 2 xyc2i23Þ;

which follows as a consequence of (23). A

Remark 1. The expressions for xn ¼ an=bn can be simplified as follows. Let

ðx1; x2; x3; x4Þ ¼ ðx2 w; yþ z;2w; zÞ; xn.4 ¼ xn24 þ
a

xn21 2 xn23
: ð24Þ

Then

x2nþ1 ¼ x2 w2 x
Pn

ðxyÞn21
; x2nþ2 ¼ yþ z2 y

Pn

ða2 xyÞn21
: ð25Þ
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