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Abstract We globally classify two-component evolution equations, with homoge-
neous diagonal linear part, admitting infinitely many approximate symmetries. Im-
portant ingredients are the symbolic calculus of Gel’fand and Dikii, the Skolem—
Mahler-Lech theorem, an algorithm of Smyth, and results on diophantine equations
in roots of unity obtained by Beukers.
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1 Introduction

A long-standing open problem is the classification, up to linear transformations, of
two-component integrable equations

ur\ _ (auy, +F(u,v,ug,vy,...) )
v, ) \bv,+Gu,v,ui,vi,...) )"
where F, G are purely nonlinear polynomials in variables u;, v;, which denote the

ith x-derivatives of u(x, t), v(x, t). Among the many different approaches to recog-
nition and classification of integrable equations, the so-called symmetry approach has
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proven to be particularly successful; see, for example, [22, 33] and references therein.
Until recently, all results obtained were for classes of equations at fixed (low) order 7.
This situation changed dramatically when, by using a symbolic calculus and results
from number theory, Sanders and Wang classified scalar evolution equations with re-
spect to symmetries globally, that is, where the order n can be arbitrarily high [28].
Our aim is to obtain a similar result for the class of multicomponent equations (1).

In the symmetry approach, the existence of infinitely many generalized symme-
tries is taken as the definition of integrability. A generalized symmetry of (1) is a pair
of differential polynomials S = (S1, S2) such that (1) is also satisfied by &z = u + €5},
= v+€S, up to order €2. This leads to the notion of Lie-derivative: L(K)S =0 < §
is a symmetry of (u;, v;) = K.

The Lie algebra of pairs of differential polynomials is a graded algebra. The lin-
ear part (auy, bv,) has total grading O; the quadratic terms have total grading 1,
and so on. Gradings are used to divide the condition for the existence of a sym-
metry into a number of simpler conditions: £(K)S = 0 modulo quadratic terms,
L(K)S = 0 modulo cubic terms, and so on. This has been called the perturbative
symmetry approach [18]. In the same spirit, the notion of an approximate symmetry
was defined [20]. If £L(K)S = 0 modulo cubic terms, we say that S is an approximate
symmetry of degree 2. And, we call an equation approximately integrable if it has
infinitely many approximate symmetries.

We contribute to the above mentioned problem by globally classifying equa-
tions (1) that are approximately integrable of degree 2. This is achieved by applying
the techniques developed in the special case of so-called B-equations, where any ap-
proximate symmetry of degree 2 is a genuine symmetry [34]. It extends older results
obtained by Beukers, Sanders, and Wang [2, 3]. See [39] for an overview on the ap-
plication of number theory in the analysis of integrable evolution equations and [21]
for more recent results. The present article is a revised and extended version of the
report [35].

As remarked in [20], the requirement of the existence of approximate symmetries
of degree 2 is very restrictive and highly nontrivial. On the other hand, an equation
may have infinitely many approximate symmetries of degree 2, but fail to have any
symmetries. This problem involves conditions of higher grading and is left open.

2 Generalized Symmetries

A symmetry-group transforms one solution to an equation to another solution of the
same equation. We refer to the book of Olver [25] for an introduction to the subject,
numerous examples, and applications.

We denote A = Clu, v,uy,vq,...] and g = A ® A. We will endow g with the
structure of a Lie algebra. For any K = (K1, K») € g the pair S = (51, $2) €gis a
generalized symmetry of the two-component evolution equation

()-(2)
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if the Lie derivative of S with respect to K ,

Sk (S1) —55(K1))
Sk (S2) —8s5(K2) )’

vanishes. Here, § is the prolongation of the evolutionary vector field with character-
istic Q, cf. [25, (5.6)],

L(K)S = ( A3)

- k 0 k 0
801.00) = ZDXQIM + DxQza—vk,
k=0

and the rotal derivative D, is!

> ] 3
D, = Z”k-H— + Vgp1 —.
= ouy ovg

The Lie derivative is a representation of g. This property, with P, Q € g

L(L(P)Q) = LIP)L(Q) — LIQ)L(P) “

corresponds to the Jacobi identity for the Lie bracket [P, Q] = L(P)Q which is
clearly bilinear and antisymmetric, cf. [25, Proposition 5.15]. Another way of ex-
pressing (4) is saying that g is a g-module. Another g-module is given by A, the
representation being L(K)F =8k (F) with K € g, F € A.

The word “generalized” stresses the fact that the order of a symmetry can be big-
ger than one. Generally, symmetries come in hierarchies with periodic gaps between
their orders. For example, the Korteweg—De Vries equation u; = u3 + uu possesses
odd order symmetries only. Concurrently, the KDV equation has approximately sym-
metries at any order.

3 Grading

Denote o, = (4, 0) and o, = (0, v). If P in some g-module is an eigenvector of L(o,)
(or of L(0y)), the corresponding eigenvalue is called the u- (or v-) grading of P. If
P has u-grading i and v-grading j, we say that i + j is the total grading of P. One
verifies that g can be written as the direct sum

s=Pd. o= P ¢,

k>0 —1<i<k+1

where elements of g’/ have u-grading i and v-grading j. For example, the pair
(u1v2, v3v4) € g% has total grading 1. Similarly, we have

AZ@Ak, Akz @ Ai,k—i‘

k>0 0<i<k

n [39, Sect. 4.1] the total derivative was denoted &y . This is misleading as Dy = 5(141 vp)- Also, 8¢ is
the unique C-linear derivation on A satisfying Sdg,v)=Q and g o Dx = Dx 0.
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The crucial property of a graded Lie algebra is that the u-, (or v-, or total) grading
of L(P)Q is the sum of the u-, (or v-, or total) gradings of P and Q. This follows
directly from property (4). Gradings are used to divide the condition for the existence
of a symmetry into a number of simpler conditions.

We study evolution equations of the form

<”’)=K0+K1+~--
Ut

=Ko 4 k2 KO KO g2 5)

with k%0 = (au,,, bv,) and symmetries of similar form § = S + S! 4+ ... with
§0 = §0.0 — (cuty,d vm).2 Here, the dots may contain terms with total grading >1.
Certainly, we have £(K%9)5%0 = 0. The symmetry conditions with total grading 1
are

L(K12)s%0 4 £(k*0)s7 12 =0,
L£(K*0) s 4+ £(k*1)s*0 =0,
L(Kk*)s"0 + £(k")s%0 =0,

L(K*0) s>~ 4+ (k>0 =o0.

Q)

We say S is an approximate symmetry of degree d if the symmetry conditions of
total grading 0, 1, ...,d — 1 are fulfilled. Sanders and Wang [28, 29] proved an im-
plicit function theorem, which under certain conditions, guarantees the existence of a
symmetry from the existence of an approximate symmetry. In this paper, we restrict
ourselves to solving (6). Thus, we classify equations that admit infinitely many ap-
proximate symmetries of degree 2, which is a necessary condition for integrability.
In the sequel, we omit the adjective “of degree 2.

4 The Gel’fand-Dikii Transformation

Comparing the Leibniz rule and Newton’s binomial formula,

n

)y =Yy <’Z)uivn_i, x+»"'=) <?)xiy”i,
i=0

i=0

we see that differentiating a product is quite similar to taking the power of a sum. On
the right-hand side, the index counting the number of derivatives, gets interchanged
with the power, while on the left-hand side, differentiation becomes multiplication
with the sum of symbols. Of course, with expressions containing both indices and

2We remark that only if @ = b then S may also contain terms SELFL In this paper, we implicitly assume
this does not happen.
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powers, one has to be more careful. The Gel’fand-Dikii transformation [9] pro-
vides a one-to-one correspondence between A"/ and the space C'/: polynomials
in C[x1,...,x;, y1, ..., y;] that are symmetric in both the x and the y symbols. One
may deduce the general rule from

I R L
ujuvs > — - ujuv3,

or consult one of the papers [18, 21, 39]. All usual operations from differential algebra
translate naturally. In particular,’

ij .
L(KO’O)Si’j > Ginla. bl ijo Si-J,
0 Gypla, bl
where the so called G-functions are given by

Grnla blx.y) = a(xf + - +x8,) + 507+ +])
—a(xy+ -+ xi41+ 01 +"'+)’j)n’

and
Gy la, bl(x, y) = G [b.al(y, x). )

Symbolically, we can solve the symmetry conditions of total grading 1 (6), as follows.
We may write the components of the quadratic parts of S as, with k =1, 2,

— G le.d] =
Sl = 7’%” K.’ ®)
Giula, bl

Equation (5) has an approximate symmetry at order m with linear coefficients c, d if
and only if for all i + j = 1 and k = 1, 2, the right-hand side of (8) is either polyno-
mial or undefined (0/0).

5 Nonlinear Injectivity

In our classification, we distinguish between equations whose approximate symme-
tries necessarily have nonvanishing linear part and equations that allow purely non-
linear approximate symmetries.

Definition 1 Let K° have total grading 0. We call K° nonlinear injective if
L(K%)S =0 implies that S has total grading 0. And, we call an equation nonlinear
injective if its linear part is nonlinear injective.

3 As a correction to [39, Sect. 4.3], when (f, g) € g~/ then f € Ai*+1J and g € A%/ +1. One should think
of (f, g) as representing the vector field fd, 4+ gdy.
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Table 1 Listof KO and S! such that £(K%)S! =0

I 0, v) (2u, v) (auy,vy),a#1 (uy,v1) 0,vp),n>1

sl g1,0 g—1,2 A2’0®A0’2 gl A2’0®0

With K° = (au,, bv,), the kth component of £(K°)S*/, with nonzero S*-/, van-
ishes if and only if g,i’n [a, b] = 0. Solving the later equation with i 4 j =1 yields
ab=0,n>0,orn=1,or (a —2b)(2a — b) =0, n = 0. In Table 1 we have dis-
played all K° and corresponding S', such that the equation (u;, v,) = K° 4+ K !, with
arbitrary K! € g', has purely nonlinear approximate symmetries S' € g'. Note that
the classification is performed up to linear transformations. In particular, we may in-
terchange u and v. Therefore, without loss of generality, we set b = 1 and classify
the values of a up to inversion.

For the same choices of K° and S!, the linear equation (us,v,) = K 0 has sym-
metries (cuy,, dvy,) + S I forallm e N and ¢, d € C. Indeed, every B-equation, that
is, an equation of the form (5) with K € g2, admits the zeroth order symmetry
(2u, v). In fact, every tuple S € g is a symmetry of (u;, v;) = (41, v1). Or, in other
words, (11, v1) is a symmetry of every equation.

Only a subset of the equations (u;, v;) = K 04 k!, with particular K le g, has
infinitely many symmetries with nonvanishing linear part. There is a good reason for
including such equations in the classification: Their approximate symmetries may
correspond to approximately integrable nonlinear injective equations. One integrable
example (37), is given in Sect. 11. On the other hand, nonlinear injectivity is one of
the conditions in the implicit function theorem of Sanders and Wang; see Sect. 3.

6 Necessary and Sufficient Conditions

In this section, we introduce convenient notation, we give necessary and sufficient
conditions for a nonlinear injective equation to be approximately integrable, and we
outline how we perform the classification.

The components of (5) are

(uz)_ aun+K11’O+K?’1+K1_1’2+... ©
vy bo, + Ky + KO+ Ky )

We denote the symbolic representation of the 6-tuple K 11 ’O, K ?’], K 1_ 1’2, Kg’l,
Kzl 0, K22’71 by K!. And similarly, we write Sll’o,...,Sg’f1 > St and G, =
gl Tar e 922’;1 A 6-tuple H is called proper if it consists of polynomials with the

right symmetry properties, that is, if H € CHeclect?eCc*?ecC!H! C20.
Thus, K!, S', and Gula, b] are proper tuples. We will also consider s-tuples, with
s <6. It should be clear from the context in which space a proper s-tuple lives.
We say that an s-tuple H = Hyy}, ..., H;) divides an s-tuple P = Pjy3,..., Py if
Hjjy divides Pp;j forall 1 <i <s and we write P/H = Ppy1/Hpy, ..., Pis1/His)- We
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are now able to state the following: (9) is nonlinear injective and has an approx-
imate symmetry of order m with linear coefficients ¢, d if and only if the 6-tuple
S'=Gylc,d1K"'/G,la, b] is proper.

Let H, Gylc, d] be proper s-tuples. By m(H) we denote the set of all m € N such
that there exists ¢, d € C for which H divides G,,[c, d]. And, the set of all proper
s-tuples H with infinite m (H) will be denoted H?®, or simply H when it is clear from
the context what s is. We organize H € H by the lowest order n at which H divides a
G, -tuple. By H,, we denote the set of all proper tuples H with infinite m(H) whose
smallest element is 7.

We have the following lemma.

Lemma 2 Equation (9) is nonlinear injective and approximately integrable if and
only if there is a proper 6-tuple H with m(H) infinite, such that Gyla, b] divides
K'H.

Proof

<« The fact that G, [a, b] divides a proper tuple implies that (9) is nonlinear injective.
The equation is approximately integrable because for every m € m(H) there are
¢, d such that
51 _ Gnle.d] K'H
H  Gyla,b]

is proper. N R

= Because (9) is nonlinear injective, the tuple S' = G,,[c,d1K'/Gpla, b] is well
defined for all m. The integrability implies that S! is proper for infinitely many
m € N and c,d € C. This only happens when G, = H P factorizes such that P
divides K! and m(H) is infinite. O

According to Lemma 2, to classify approximately integrable nonlinear injective
equations it suffices to determine the set H® of all proper 6-tuples H with infinite
m(H). This will be done using results from number theory, provided in Sect. 7. In

Sect. 8 we determine the proper divisors H € H' of infinitely many functions g,’; lmfi

for all possible i, k. Next, in Sect. 9 we determine the proper divisors H € H? of
infinitely many 2-tuples g;”fn‘l s g,{;jn" , Where i # j if k = 1. From those results, we
determine the set H° = Unen Hg in Sect. 10. For each n € N the set H,, is related to
the set of nth order approximate integrable equations, which are not in a lower order
hierarchy.

We would like to provide an explicit, but minimal list of approximate integrable
equations from which one can derive all approximately integrable equations. The
following observation is useful. Let P and Q be proper tuples. From Lemma 2 it
follows that if (9), with K! = P, is approximately integrable, then the same equation,
but with K! = P 0, is also approximately integrable. Therefore, the classification in
Sect. 10 describes the divisors that have maximal degree. And the corresponding list
of equations comprises equations with quadratic parts K! of minimal degree.

From the results of Sects. 8, 9 it follows that H,, is nonempty for all n € N. That

means there are new approximately integrable equations at every order. In Sect. 10 we
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classify the highest degree divisors in 7, globally, that is, for any order. We are not
able to explicitly list all corresponding equations, as this paper is bound to be finite.
In Sect. 10 we do provide a complete list of approximately integrable equations of
ordern <5.

We explicitly provide the linear parts (cu,,, du,,) of the symmetries of the equa-
tions in our list. This enables one to calculate any approximate symmetry in principle;
see the Maple code provided at [37]. We remark that if one multiplies the quadratic
tuple of an equation with a proper tuple, the resulting equation may have more sym-
metries than the original one. As we will now illustrate, it may also be in a lower
hierarchy.

From Lemma 2 we know that if H € H,, and Gy[a, b] divides K ' H, then (9) is
approximately integrable with approximate symmetries at (higher) order m € m(H).
The following lemma applies.

Lemma 3 Suppose H € H,, and Gyla, b] divides K'H. Then (9) has more symme-
tries than the ones at order m € m(H) if and only if there is a divisor Q € Hy<, of H,

with m(H) smaller than and contained in m(Q), such that G,[a, b] divides K! 0.

Proof Given a divisor Q € Hy of H such that G,[a, b] divides K! Q, it is clear that
(9) has a symmetry at every order m € m(Q) with

51 _ Gnle.d] K'Q

Q0 Gula, bl

To see that the converse holds, let Y denote the set of orders of approximate symme-
tries, with m(H) smaller than and contained in Y. We need to prove that there is a
Q such that Y = m(Q). Take m € Y \ m(H) and write G, = H P. Since G, divides
I?IH, we have K! = PR. The tuple St = gml?l/g,, = GnR/H is proper. Since
m & m(H), H does not divide G,,. There is a proper divisor Q of H such that Q
divides G,,, and H/Q divides R, that is, G,, divides K! Q. Since Q divides H, the set
m(Q) is infinite. O

Remark 4 One can start with an equation that is not nonlinear injective, multiply
its quadratic tuple, and end up in the hierarchy of a nonlinear injective equation.
For example, apart from certain purely nonlinear symmetries, 1.2 has approximately
symmetries with linear part (cu,,, dvy) for any ¢,d € C when m is odd. By multi-
plying its quadratic tuple with the tuple [0, (fix1 + foy1)/f, (1 +32)/2,0, ((1x1 +
i2y1)/1, (x1 + x2)/2], we obtain the equation

(ut) _ (le + fiurv + fouvy +gvv1>

vy v +ijuv +iouvy + juug

which has approximate symmetries at all orders m > 0 for any ¢, d € C, and it is in
the hierarchy of an equation of the form 0.3 if and only if f; =i> = 0. In this paper,
we do not explicitly describe all symmetries of all approximately integrable equations
that can be obtained from our list.
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7 Results from Number Theory

Generally speaking, progress in classifying global classes of evolution equations has
been going hand in hand with applying new results or techniques from number the-
ory. For the classification of scalar equations [28], the new result was obtained by
Beukers, who applied sophisticated techniques from diophantine approximation the-
ory [1]. The Skolem—Mahler-Lech theorem stated below, first appeared in the litera-
ture in connection with symmetries of evolution equations in [2]. Beukers, Sanders,
and Wang used a partial corollary of this theorem to conjecture that there are only
finitely many integrable (9) with K - [0,0,1,0,0,0]. Their conjecture became a
theorem in [3], where an exhaustive list of the integrable cases was produced using a
recent algorithm of Smyth [4] that solves polynomial equations f (x, y) = 0 for roots
of unity x, y. And the classification of B-equations was due to results on diophantine
equations in roots of unity, again proved by Beukers [34].

However, as it turns out, we do not need entirely different results or techniques
from number theory to globally classify two component evolution equations, with
homogeneous diagonal linear part, admitting infinitely many approximate symme-
tries.

7.1 The Skolem—Mahler—Lech Theorem

A sequence Uy, Uy, U,, ... satisfies an order n linear recurrence relation if there exist
S1,...,S8, such that

Untn =51Umntn—1+ -+ +5nUp.

The general solution can be expressed in terms of a generalized power sum

k
U, = ZA,-(m)a;",

i=1

such that the roots ¢; are distinct and nonzero, and the coefficients A;(m) are poly-
nomial in m. By definition the degree of U, is d = Zle d;, where d; is the degree
of A;(m). It can be shown that the order of the sequence equals n =k + d [40].4

A generalized power sum vanishes identically, U,, = O for all m, precisely when
all its coefficients vanish as polynomials in m, A;(m) = 0 for all i. We prove this
by induction on the degree. For d = 0, the statement is plain; the functions & —
ocf‘ are linearly independent for distinct ;. Let S : f(m) — f(m + 1) be the shift
operator. Suppose d > 0; then for some i we have d; > 0. The generalized power sum
Vin = (S — ;) Uy, has degree d — 1. By induction hypothesis we have, in particular,
a; (S —1)A;(h) =0. Since «; # 0, this implies d; = 0, and hence we are done.

Theorem 5 (Skolem—Mahler—Lech) The zero set of a linear recurrence sequence
{m € N: U,, = 0} is the union of a finite set and finitely many complete arithmetic
progressions.

4In [40], one should replace (2.1.2) by (1.3) from [41].
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Note that an arithmetic progression p is complete if p = {f + gh : h € N} for
some remainder f € Ny and difference g > f, g € N. Theorem 5 was first proved
by Skolem for the rational numbers [31], by Mahler for algebraic numbers [14], and
by Lech for arbitrary fields of characteristic zero [13]. The proofs rely on p-adic
analysis and consist of showing the existence of a difference g € N such that every
partial sum, with 0 < f < g,

k
Upsgh = y_(Ax(f + g ) (@f)" (10)

i=1

either has finitely many solutions £ or vanishes identically. We refer to [10, 23], and
references therein, for sensible sketches of a proof.
If (10) vanishes identically, the sum on the right breaks up into disjoint pieces

I C {1,...,m} each of which vanishes because the roots aig, i € 1, coincide and the

sum of their coefficients Zie 1A+ gh)aif vanishes identically as a function of
the variable &. Since A; (f + gh) does not vanish identically, each piece contains at
least two terms. In particular, the following will be useful.

Corollary 6 If the equation
ajaf’ + amay + - +aray’ =0,
with nonzero a;, «; € C has infinitely many solutions, the set {ay, @z, ..., o} parti-
tions into a number of disjoint subsets, such that each subset has at least two mem-
bers, and the ratio of any two members of a subset is a root of unity.
For instance, when k = 3, the triple 1 /a2, op /&3, o1 /o3 consists of roots of unity.

7.2 Diophantine Equations in Roots of Unity

The following theorems are of crucial importance for the classification problem con-
sidered in this paper.

Theorem 7 (Beukers) Take m > 1 integer. Let u, v be distinct roots of unity, both
not equal to 1, such that v # =" when m is odd. Then

(1=v")A =" = (1= p")1 =" 1D
implies W™ =v" = 1.

Theorem 8 (Beukers) Take m > 1 integer. Let ., v be distinct roots of unity, not both
equal to 1, such that v # =" when m is even. Then

(L") (1= )" = (14 u") (1 = )" (12)

implies W =v"™ = —1.
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Theorem 9 (Beukers) Take m > 1 integer. Let ., v be roots of unity with pu # 1.
Then

(1+v") A =" = (1= p") (A =)™ (13)
=1

implies u = —v" = 1.

Whereas the Skolem—Mahler—Lech theorem implies that certain ratios are roots of
unity for the equation to have infinitely many solutions, the above theorems tell us
precisely what the solutions are. In particular, they imply that the zero sets consist of
complete arithmetic progressions only.

Theorems 7, 8, and 9 are slightly more general than [34, Theorems 22, 25], which
were proved by Beukers. We will not provide their proofs here, however, we do in-
dicate the difference between the two sets of theorems, which is threefold. Firstly, in
Theorems 7, 8, and 9 we do not assume that , v # —1. In certain cases, this follows
from [34, Proposition 24], in others one has to rely on the following.

Proposition 10 (Beukers) If v is a root of unity, such that
(1+vm)2mt =1 -y, (14)
then v =—1 and m is even.

Proof By Galois’ theory, we may assume that v = e>"//” Taking n = 1 does not give
any solutions. If n =2, then m has to be even. We will show there are no solutions
with n > 2. When m = 1, there is no root of unity such that 1 +v =1 — v. Taking
m =2 it follows that n = 2. So, we may assume that m > 2.

Since v # 1, |1 + v™| does not vanish and we have |1 + V™| > sin(;r/n). Also, we
use |1 — v| < 2z /n. This gives

m
(21) > 1= v" =142 > sin<1)2m‘.
n n

Division by 2”7 /n yields (taking n > 2)

B A
— >sin| — | — > 41,
n n /2w

which implies (taking m > 2) that w/n > .64, or n < 5. When n =3, |1 4+ v"| equals
1 or2,and |1 — v| = v/3, whose mth power does not equal 2 or 2"~ When n = 4,
|1+ ™| equals 0 or ~/2 or 2, and |1 — v| = +/2, whose mth power, with m > 1, does
not equal 0 or /22! or 2™, g

Secondly, we do not in general need v # @ and v # 1/u. Lastly, we note that in
[34, Theorem 25] it was mistakenly supposed that u”* # —1. This should have been
u" # F1 depending on the sign in [34, (10)].
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8 Homogeneous Quadratic Parts

In this section, we determine the proper divisors of infinitely many 1-tuples G,, =
Q,’(’yln*’ for all possible choices of i, k.

Due to (7), we may take k = 1; equations of the form (u;, v;) = (auy,, bv, + K)
are related, by the linear transformation u <> v, to equations of the form (u;, v;) =
(au, + K, bv,). We start with the simplest case i = 1.

8.1 Classifying Approximately Integrable Scalar Equations

The Lie derivative of the quadratic part S! of a possible scalar symmetry with respect
to the linear part K = u,, of a scalar equation u; = K% + K! + - .. is symbolically
given by L(K?)S! > G1 ! with G-function

Gax, ) =x"+y" — (x + )" =G 0a, b](x. y)/a.

Thus, the case i = k = 1 is equivalent to the scalar problem, which is easily seen by
taking v = 0. The function Q,ll is also proportional to g;;,}[l [a, a], so the results apply
to the case a = b as well.

In the classification of scalar equations [28], a different route was taken than the
one we take. Namely, whereas we perform our classification with respect to the ex-
istence of infinitely many (approximate) symmetries, Sanders and Wang performed
their classification with respect to the existence of symmetries (finitely many or in-
finitely many). They showed in particular that there are no scalar equations with fi-
nitely many generalized symmetries, which confirms the first part of the conjecture
of Fokas [8]:

If a scalar equation possesses at least one time-independent non-Lie point sym-
metry, then it possesses infinitely many. Similarly, for N-component equations,
one needs N symmetries.

We note that the conjecture of Fokas does not hold inside the class of B-equations [38].
In their classification Sanders and Wang relied on the following “hard to obtain” re-
sult from number theory, proved in [1].

Theorem 11 (Beukers) Let r € C such that r(r + 1)(r> +r + 1) % 0. Then at most
one integer m > 1 exists such that Q,L(l, r)y=0.

In contrast, classifying the equations with respect to (approximate) integrability
can be done using the following “easy to obtain” result. Proposition 12 is, of course,
not as strong as Theorem 11. For obvious reasons, we do not include the constant
divisors in Hj in our lists.

Proposition 12 The proper divisors of infinitely many gll ,’21 [c,d](1, y) are products
of

1. yeHy,m>1

2. 14 y)eHs, m=1mod 2
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3. 1+y+y*eHs,m=1,5mod 6
4. 14+y+y»H?eH7,m=1 mod 6.

Proof According to the Skolem—Mahler—Lech theorem, see Corollary 6, if the dio-
phantine equation g,ln(l ,r) = 0 has infinitely many solutions m, then r =0, —1 or
r and r + 1 are both roots of unity, in which case r is a primitive 3-rd root of
unity. The orders are found by substituting the values for . We have Q,‘n(l, 0)=0
for all m, g}m(l, —1)=14 (=1) =0 when f =1, and, with | +r +r2 =0,
g}%h(l, ry=1+r/ —(1+4r)f =0when f =1 or f =S5. Finally, by solving the
simultaneous equations g,i,(l, r)= a,g,ln(l, r) =0, we find that r is a double zero
when both 7 and 1 + r are (m — 1)-st roots of unity. Il

As a particular corollary of Proposition 12 we have the following. Equation (9)
with a = b and n =2, 3, 5,7 is approximately integrable for arbitrary K.

8.2 B-equations

The case i = —1 has been globally classified with respect to integrability in [34].
This class of equations is particularly nice because any approximate symmetry is a
symmetry. We go through the main ideas and formulate the results slightly differently
from [34], minimizing the role of biunit coordinates. This makes the argument cleaner
and sets the stage for the main results of this paper. As the case ¢ = d is covered in
the previous section, it will be excluded in what follows.

Proposition 13 All proper divisors H of Q;rln’z[c,d](l, y) with ¢ # d and m(H)
infinite can be obtained from the following list.

l+yeH;,m=1mod 2,d #0

A+y)'eH,,m>n,d=0

(y—r)ry—1)eHry,r#—-1,m>1

(y —r)?(ry — D? € Hy, r # —1, n > 3 the smallest integer such that r"~' = 1,

m=1modn—1

5. —-nr)or—D(y—-—rr—-1)eH,, r=v(u—1)/(v—1), u, v roots of unity
such that (u—1)(v —1)(u —v)(uv — 1) #0, n > 3 the smallest integer such that
uW'=v"=1,m=0 mod n

6. 1+y"eH,,m=n mod 2n, c=0.

L=

Unless stated otherwise, the coefficients of the linear part of the symmetries satisfy

c/fd=1A+r")/(1+r)"

Proof We study the zeros of the function
Grnlle.dl(lr)y=d(1+r") —c(1+r)".

Take d # 0. Then r # —1 is a zero when

c 1+rm (15)
d (1+rm

@ Springer



572 Found Comput Math (2009) 9: 559-597

in which case 1/r is a zero as well. The point r = —1 is a zero when m is odd, where
it has multiplicity 1, or when d = 0, where the multiplicity is m.

The other multiple zeros are obtained from setting the r-derivatives of the func-
tion to zero see also [2]. Taking r # —1 and solving the simultaneous equa-
tions G.2(1,r) = 8,G2(1,r) = 0 yields r~! = 1, while 8,G*(1.r) =

82g1 L, 2(1 r) = 0 yields r = —1. Therefore, all multiple zeros r # —1 are double

zeros. We have ¢/d = 1/(1 4+ r)"~! and 1/r is a double zero as well. There are no
other double zeros since the equations |r| = |s| and |1 4+ 7| = |1 + s| imply that r = s
or r = 5. Let n be the lowest integer such that "~ = 1, so r is a primitive (n — 1)-st
root of unity. All m such that 7! =1 are m =1 mod n — 1.

To classify higher degree divisors, we have to find all r, s € C, with (1 +r)(1 +
s)(r —s)(rs — 1) # 0 such that the diophantine equation

Un(r.s) =G [T+ 7", (14+1)"](1.5)
=1+r)"+(1+r)s)" —(1+9" = (L+9r)" =0

has infinitely many solutions m. According to the Skolem—Mahler-Lech theorem;
see Corollary 6, either s = 0 or one of the pairs
1+r (1+9)r 1+r 1+s
s or ,
14+s (1+r)s r(l4+s) s(1+r)

r,s (16)

consists of roots of unity. When rs = 0, we have ¢ = d, which we exclude. Suppose
the first pair of (16) consists of roots of unity. Let u = (1 +r)/(1 + ) and v =
+1/s)/(1 + 1/r). Then we may write r = M (u, v), where

M, vy =vE—=
v—1

and find that s = M(1/u, 1/v) =r. In terms of roots of unity u, v, we have

1_ m
Um<r,s>=( a W)2> (=" (1 =v") = A =v)"(1 = u")).

Note that (u — 1)(v — 1)(u — v)(uv — 1) £ 0 because (r — s)(rs — 1) # 0. Hence,
using Theorem 7, we obtain " = v™ = 1. When n is the lowest integer such that
" =v" =1, uor v are primitive nth roots of unity. And all m such that u™ =v™ =1
are given by m =0 mod n. Next, suppose the second pair of (16) consists of roots
of unity. By a transformation r — 1/r, we get the first pair. Since M(u,v)~! =
M(1/v,1/u), we get the same solutions, but with s = 1/r. Finally, when r, s are
roots of unity Uy, (r, s) = 0 can be written in terms of y = —r, v = —s,

Un(r,s) = (1 =" (14 (=v)") = A = )" (14 (=w)").
When m is odd Theorem 7 applies and when m is even Theorem 8 applies. g
Consider the set of points

{r eC:r=M@u,v),u" =v"=1,(u— D —-1D(—v)(uv— 1)750}. 17
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Fig. 1 The corner points r,
with |r| # 0, 1 satisfy

Up (r,7) =0 when

m =0 mod 7. The two circles
are [rl=1and |r+1|=1

To illustrate where these points lie in the complex plane, we use biunit coordinates.
Take 1/, ¢ € C such that || = |¢| =1 and let r be the unique intersection point of
the lines YR and ¢pR — 1. Then r = R (¥, ¢), with

21
R(w,¢),=w2h,

and (¥, ¢) are called the biunit coordinates of ». Denote further
R(A,B),={reC:r=R(a,b),acA,beB,a*#b},
and
@mz{re(c:rmzl,rz;él}.

Using the algebraic relation /\/l(¢>2, wz /¢2) =R, @), one verifies that the set (17)
isequal to {r € R(D2y, P2n) : 7| # 1}. For m =7 the upper half of this set is plotted
in Fig. 1.

8.3 Quadratic Terms Bilinear in u-, and v-derivatives
This section deals with the case i = 0.

Proposition 14 If H is a proper divisor of g‘f;}n [c, d](1, y) with m(H) infinite, then
H is a product of the following polynomials.

yeH,m>0,c#0

y'eHy,m>n,c=0

(y—r)eHy,r#0,m>1

(y =)y +r)+r)eH;, m=1 mod 2 (when (1 +r)*" =1, r #0, we also

have m =0 mod 2n,d =0)

5. (y = r)? € Hap, r # 0, n the smallest integer such that (1 +r)* ' =1, m =
1 mod 2n —1

6. (y —r)2(y(1+7)+7r)? € Hopy1, n > 1 the smallest integer such that (1 4r)>" =

1,m=1 mod 2n

Sl e
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7. (y=r)A+r)+r)(y—r) (0 +r)+r)€Hy,n>30dd,r =(u—v)/(v—1),
(w—1D =1 (u—v)(uv —1) #0, n the smallest integer such that u" =v" =1,
m=n mod 2n

8. y—r)(y—r)eHy,n>2even,r =(u—v)/(v=1), (un—=D@ -1 (—-v)(uv—
1) #0, n the smallest integer such that £* =v" =1, m =0 mod n

9. =r)A+N+7r) € Hy,n >2even,r = (v—p)/(n—1), (n—v)(uv—1) #0,
n the smallest integer for which " =v"* = —1, m =n mod 2n.

Unless stated otherwise, the coefficients of the linear part of the symmetries satisfy

c/d=r"/(1+r)" —1).
Proof We are after the zeros of infinitely many polynomials
Grmle dl(1,y) =c—c(1+y)" +dy™.

Take ¢ # 0. Then r # 0 is a zero of precisely when
d _ 1+rn"—1

c rn

(18)

When m is odd, —r/(1 + r) is a zero as well. The point r = 0 is a zero for
all c¢,d,m. It has multiplicity 1, except when ¢ = 0 where the multiplicity is m.
One can show that the multiple zeros r # 0 of g?}n [c,d] are the double zeros
{r#0:(1+r)""! =1}, with ¢/d = r™~!. When r is a double zero, the only other
double zero is ¥ = —r/(1 + r) when m is odd.

Higher degree divisors are given by distinct nonzero r, s € C, withr +rs +5 #0
when m is odd, such that the diophantine equation

Un(r.s) =GP [r™. (1 + )™ — 1](1,5)
=r"—r"A+)"+s"A+r)" —s"=0
has infinitely many solutions m. The cases r = —1, s = —1 yield the primitive third

roots of unity, as in Proposition 12, where ¢ = d, which we excluded. Then according
to the Skolem—Mahler—Lech theorem, at least one of the pairs

r r(1+s) s s
-, or i
s s(1+r) r(l+s) r

A+r) or 14+rl+s (19)

consists of roots of unity. Suppose the first pair consist of roots of unity. Let u =r/s
andv=r(l+s)/s/(14+r). Then (u—1)(v—1)(ux —v)#£0, uv # 1 when m odd,
r=N(u,v)and s =N(/u, 1/v) =F with

n—v
N(w,v) = :
v—1
When pv =1 and m even we have r = —r/(1 4 r). In terms of u, v, we get

vV—H " m m m m
Um(”vs)=(m> (A= (1=v") = A =»)"(1—=pu™)),
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which implies using Theorem 7 that ¢ = v = 1. In biunit coordinates, we have
r € R(®Pay, Pom), such that [r + 1| % 1 when m odd.

Next, suppose that the second pair of (19) consists of roots of unity, u =
—r/s/(1+r),v=—(1+s)r/s. We have (u — 1)(v — 1)(u — v)(uv — 1) # 0 when
r +rs + s # 0, that is, when m odd. When r + rs + s = 0 and m even we get
(14r)™ = 1, which corresponds to b = 0. Otherwise, r = C(u,v) = (v—pu)/(u—1)
and s = —r /(1 + ). In terms of u, v, we have

V— [
pulp— D —1)

When m is odd Theorem 7 implies " = v = 1, while for m even Theorem 8 yields
u™ =v™ = —1. The biunit coordinate description can be found as follows. Solve the
simultaneous equations K(u, v) = R, ¢), K1/, 1/v) = R(1/y, 1/¢), to find
that u = ¥2/¢>, v = 2. For odd m we do not find new values for r, but for m even
we get r € R(Dam \ Pom, Pom), such that |r 4 1| # 1. Finally, suppose that the last
pair of (19) consists of roots of unity. Then u =1+ r and v = 1 + s satisfy (11).

According to Theorem 7 we have (1 + r)™ = (1 + s5)™ = 1, that is, the second linear

Un(r,s) = ( ) (A=) (1 + ™) = A =" (14 (=)")).

coefficient d vanishes. O
Actually, when m is odd the two cases i = —1,i = 0 are related. We have

Grple.d1(1, 1) =G; ) *[e.d1(1, —1 — 7). (20)

Indeed, at odd order m, the zero r = —1 of glf},f translates into the zero r = 0 of

g?;;. Also, the image of the unit circle |z| = 1 under f3 :r — —1 — r is the unit
circle |z + 1| = 1, relating the double zeros of the two G-functions. The symmetry
Jr»:r — 1/ristranslated into f4s = fz o fo0 f3:r — —r/(1 +r). And we note that
set R(®,,, ®;,), is invariant under the group of anharmonic ratios, generated by f>
and f3, cf. [16]. Using the above, for odd m one may obtain Proposition 14 from
Proposition 13 and vice versa.

Summarizing this section, it implies that equations with homogeneous quadratic
parts are approximately integrable when n < 4. At any order n > 4, a finite number
of new approximately integrable equations has been found.

9 Non-Homogeneous Quadratic Parts

This section deals with equations whose quadratic part is nonhomogeneous, that is,
K'= Ki’l_i, K,{’l_j with i £ j when k = 1. We provide the corresponding sets H%
of 2-tuples. This time we do find conditions on the ratio a/b for low orders n < 4.
When i = 1, the first part of the condition H € H2, Hj;) € H' being a divisor
of infinitely many g} ;‘31, does not give conditions on c/d; see Proposition 12. In this
case, the H2 are obtained from the classification of Hpy) € H! dividing infinitely

i 1—j . . . . . .
many Q,i,m 7, which was obtained in the previous section. A similar remark can be
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made when (j, k) = (0, 2). Due to (7), there are four cases left to consider, with k = 1:

@(i,j)=(—1,0);and withk =2: (i, j) = (0, 1), (4, j) = (—1,2), (@, j) = (-1, 1).
There are divisors of infinitely many G, [c, d]-functions for any value of c/d.

These will be called trivial divisors. Apart from the constant divisors, we have

A+ G (Y)Y 1G22y,

G+ DG (1), x Gy (x, D).

sm

We may take Hjjj (or Hpp)) to be trivial. Then H € H? if Hyp (Hj1p) is one of
the divisors of infinitely many G-functions presented in the previous section. In the
sequel, we assume that neither H[j; nor Hpp is trivial. Also, we will assume that
cd(c—d)#0.

Proposition 15 We list the nontrivial divisors H of the 2-tuple 9;22[& dl(1,y),

Qzll(; [c,d](x, 1) with m(H) infinite. Firstly, suppose n is odd and P(y) divides

glj;f[c, d](1, y) with infinite m(P) whose smallest element is n, cf. Proposition 13.
Then P(y), P(—1 — x) € H,. Secondly, when n is even we have:

L (y=r(y—1D,x+1€Hs,red;,m=2,4mod 6

2. (y—r)?ry—D*x+1€Hsre®,, m=4mod 6

3. y—r)ry—1),rx+r+1eH,,r=—v(nu—1D/u/(v—1), u#1,n the lowest
integer such that " = —v" =1, m =n mod 2n.

The linear coefficients of the symmetries satisfy c/d = (1 +r™)/(1 4+r)™.

Proof When the order of the equation n is odd, no new conditions on the linear part
are obtained since the relations (7) and (20) imply that with m odd,

Grle, d1(1, =1 = 1) =Gy [e, d1(r, 1).
For even n, there should be r € C and nonzero s € C such that

i le,d(1,r) = Gy0 e, d](s, 1) =0,

2;m
or equivalently,
Un(r,s) ="+ s)" +(1+1)" — (1 +r)(1+s5)" =0, 1)
for infinitely many m including n. Then using the Skolem—Mahler—Lech theorem, we
may infer that either rs(1 + r)(1 4+ s) = 0 or at least one of the pairs

rs N rs N

rl4s — , ,
1+r A+ +71) I+rd+s) IT+r

(22)

consists of roots of unity. When r(r 4+ 1) = 0, we have ¢ =d or d = 0, which we
excluded. When s = —1 we are left with the equation U,, = (—1)" + (—r)" + (1 +
r)™ = 0. Applying the Skolem—Mahler-Lech theorem, we see that both r and 1 + r
are roots of unity, and hence that r is a primitive third root of unity. One verifies that
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Uipzk = (=D + (=)' + (1 + 7)) (=¥ =0 when i equals 1 or 2. Also, if —1 is a
zero of gé;gl[c, d], then ¢/d = —(—1)".

Suppose the first pair of (22) consists of roots of unity. Writing (21) in terms of
uw=1+s,v=—r, we get (13). Theorem 9 then implies ™ = —v™ = 1, which
corresponds to the case ¢ = 0, which we excluded. Suppose the second pair of (22)
consists of roots of unity. Then u =s/(1 +s)/(1+r) and v = —rs/(1 +r) are roots
of unity, and we get r = C(u,v) = —-v(u —1)/u/(v—1),s =—(1+7r)/r, and

I e [
Um_((u—l)(v—l)ﬂ> (14 =)™ = )™ = (1= u™)(1 = nu)™).

When m is even, Theorem 9 yields u” = —v" =1 or u = 1. But when © =1, we
have s = —(1 4+r)/r and U,, =2(1 4+ r)"™ =0 if and only if r = —1, which we ex-
cluded. Using KC(1/¢2, 2 /%) = R(¥, ¢), we may write r € R(DPap \ Pom, Pom).
When 7 is even and n is the lowest integer such that u" = —v" =1, we have p is a
primitive nth root of unity or v is a primitive 2nth root of unity and all solutions to
pu™ =—v™ =1 are given by m =n mod 2n.

The third pair of (22) is obtained from the second by f> : r — 1/r. Under this
transformation, we have R (¥, ¢) — R(¥ !, ¢y ~1). Hence, we get the solutions
r € R(®Pam \ Pom, Pam \ Pom), and s = —1 — 7. Or one can express U, =0 in
terms of u =rs/(1 +r)/(1+s), v=—(1+r)/s to find these values. Another way
of describing the last item would be: 3. [(y —r)(ry — ), x +7r+ 1] e H,, r = u(v —
/(e —1), u# 1, n the lowest integer such that u" = —v" =1, m =n mod 2n. O

In the remaining cases, the diophantine equation we obtain from the zeros of the
G-functions will be of the form

(14+aA™)(1+bB™) +cC" =0. (23)

Lemma 16 Suppose that the diophantine equation (23), with ABC # 0, has infinitely
many solutions. Then A, B, and C are roots of unity.

Proof Using Corollary 6, three of the numbers 1, A, B, AB, C have a root of unity as
aratio and the same is true for the remaining two. Therefore, at least one of the pairs
C,A;C,B;C/A, B; C/B, A consists of roots of unity. When C and A are roots of
unity, their powers yield a finite number of values. Moreover, for the infinite number
of solutions we have (1 + aA™) # 0. Hence, for these infinite number of solutions
(1+bB™) has only finitely many values. This only happens when B is a root of unity.
The other cases lead to the same result, e.g., when C/A and B are roots of unity we
divide the equation by A™ and find that A is a root of unity. g

Suppose that the triple ¢, n, (¢, n) consist of roots of unity. Then we can apply
the algorithm of Smyth [4] to solve the equation f(z,7n)~' = f(¢~', n~") for roots
of unity. In particular, a finite number of values will be obtained. We denote the set
of all primitive nth roots of unity by @/,.
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Proposition 17 We list the nontrivial divisors H of the tuple gf_:n’z[c,d](l,y),
Gy mle, d1(1, y) with m(H) infinite.

yV24+y+1l,y+1eHy, m=1,2mod 3,c/d =—(—1)"
VC+y+ D2 y+leHy,m=1mod3,c/d=—(—1)"

=D -, (y—r+ Dy —F+1)eHsred),m=1,3,7,9 mod 10
0= -% G —r+D*(y—F+D*eHi,red);,m=1 mod 10
O-n-F,-r+D—rF+1)eHs,re®,,m=1,5711 mod 12
=m0 - -—r+ D> —rF+D?eHiz,red),,m=1mod I2.

SR L=

The linear coefficients of the symmetries satisfy c/d = (r — 1) /(™ — 1).
Proof We have G, 2[c, d1(1,r) = G}’ [c.d](1,5) = 0 when

Un(r,s) = (L+7") (1= (L +5)™) + (s(L+7)" =0. (24)

We want to classify all r, s € C, with rs(1+r) # 0, such that (24) has infinitely many
solutions. According to Lemma 16 we have s = —1, or r, 1 + s, s(1 + r) consists of
roots of unity. When s = —1, we obtain that 7 is a third root of unity and U; 3¢ = 0 iff
i=12.Ifx=r,y=1+4s, f =s(1 +r) are roots of unity, then x, y are cyclotomic
points on the curve

1+ (xy —2(x = »))(xy = D+ (x — y)* =0,

and can be found algorithmically. They are x € &, y € ®f; y € ), x =y> orx =
% ye <I>/12, x =y or x =Y. The first case only happens when ¢ = d. In the second
case, we have f = y* or f = y? and we find U;1ox = 0 if and only if i € {1, 3,7,9}.
Note that with s = y — 1, |y| = 1 we have —s/(1 +5) = 5. The last case gives f = y*
or f=y>and U; 1 =0ifand onlyifi e {1,5,7, 11}.

The multiplicity of the zeros is obtained from Propositions 13 and 14. We have
r € @/ is a double zero of g;jf when m = 1 mod 3. When y € @/, we have that

both r = y? and r = 72 are in ®. They are double zeros of Ql_;,ln’z for m = 1 mod

5. Also, we have that s = y — 1 and § are double zeros of Q(l)rln for m =1 mod 10.
A similar argument shows the multiplicity in the last item. g

Proposition 18 The nontrivial divisors H of the tuple g;rln’z[c,d](l,y),
gg;nzl[c, d](x, 1) with m(H) infinite are:

(y—n@—-r,x=r)(x—r)eHyre®,,m=1,2 mod 3
O-r*y—M% @& —r*x—7)?eHsyred, m=1mod3
O—rHy—7), x—r)(x—7F)eHs,red,m=1,3,7,9 mod 10
(y—r2)2(y =% (x —r)?(x =N eHi,re @5, m=1mod 10
G+ +1), (x—r)(x —7) e H4,r € D), m=1,4,5,7,8,11 mod 12
O+r*y+0% (=) —P*eHiz red),,m=1mod 12.

SO

The linear coefficients of the symmetries satisfy c/d = (r + 1) /(r'™ + 1).
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Proof We have G, V2[c, d1(1,r) =G5, " [e.d](s, 1) = 0 when

Un(r,s)=(1+7")(1+5") = (A +5)(1+7r)" =0. (25)

We want to classify all r, s € C, with rs(s + 1)(14r) # 0, such that (25) has infinitely
many solutions. According to Lemma 16, the points r, s, and (1 +s)(1 4 r) are roots
of unity. Hence, r, s are cyclotomic points on the curve

L+ (rs+ D(rs +2(r +5)) + (r +5)2 = 0.
Smyth’s algorithm yields: r,s € ®}; s € 5, r = sZorr=35%s¢ D, r=—s
or r = —s. Substituting these into (25), we obtained by performing some Groeb-
ner basis calculations, the solutions m = 1,2 mod 3, m=1,3,7,9 mod 10, and
m=1,4,5,7,8,11 mod 12, respectively. The multiplicities are determined using
Proposition 13, and using relation (7). Il

Proposition 19 The nontrivial divisors H of the tuple Q?i}n[c,d](l,y),
G0 1¢, d1(x, 1) with m(H) infinite are

l. y+lL,x+1eHy,m>1,¢c/d=—(—1)"

2. A+ 1+rH+1+7), c+1—r)(x+1—F) e Ha, r e D)y,
m=1,3,7,9 mod 10

3.+ 1+ + 1475 (r+ 1= (x + 1 =7)? € Hiy, r € D),
m=1 mod 10

4. (y+1+r),(x+1-r)eHyred,, m=1,2,5710,11 mod 12

5 0+14+n0G+1+0, x+1=r)(x+1-7)eHs,red),,
m=1,5,7,11 mod 12

6. Y+ 1+m2(v+1+M% x+1-r*x+1-7)?eHiz,red),
m=1 mod 12.

The linear coefficients of the symmetries satisfy c/d = ™ — 1)/(r — )"
Proof Similar to the above, G\"! [¢, d](1,7) = G,: [¢,d](s, 1) = 0 when
(I=A+r)")(1=0+5") = @rs)" =0. (26)
We want to classify all r, s € C, with rs # 0, such that (26) has infinitely many solu-
tions. If one of r, s equals —1, the other is a third root of unity. Whenr =5 = —1, we
have a/b = —(—1)", otherwise ¢ = d. Suppose that (1 + r)(1 + s) # 0. According
to Lemma 16 the points 1 +r, 1 + s, and sr are roots of unity. This implies that
x =1+4r,y=1+s are cyclotomic points on the curve

1+ (xy + D(xy —2(x + ) + (x + y)? =0.

Theyare:x,ye¢>/6;yed>/10,x:—y2 orx:—yz;yedfu,x:—y orx = —y.
The first are zeros only when ¢ = d and the others yield the results. U
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10 Global Classification of Maximal Degree Divisors

Combining the results obtained in Propositions 12, 13, 14, 15, 17, 18, 19 we deter-
mine the set of all highest degree proper 6-tuples with infinite m(H). This is equiv-
alent to a global classification of approximately integrable two-component equations
with a diagonal linear part; see Sect. 6. Highest degree tuples are formed as follows.
With H € 'H, and F € Hy, we have HF € 'H;, where [ is the smallest number in
m(HF)=m(H) Nm(F).

Clearly, if H divides G,,[c, d], then H divides G, [c/d, 1]. Also, if

=[0x1,x2), P(x1, y1), Q(y1, ¥2), R(y1, y2), S(x1, y1), T (x1, x2) |

divides G, [c, 1] then, according to (7), the function G,,[1/c, 1] admits the proper
divisor

H' = [R(x1,x2), SO1, x1), T(v1, y2), OOt y2), P(y1, x1), Q(x1, %2)].

Thus, we scale d in G, [c, d] to 1, and perform the classification up to inversion of c.

We also include tuples with zero components in the list. They correspond to equa-
tions that are not nonlinear injective; see Sect. 5. For each K 0 in Table 1 we have
determined the highest degree r-tuple H, with m(H) infinite, which divides the
r-tuple consisting of the nonzero components of its G,-tuple. The quadratic tuple
K has r nonzero components K' = G,/H, unless complementary components of
the G,,-tuple vanish at infinitely many m € m(H).

First, we deal with H2<5. Here, we express the linear coefficients c/d of the ap-
proximate symmetries in terms of integer sequences, or in its power sum solution if
that displays well. And we translate our symbolic results into differential language.
For any H € H, of highest degree, which divides G,[a, 1], we determine K I from
K!= le, f,g,h,i, j1G,la, 1]/H. In principle, the e tuple [e, f, g, h, i, j] may consist
of proper polynomials; it is a common factor of K K! and S'. However, when writing
down the differential equation, the e, f, g, h,i, j will appear in it as constants, and
any other constants will be absorbed by them. This organizes the quadratic part of the
equations, and at the same time, it may remind the reader of the fact that the quadratic
tuple of the equations can be multiplied by arbitrary proper tuples.

Secondly, we give a general description of Hg> 5. Using this result one can, in prin-
ciple, write down the corresponding approximate integrable systems at any particular
order. Some Maple code has been provided at [37].

We give each maximal degree tuple H € H,, two indices, H = H,, ,, where n is
the order, and / is a counter. And, in the case n < 5, we label the corresponding
approximately integrable equation by n.h.

10.0 Zeroth Order

According to Table 1 there are two special values of a related to equations that are
not nonlinear injective. We have the following 6-tuples in Hy. At a = 0, we have

Ho1=1[0,1,1,1,0%1].
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Both the first and fifth component of the zeroth order G-tuple vanishes. However,
there exist higher order G-tuples with zero first component, but no higher order
G-tuples with zero fifth component. This is denoted by the *, which indicates that

in the approximate integrable equation the term K 21’0 vanishes. The equation

(u,) <eu2+fuv+gvz>

- 2 .2 01
vy v+ hve+ ju

has approximate symmetries at order m = 1, for all ¢/d € C, and at any order m, with

c=0.
Ata =2, we have

Hoo=[1,1,0%1,1,1].

<ut) < 2u + eu? + fuv )
== 2 . ) 02
vy v+ hve +iuv+ ju
has approximate symmetries at any order m € N, for all ¢, d € C.
And, at generic values of a, we have

The equation

Hosz=[1,1,1,1,1,1].

The equation, with a(2a — 1)(a —2) #0,

(u,) <au+eu2—|—fuv+gv2)
= 2 . ) 0.3
vy v+ hve +iuv+ ju

has approximate symmetries at any order m € N, for all ¢, d € C.
10.1 First Order
We have the following 6-tuples in H;. At a =1, we have

Hi 1 =1[0,0% 0% 0% 0% 0.

2
(u,):<u1+eu ) 11
Uy V1

has approximate symmetries at any order m € N, for ¢ = 0. Of course, when e = 0,
any S € g is a symmetry of this equation.
At generic values of a, we have

The equation

Hi» =10, y1,y1 + y2, 0%, x1, x1 + x2].

The equation, with a # 1,

(u[>_<au1+eu2+fuv+gvz) 12

Uy v1~|—iuv+ju2
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has approximate symmetries at odd orders m = 1 mod 2 for ¢ = 0. Again, when e =0,
there are more approximate symmetries, namely at odd orders m = I mod2 for all
¢,d € C; see Remark 4.

10.2 Second Order
At second order, we have the tuple

Hy =[x1x2, y1, 1, y1y2, x1, 1]

which divides all higher G, [c, d] for all ¢, d € C. The maximal degree divisors Hy; €
‘Hy are Hy ; = HyT,; with

= [0»)’1,)’%4')7%, Lx1 +2y1, (x1 +x2)2]»

o =11, x1, y1y2, 1, y1, x1x2],
Trz=[Lxi+yi.yi +y1y2+ 3. Lxi +y1.x7 +xix2+ 3],
Toa=[1,1,0ry2—y)0ry1 —y2),1,1,1],
Is=[lrx;—y1,1,1,1,1],

Toe=[1.1,(y1 + y2 — 32 @y1 + y2 + 20, 1, 2x1 + y1 + yit, 1],
D7 =[12y1 —wi +2x1+x1y, L, L, 2x; — y1y — w1 +2y1, 11,

where 2 = —1, )/3 =3.
The equation
<u,) ( eu? + fuv + gv? >
- 2 . .2 2.1
vt vy + hv” +iuv+ ju
has approximate symmetries at orders m =2 mod 4 with ¢ = 0. The equation
<ut) <u2+eu2+fuv+gvz>
== 2 . ) 22
Uy v +hve +iuv+ ju
has approximate symmetries at all orders m > 1 with ¢ = d. The equation
(u,) (—u2+eu2+fuv+gv2)
= 2 . .2 2.3
o vy 4+ hv” +iuv+ ju
has approximate symmetries at order m = 1, 2 mod 3, with ¢/d = —(—1)". The equa-

tion, with (1 +r2)(1 +r) #0,

2
(”t) _ (iii)zu2+eu2+f(ruv1 = (L+rPuv) + gv? o4
v v2 + hv? +i(ruv — (L4 r)2uvy) + jQrugu + (1 +1r)%u?)

has approximate symmetries at all orders m > 1 with ¢/d = (1 +r™)/(1 + r)™. The
equation, with r(r +2) #0,

(u,) _ ( U2 +eu’ + fuv +g(rvf —2v17) ) 95
v v2 + hv? +i(uiv + 2+ ruvy) + jQuus + (2 +r)u?) '
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has approximate symmetries at all orders m > 1 with ¢/d =r"/((1 +r)" — 1).
The equation, with 2= -1,

ur\ (—1+2L)u2+eu2+f(5u1v+(3+L)uv1)+gv2 26
- 2, - . > .
vy vy + hv” +iuv + j(4uus + (1 + Duy)
has approximate symmetries, with ¢/d = —1 + (=1)"=2/42"/2; at order m =

2 mod 4. The equation, with y2 =3,2=-1,
ur\ _ (t2+y)uy+ eu? + fuv+g@dvmr+Q+y — L)U%) 27
= 2. . . 2 .
vy v2 + hv° +iuv + j(duuz + 2+ —y)up)

has approximate symmetries at orders m =g mod 12, with ¢ € {1,2,5,7,10, 11}.
Define integers Py by P =1, P, =2, and

27

p Pi1+ Pr—3, k=1 mod 3,
“T) P_i+ Pl k=0,2 mod 3.

When g =2 or g = 10, the coefficients of the linear part of the approximate symme-
tries of 2.7 are given by

c _
7= (=D "D Py o1 + Psja—ay),
or else by

—(—1)m-0/12E _ PEm-s)/2 + PGm-7/2v, q=6%5,

(28)
d Pami1y2 + Pam—1)2y, q=6=%1.

The sequence { Py} is quite interesting in itself; see [32, Sequence A140827]. It sat-
isfies the 6th order recurrence Py = 4 Py_3 — Py_¢. Moreover, it consists of the three
subsequences [32, Sequences A001075, A001353, A001835]. The first two of these
subsequences are the denominators and numerators of convergents to /3. We have
P ,—-3P} ,=1

n
10.3 Third Order
At third order, the product

H3 = Hp[x1 +x2, 1, y1 + y2, y1 + y2. 1, x1 + x2]

divides Gy, [c, d] when m odd, for all ¢, d € C. The maximal degree divisors H3; €
‘H3 are H3; = H3T3; where

T3.1 = [0, viv3 —viyva 4+ 7, Lxd +3xy1 +3y3, (0 +X2)2],
T32 =1, x1(x1 + y0), yiy2, L yi(x1 + y1), x1x2],
T33=[1,1, (i —ry2)(ir —y2), L (rx1 4+ L+ r)y1) (xn + A +r)y1), 1],
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T4 = [l,xf +xX101+ Q= O)yi, v+ dyiya + 3, Lat + Q2 — @) (xiy1 + y7),
X+ (1= ¢)xixz +x3],

in which ¢ denotes the golden ratio or its conjugate, that is, ¢ (¢ — 1) = 1. Note that
both H; 4 and H;.5|,1,r divide H3 3.
The equation

(ut> ( eu’ + fuv + gv? >
= 2 . ) 3.1
vy v3 4+ hv” +iuv+ ju
has approximate symmetries at orders m = 3 mod 6 with ¢ = 0. The equation
<u,) <u3+eu2+fuv+gv2>
== 2 . ) 32
Ut v3 +hv° +iuv+ ju

has approximate symmetries at odd orders with ¢ = d = 1. The equation, with

rd -1,

_ 2
(”f) - ](13;2 uz +eu” + f(ruvy — (1 —r +r?)(uav + uivy)) 13
v3 +hv? +iuv+ jQruus + (1 +r + r2)u%)

has approximate symmetries at odd orders m with ¢/d = (1 +r"™)/(1 + r)™. The
equation, with ¢ (¢ — 1) =1,

Uz (2+3¢)u3+eu +fuv+gv 34
v v3 + hv? +iuv + ju? )

has approximate symmetries at order m = g mod 10, g € {1, 3,7, 9}, with

Fuo+ F,_10, =514,
C/dZ[ m—2 m—19, q (29)

—Fy—Fpt19, g=5%£2,

where the Fj are the Fibonacci numbers Fp =0, F1 =1, F, = Fr_1 + Fr_> [32,
Sequence A000045].

10.4 Fourth Order

At order four, the maximal degree divisors Hs; € H4 are Hy; = H>Ty; where

0, yl , yl +y2, 1, (x1 +2y1)(x1 4+ 2x1y1 +2y1) (x1 +x2)4],
2
Toa=[Lxi+y1, 0+ 12 +3)° Lxi +y1, (63 + x1x0 + 13) ],

[
[
[1 1, (v +2y1y2 +253) (297 + 2y132 +33). L L 1],
=
=

1, (2y1 +(3—w)x1)2, L1, 1],
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[1,yf — 2wy — (L 4+0x7, 1,1, 1,1],

T47=[1 yi+2(1 —B)xiyr — 26x7, 1,1, 1, 1],
Tus =1, 1,4y] + (6 — 20+ 2B)y1y2 +4y3, 1,2x1 + (1 — .+ B)y1, 1],
Tyo=[1, 1,27 + (1 =t — 18 —2B)y1y2 +2y3, 1, 2x1 + (1 + 1 + B)y1. 1],
Toro=[1,1,4y] + 6 —4 =3B — B)yiya+4y3, 1, (1 + 1= B)xi +y1, 1],
Ty = [1,1,y12+y1y2y+y§,1,1,x12—x1x2y+x§],

with (2 = —l,ﬂ2=2,y3 =3.

The equation
ur\ eu’ + fuv + gv? 41
v ) \va +h@vovy +30d) +iuv + ju? '

has approximate symmetries at orders m = 4 mod 8 with ¢ = 0. The equation

u\ [ —us+e(duru+ 314%) + f(uvy + ujvy + 2urv) + gv2 49
= 2 . ) .
Uy vg + h(dvav + 3v7) +i(Quvy +ujvy +ugv) + ju

has approximate symmetries at order m = 1 mod 3 with ¢/d = —(—1)". The equation

—3uy + e(duru + 3u?) + £ (6uzv + Yurvy + 6uivs + 2uv3)

ur\ _ + gv 4.3
vy v4+h(4v2v+3vf)+i(2u3v+2u2v1 + 3uivy + 2uv3) '
+ j(Ququ 4 4uuz + 3u%)

has approximate symmetries at order m = 0mod4 with ¢/d = 1+ (—1)"/42"/2_ The
equation, with {2 +¢4+1=0,

31 +20)ug + e(duuy + 3u%) + f(6uiv+ (1 —4¢)uvy)

u\ + g(14v4v + 3(4 — £)(dv3v; + 303)) a4
v ) | va+h(@Gvv+ 3v]2) +i(Tuzv + 2+ 32)Quavy + 2uv; ’
+3u1v2)) + j (1dugu + (2 + 3¢) (duzuy + 3u3))
has approximate symmetries at order m = 1 mod 3, with
c (=3)m=b/2, m =1 mod 6,
d | -(1420)(=3)™22 ;=4 mod 6.
The equation, with € = %1,
€/5uq + e(4uuy + 3u%) + fQuiv+ (1 —2€)uvy)
ue\ + g(4v3v1 + 303 + (1 — Se)vgv) .
v ) | va @ +303) +i(10Quavy + 3ui vy + 2uv3) '

+ (5 — uzv) + j (5(4usur +3u3) + (5 — uau)
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has approximate symmetries at order m =0 mod 4, with

c €

d 11— (—am/*
The equation, with 2 =1,

t/3uq + e(duuy + 3u%) + fQuiv + (1 —20)uvy)
<Mt> _ +g(10vvg + (1 = 30 (4v1v3 + 303))
v ) | va+h@vv+ 31)]2) +i(Suzv +33 + 1) (Cuavy + 3uivz 4+ 2uv3))
+ j(10ugv + 3(3 + 1) (3u3 + 4uzuy))

4.6
has approximate symmetries at orders m =4 + k8, k € N, with
¢ (=Dk2%y
d 24} +1

where the integers A; are the NSW numbers defined by Ao = —1, Aj =1, A; =
6A;_1 — Aj_> [32, Sequence A002315]. The equation, with a?=-2

aug + e(duuy + 3u%) + fQuiv+ (1 — a)uvy)
(ut> _ + g(2(4v1v3 +303) + (2 + &) v4v)
vy v4 + h(@vyv + 3v12) +i((1 —a)uzv + 2QRuyvy + 3uivy + 2uv3))
+ j Bu3 + duzuy + (1 — a)ugv)
4.7
has approximate symmetries at orders m =4 + k8, k € N, with
¢ (=1)k2%ky

d Bit1

)

where the integers B; are defined by Bo = —1 ,B; =1, B; =34B;_1 — Bi_> [32,
Sequence A046176]. The equations, with 1> = —1, 82 =2,

(=14 203 + B)us + e(4uus + 3u?)
+ f(6uvs + (9 — 1 +28)(2urvz + 3uzvy + 2u3vp))
(u,) _ +g(12vv2+(9+,3+t)v12) 48
v ) | va+h(@vav +30d) +i(6urv + 3+ 50— 318 — 4B)uyv '
+2(1 4+ 3t — 1B)uvy)
+ j(12uus + 3+ —28)(Bu3 + 4uzur))

(=17 + 128 +2¢(3 — 28))us + e(duuz + 3u?)
+ f(10uv3 + (11 — 3t — 68 — 248) Quivz + 3urv + 2u3vp))
(u,> | +e@uvn+a7-28—1+ D)
v ) vg + h(dvpv + 3v]2) +i(10ugv+ (13 4+ 1+ 78 +4B0)ujvy
+2(7—t+5B8)uvy)
+j Q0uug + (943t + 23 + 0 B) (Bu3 + 4uzur))
49
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(17 — 128 + 8t(3 — 2B))us + e(4uus + 3u?)
+ f(12uv3 — 3B + 4B — 20 + 61) (Qu1v2 + 3usv1 + 2u310))
<u,> B + g(24vvy + (22 = 38 + 1f)v?)
- 4+ h(4vpv +3v]) +iQuvy + (1 +20(B — 1)ujv
+(—=5+@—0)B)urv)
+ j Qduug + (4 + 60+ (3 +40B)(3u3 + 4usuy))

have approximate symmetries at orders m =4 + k8, k € N, with

= —1 4+ 1(=DF2%** N (Cps1 + CP),

(=1 + «(=D* 2% Cpp1 + CuP)) (Coms1 — CamB),

Ul o &0

= (1 + (=D 2%F3(Cpri1 + CuP)) (Comr1 — CamP),

respectively, where Co =0, C1 =1, and Co, = C2;—1 + C2n—2, Copt1 = 2Co;,; —
Co,—1. These integers, see [32, Sequence A002965], are the denominators and nu-
merators of convergents to +/2. We have

C2—-2C% | =41, whenn=1+1mod4.
The equation, with y2 =3,

7T+ 4y)ug + e(4uuy + 3u%) + fQuivy + 3urvy + 2u3zv
up\ + 2y — 3)uv3) + g(6vvr + (6 + y)vd)
v ) | va+h(dvv + 3v%) +i((342y)uzv — 2uvy — 3ujvy — 2unvy)
+j (6uuz + (6 — y)up)
4.11
has approximate symmetries at order m =g mod 12, g € {1,4,5,7,8, 11}. When g =
6 £ 2, the coefficients of the linear part of the approximate symmetries are given by

c _
7= F(—=D"D2(Py oy + Pyja_ay),

where the integers Py are defined by the recursive formula (27). When ¢ is odd, c/d
is given by (28).

10.5 Fifth Order
At order five, the maximal degree divisors Hs; € Hs are Hs; = Hs5Ts; where
Hs = H3[x12 + x1x2 +x§, 1,1, y12 +yiy2 + y%, 1,1]
and
Ts.i = [0, 1.y — y2y7 + 313 — vayi + 3. Lxt +5x]y1 + 10x{y] + 10x1y7

+5y1, (x1 +x2)%],
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Tsa = [1,2y7x7 + 227 y1 4 X7 + ¥ix1, yiv2 + ¥13 + v3y1. 1, 2yixn + 2yixg

—i—xfyl + yf, xfxz —l—xlzx% —i—xlxg],
Tsz=[L Lryf — (L+r)yiya+ry3, Lrxg + (L+ )2 (xiy + 1), 1],

2 2
Tsa=[11,(y{ +3)" L. (xf + 2x131 +2y7) ", 1],
_ 4 4 3 3 2.2 4

Tss=[1 1yl +y, + 2+ (iy2+y3y1) + @+ )yiys. 1, x|

+ @2 =)y} +xiy +2yix1 +2y3x7), 1],
Tse=[1,x{ +x131 + Q= )yi. yi +viv2y + 3. Laf + Q2= y)(xiy1 +y7).

2 2
X] —X1x2y +x2],

with y3 =3 and ¢(¢ — 1) = 1. Note that Hs3 = HsT33. Also, both Hy 7 and Hjsg
divide Hsg.
The equation

(ut> ( eu® + fuv + gv? >
= 2 . ) 51
Ut vs +hv° +iuv+ ju
has approximate symmetries at orders m = 5, 25 mod 30 with ¢ = 0. The equation
2 2
(u;) (us—l—eu + fuv+gv )
= 2 . ) 52
Uy vs +hv° +iuv+ ju

has approximate symmetries at orders m = 1, 5Smod 6 with ¢ =d = 1. The equation

147 us +eu? + f((r4 A D (uiv3 + 2upv;

(1+r)3
+2usv; + uav) — r(r +r + Duvs)
<Mt> _ + g((1 —i—rz)v]2 +2(2 +r + Do) 53
v vs +hv? +i((1+r)2(uva + ugvi) + 2 + 7 + Dugv)

+jQ@rr? 47+ Duug +20* +3r3 + 502 4+ 3r + Duqus
+ (r* 4+ 5r + 7r2 + 5r + Dud)

has approximate symmetries, with ¢/d = (1 + r™)/(1 + r)™, at orders m =
1,5 mod 6. The equation

ur\ _ —%u5+eu2+f(u4v+2u3v1+2u2v2+u1v3+uv4)+gv2 54
v ) v5+hv2+iuv+j(2uu4+6u1u3+5u%) '

has approximate symmetries, with c¢/d = (—1)"=D/420=m/2 " at orders m =
1, 5mod 12. The equation, with ¢ (¢ — 1) =1,

= + 11(uv3 + 2uovy 4+ 2u3z v —|—u4v))—i—gv2 55

(ut) —(4+5¢)us + eu® + f((4 — P)uvs
vs + hv? +iuv + jQouug — 2uiuz + 2 — l)u%)

Ut
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has approximate symmetries at orders m =5, 25 mod 30, with ¢/d = —(1 + F,—1 +
F,¢), where F,, denotes the mth Fibonacci number. And the equation, with )/2 =3,

(26 + 15y )us + eu® + f (uav + uyvy + (y — Duwy)
(u,) _ +g(4vv2+(3+)/)v%) 56
v ] vs + hv? +i(uivr + uvy — (1 + p)usv) ‘
+ j(duus + 3 — y)u?)

has approximate symmetries at orders m = 1,5 mod 6, with c¢/d given by (28).
10.6 Higher Order

Define
_ 2 2 2 2
Hy = Hs[x{ +xix2+x5, 1, Lyl + yiy2 + 3. 1, 1],

and, for convenience, Hp, = H, Hy,+1 = Hy, where k =2n + 1 mod 6 and k €
{3,5,7}. We first list the divisors that have similar structure at infinitely many higher
orders. After that, we consider the exceptional cases.

The case a =0

(i) The tuple G,[0, 1] has the following divisor in HS
[0,y ¥] + 35, X,y — (1 4y, (1 +x2)"], (30)
where X is the fourth component of H,. It divides G,,[0, 1] when

n mod 2n, n even, or n =3 mod 6,
m = { n mod 6n, n=1mod®6,

n,5n mod 6n, n=>5modb6.
The case n is even Let n > 2 be even. We have the following divisors in HS.
(ii) For any primitive (n — 1)-st root of unity r,
Ho[1. 1, (31 = ry2)*(ry1 = y2)*. 1. 1.1] (31)

divides G, [(1 4+ )=, 1] when m =1 mod n — 1.
(iii) Let one of w, v be an nth root of unity, and the other a primitive nth root of unity,
such that (u — 1)(v — 1)(w —v)(uv — 1) #0. Then withr = v(u —1)/(v — 1)

Hy[1,1, (y1 —ry2)(ry1 — y2) (1 — Fy2)(Fy1 — y2), 1, 1, 1]

divides G,,,[1 + 7™, (1 +7r)™] when m = 0 mod n.
(iv) For any primitive (n — 1)-st root of unity 7,

H[1, (1 — (r — 1)x1)2, 1,1,1,1] (32)

divides G, [(r — D™~ 1] whenm =1 mod n — 1.
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(v) Letone of u, v be a primitive nth root of unity, and the other an nth root of unity,
such that (u — 1)(v — D(u — v)(uv — 1) #£0. Then with r = (u — v) /(v — 1)

divides G,,,[r™, (1 +r)™ — 1] when m =0 mod n.

(vi) Let one of i, v be a primitive 2nth root of unity, and the other a primitive 2nth
root of unity, which is not an nth root of unity, such that (ux — v)(uv — 1) # 0.
Then withr = (v — ) /(nw — 1)

Ho[1, (y1 —rx) i (L+7) +7xp), 1, 1,1, 1]

divides G,,,[r™, (1 +r)™ — 1] when m = n mod 2n.

(vii) Let either u be a primitive nth root of unity and v be a 2nth root of unity which
is not an nth root of unity, or let u # 1 be an nth root of unity and v a primitive
2nth root of unity. Then withr = —v(u — 1)/(v — 1)/

Hy[1,1, (2 —ryD)(ry2 — y0). L L ixy + (1 4+ )y, 1]
divides G,,[1 + ™, (1 4+ r)™] when m = n mod 2n.

The case n is odd Letn > 3 be odd. We have the following divisors in 2.

(viii) For any primitive (n — 1)-st root of unity r, define
2 2
Qu()=[1,1, 1 =ry)*ry1=y2)*, L, (x1+A+r)y1) " (rxr+A+r)y1) 7, 1]
The tuple H, Q,(r) divides G,,[(1 4+ r)'~™, 1] when

lmodn —1, n=1,3mod 6,
I,nmod3(n—1), n=5modb6.

m=

(ix) Let one of w, v be an nth root of unity, and the other a primitive nth root of
unity, such that (u — D)(v — 1)(u — v)(uv — 1) # 0. Then with r = v(u —
1)/(v — 1), we define

Wa(r) =[1,1, (1 = ryD)(ryr — y2) (1 — Fy2) Pyt — y2). 1, (x1 + (1 + F)y1)
(Fxi + A+ P)y1) (x1 + A+ P 1) (Fx + A +F)yi), 1]
The tuple H, W, (r) divides G,,,[1 + r™, (1 4+ r)"] when

n mod 6n, n=1mod®6,
m = { n mod 2n, n =3 mod 6,

n,5n mod 6n, n=>5mod 6.

We also get new highest degree divisors in HS, with n odd, from primitive pth
roots of unity with p < n. This happens when n = 1 mod p (or n =0 mod p) and
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n =k mod 6 with k € {3,5, 7}, such that there isno 1 < g <n with g =1 mod p (or
g=0mod p),and g =[] mod 6 with [ € {3,5,7} and [ > k.

For example, the tuple 75 4 divides a G,, at m = 1 mod 4. The tuple Hs.4 = HsT5.4
dividesa G, at m = 1,5 mod 12; see 5.4. We have 13 =1 mod 4 and 13 = 7 mod 6.
There isno 1 < g < 13, such that g =1 mod 4 and ¢ =1 mod 6, with [ € 3,5, 7 and
[ > 7. Thus, the tuple H7T54 € H13 divides a G,,, at m = 1 mod 12. We have 9 = 1
mod 4 and 9 = 3 mod 6, but there is ¢ = 5, such that g = 1 mod 4 and ¢ =5 mod 6,
and 5 > 3. Therefore, the tuple H375 4 is not in Hog. Indeed, it is in Hs, but it does
not have maximal degree.

Also, we may have p odd. If the tuple (31) divides G, [(1 + )" 1] when
m = 1 mod p, then according to Proposition 15, Qf’r—;l divides Gop4+1[(1 + r)2P’ 1].
This always give us a new highest degree tuple in ;1. On the other hand, from
case (iii), one can conclude, using Propositions 14 and 15 and inverting a — 1/a
that Q ,11(—r) divides Gop1[(1 + r)21’, 1]. This we knew already since when r is a
primitive pth root of unity, with p odd, then —r is a 2 pth root of unity, cf. case (viii).

In general, one can show the following:

e Suppose n =0 mod p and n =k mod 6 with k € {3,5,7}, such that there is no
g <n withg=0mod p, and ¢ =1 mod 6 with [ € {3,5,7} and [ > k. Then p is
odd. And

, =1,3mod 6,
n:{f’ p=".amo (33)

p,5p, p=5mod®6.

e Suppose n =1 mod p and n =k mod 6 with k € {3, 5,7}, such that there is no
g <n withg=1mod p,and g =/ mod 6 with [ € {3,5,7} and [ > k. Then

p+1, p=0mod 6,
p+1,2p+1,4p+1,6p+1, p=1mod6,
p+1,2p+1,3p+1, p=2mod 6,

n= (34)
p+1,2p+1, p=3mod6,
p+1,3p+1, p=4mod6,
p+1,2p+1,6p+1, p=5mod 6.

We can now describe all highest degree divisors at odd order n, involving the tuples
O, W.For odd n, there are the cases (viii) and (ix) described above. They corresponds
to the cases n = p+1in (34), and n = p in (33), respectively. Furthermore, we have:

(x) If n =5p and p =5 mod 6, then H, W,(r) divides G,,[1+r", (14 r)™] when
m =n mod 6n/5.

(xi) If n =1, 3 mod 6 and (34) holds for certain p <n — 1, then H, Q,(r) divides
Gull+r™, (14+r)"]whenm=1modn — 1.

(xii) Letn =5mod 6. If n =2p + 1, p =5 mod 6, then H, O, (r) divides G,,[1 +
", (14+r)"lwhenm=1,nmod3(n —1). Andifn=2p+1, p=2 mod 6,
orn=4p-+1, p=1mod6, then H,Q,(r) divides G,,[14+r™, (14+r)™] when
m=1,nmod3(n —1)/2.
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Exceptional highest degree divisors, n > 1

(xiii) The tuple G7[1, 1] € H7 divides G, [c, d] withm =1 mod 6 and ¢ =d.
(xiv) The tuple H7T33 € H7 divides G, [1 + #, (1 + r)™] with m = 1 mod 6.
(xv) The tuple H7T34 € H7 divides Gy, [c, d] with m = 1,7, 13, 19 mod 30, and
c/d given by (29).
(xvi) The tuple H7Ts5¢6 € H7 divides G, [c,d] with m = 1 mod 6 and ¢/d given
by (28).
(xvii) Define

Z=[1 (3 +xy+ A+ P+ A=y +33) 1,
(2 4+ L+ ) (xiyi + D)% (67 + dxixa +23)°).

Then HsZ € Hyp; divides Gy, [c, d] with m = 1,11 mod 30 and c¢/d given
by (29). And H7Z € H3; divides G, [c, d] with m = 1 mod 30.
(xviii) The tuple

Hi[1, (3 4+ x4+ Q=) 02 + vy +33)% 1,
(F+ =y +31)% (oF = yxixa +x3)* € Has

divides G, [c, d] with m = 1 mod 12 and c/d given by (28).

11 Concluding Remarks

We have globally solved the symmetry conditions of total grading 1 (6). For n <5,
we have listed 23 approximately integrable equations with quadratic parts of minimal
degree. Among them are 6 equations that allow generic linear coefficients, namely
equations 0.3, 1.2, 2.4, 2.5, 3.3, and 5.3. For the other equations, the linear coefficients
are fixed in terms of zeros of quadratic polynomials. We gave the linear coefficients
of their symmetries as a linear expression in those roots, using integer sequences.

For n > 5, we distinguished 18 different cases, depending on the value of n as in
Table 2. Only one case (xiv) allows for generic linear coefficients, at order 7. In most
cases, the linear coefficients are given in terms of a zero r of a G,-function, where
r is expressed in roots of unity. In these cases, the corresponding divisor of highest
degree P € H, is also expressed in terms of r. The (symbolic) quadratic part of the
approximately integrable equation is then divisible by G,/ P.

Our main result is the following: Every integrable two-component equation with
diagonal linear part can be derived from one of the approximately integrable equa-
tions provided in Sect. 10, by multiplying the symbolic quadratic part by a proper
tuple, by taking special values for the linear coefficients, and by adding higher grad-
ing terms.

In the formal symmetry approach [22], as well as in the computer-assisted schemes
[15, 33], not knowing the ratios of linear coefficients strongly complicates the classi-
fication of integrable equations. There the ratios are obtained, if possible at all, at the
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Table 2 Applicability of the

different cases, depending on the ~ * >3 Applicable cases, Sect. 10.6
order n > 5
N @
2N (ii), (iii), (iv), (v), (vi), (vii)
1+2N (viii), (ix)
254 30N (x)
3,7,13,15,19,25,27,31 + 36N (xi)
5,11+ 12N (xii)
7 (xiii), (xiv), (xv), (xvi)

11,31 (xvii)
13 (xviii)

very last stage of the calculations. We hope that the a priori knowledge provided here
will be an impetus to complete the classification.

Usually, in classification programs, one considers homogeneous equations. A 2-
component equation (u;, v;) = K is homogeneous of weighting X if K is an eigenvec-
tor of L(oyx + Aoy, + Ap0y), where o = (xu1, xv1) counts the number of derivatives.
We have compactly provided a list of nonhomogeneous equations. A complete list of
homogeneous equations can be obtained from our list by multiplying the symbolic
quadratic parts with appropriate tuples of polynomials. And Lemma 3 can be used to
determine all symmetries of those equations.

A classification of second order integrable 2-component evolution equations has
been given in [29]. The Lemmas 6.3, 6.4, 6.5, and 6.6, proved there, are special cases
(n = 2) of Proposition 15, 18, 19, and 17, respectively. In [29], the full analysis of
higher order symmetry conditions was carried out completely. From this, it follows
that all second order integrable equations with quadratic parts are derived from 2.3,
2.4, and 2.5. Note that the authors of [29] excluded equations of type 2.1 and 2.2.

A classification of third order 2-component evolution equations with weighting
(2,2) and symmetries of order 5, 7, or 9, is given in [15]. Of the 5 equations listed
in [15, Theorem 3.3], two are nonlinear injective and have a diagonalizable linear

part:
ur\ _ [usztuup+ v
<v,) - < —2v3 — uv ) (35)

u\ _ 4uz +3vz +4uuy +vuy +2uv;
vy ) \ Buz4+v3 —2vv; —4dvu; —2uvy )

and
(36)

When put in Jordan form, the ratio of the coefficients of the linear part of (36) be-
comes a/b = —3¢ — 2, where ¢ is the golden ratio. Our diophantine approach per-
fectly explains the “unusual” symmetry pattern. We remark that the conjugate of ¢
gives rise to another equation with a/b = —-3(1 — ¢) — 2 =1/(—3¢ — 2), which can
be obtained by interchanging u and v. A similar remark holds for all equations de-
rived from the “symmetric” Propositions 18 and 19. For example, by interchanging u
and v in 4.11, we get an equation witha/b=1/(7+4y) =T —4y.
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According to [15, Theorem 3.3], we have the following. A nondecouplable fifth
order two component equation in the KDV weighting, possessing a generalized sym-
metry of order 1, can be reduced by a linear change of variables to a symmetry of
lower order equations, or to the Zhou—Jiang—Jiang equation,

us — 5Quusz + 5uquz) + 15Quvvs + 3v1v2) + 20u ;1>
U; —3O(u1v2+2uvvl)
(v,) —9vs + 5Qu3v + Turvy + u vy + 6uv3)
— 10Quuqv + 2u?v; + 3v?v;)

The ratio of coefficients of the linear part a/b = —1/9 does not appear in our list and
could be due to higher grading constraints on a system derived from 5.3. This is not
the case. The Zhou—Jiang—Jiang equation is in the hierarchy of the Drinfel’d—Sokolov

type [7] equation
ur\ —3vy;
(vt>_(v3—u1v—2uv1)’ 37)

which is linearly equivalent to a third order equation that appears in the same paper
[15, (17)], cf. [33, Sects. 3.2.1, 4.2.6]. The special value of the ratio a/b = —1/2
in (35) also does not appear in our list and is due to higher grading constraints. At the
end of [21], two fifth order systems are given with ratios (9 — 54/3)(9 4+ 5v3) ! =
26 — 15+/3 and —1/9. The first system derives from 5.6 and the latter from 5.3, with
r a primitive 6th root of unity.

We conclude with a more philosophical remark and some ideas on future research.
The concept of generalized symmetry really is about local symmetry. The (inverse)
Gel’fand-Dikii transformation translates polynomials in the symbols x, y into local
differential functions, that is, expressions in u, v and their derivatives. A question
arises: Can we also translate rational functions in the symbols x, y? The answer is
yes. One could think of nonlocal variables u;, v; with i € Z. Here, a negative index
indicates integration and D, would be such that Dy (u;—1) = u; for all i. We can
expand rational functions in multivariable Laurent-series, which are transformed into
nonlocal differential sums. For example, consider the rational function F=1 /(x1 +
x7). Its symmetric series is

F=
which is transformed into the nonlocal object
oo
F=3) (=Dfuu_ii,
k=0

and we have D, F = u?. In this nonlocal setting, every equation has a symmetry at
any order. For example, the equation, with a # 1,

u\ _ (aur+ A —-a)uv
vy) \v+Ud—-a)uv )’
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and its approximate symmetries (but the ones in A%° ® A%2), are in the approximate
hierarchy of the zeroth order nonlocal equation

ur\ _ (u+tuv—
v/ \v—u_jv)/)’

Still, there would be a quest for equations, or symmetries, that are in a certain sense
close to local.

Since the pioneering work of Sanders and Wang [28], apart from extending the
result to equations with more components [3, 29, 34], the symbolic method has been
further developed in order to classify noncommutative [26], nonevolutionary [18, 20,
241, nonlocal [18, 19], and multidimensional equations [42]. In classifying nonlo-
cal equations, the concept of quasilocality, introduced in [17] is the key idea. Only
certain types of nonlocalities are allowed by considering different extensions of the
ring of differential polynomials. “Nonevolutionary” equations are treated as evolution
equations with possible nonlocalities. For example, a Bossiness type scalar equation

ufl:K(uvux’uxx’""ul’uxl"")

can be represented as a two-component evolution equation,

ur\ v
v ) \K@W,uy,...,0,05,...) )"

However, different evolutionary representations may exist, and some might have local
symmetries, whereas others might posses nonlocal symmetries [20]. Another exam-
ple is the Camassa—Holm type equation

my \ [ cmuy +umy
Uy ) u—m ’

which is integrable when ¢ =2 [5] and ¢ = 3 [6]. By eliminating the variable u, this
equation is written as

m; =cmAm, +myAm

where A = (1 — D)%)_l is a nonlocal operator. Its symmetries are quasilocal expres-
sions in D,-, and A-derivatives of m [18, 21].

Another interesting problem would be to classify nonevolutionary equations as
they are, that is, to apply the symbolic method for polynomials in both x and ¢ deriv-
atives, developed in [42]. In the setting of nonevolutionary equations, there is a clear
distinction between the equation and its symmetries. When A = 0 represents the
equation, a function Q is an infinitesimal symmetry if the prolongation of Q acting
on A vanishes modulo A [25, Theorem 2.31]. For example, we have u;xy — usuy as a
symmetry of the Boussinesq equation u;; = uyxxyx — 2UxUxy, DUt not vice versa. Note
that an equivalent symmetry condition can be formulated in terms of Lie-brackets,
[12, 36]. This could play a role in the general classification problem. We also found
that certain hierarchies of evolution equations appear as symmetries of nonevolu-
tionary equations. For example, it seems that all symmetries of the Sawada—Kotera
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equation [30]

3
Ut = Uyxxxx — IlUxxxly + gux

are symmetries of u;yy = u;u,, which is a special case of Ito’s equation [27]. Based
on Lax-pairs, a similar observation was made in [11].
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