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ABSTRACT

We show how to obtain relations for the divisors of terms generated
by a homogenized version of a rational recurrence. When the
rational recurrence confines singularities the relations take the form
of a rational recurrence, possibly with periodic coefficients. As the
recurrence generates polynomials one expects it to possess the
Laurent property. The method we develop uses ultra-discretization
and recursive factorization. It is applied to certain QRT-maps which
gives rise to Somos-k (k = 4, 5) sequences with periodic coefficients.
Novel (N + 3)-rd order recurrences are obtained from the Nth order
DTKQ-equation (N = 2, 3). In each case the resulting recurrence
equation has the Laurent property. The method is equally applicable
to non-integrable or non-confining equations. However, in the
latter case the degree and the order of the relation might display
unbounded growth. We demonstrate the difference, by considering
different parameter choices in a generalized Lyness equation.
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1. Introduction

Asequence {un}∞n=1 definedbyN initial values {un}Nn=1 and anNth order rational recursion,

un+N = R(un, un+1, . . . , un+N−1), (1)

where R is a rational function, is said to have the Laurent property if, for all n, un is
polynomial in the variables {u±1

n }Nn=1. The property was first introduced by Hickerson
to prove the integrality of a sequence called Somos-6, cf. [48]. Indeed, as an immediate
consequence of the Laurent property it follows that the sequence obtained by taking {un =
1}Nn=1 is an integer sequence, or, a sequence of polynomials if the rational function R
depends (polynomially) on additional parameters. For example, with mentioned initial
values the (generalized) Somos-4 recurrence,

τn+2τn−2 = ατn+1τn−1 + βτ 2n , (2)

provides a sequence of polynomials in two variables α,β .
Equation (2) was derived (in 1982) byMichael Somos as an addition formula for elliptic

functions. It is the prototype Laurent recurrence, and it has many beautiful properties. The
sequence of numbers that one gets by taking α = β = 1 is referred to as the Somos-4
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sequence. Its integrality (and of related sequences) was a great mystery initially [19,39,51,
59]. Robinson showed that the ith and jth terms of the Somos-4 sequence are relatively
prime whenever |i − j| ≤ 4, and he inferred that for any given m ∈ N the sequence
modulom is periodic [48]. Everest et al. [9] showed that every term beyond the fourth has
a primitive divisor, i.e. a prime which does not divide any preceding term. Kanki et al. [36]
have proven that all terms of Somos-4 are irreducible Laurent polynomials in their initial
values and pairwise co-prime, as Laurent polynomials. A seemingly unnoticed divisibility
property for the Somos-4 polynomials, and hence for the Somos-4 sequence, was recently
found by one of the authors [33]. A so called near-addition formula has been proven in
[38]. Somos-4 is closely connected to an elliptic divisibility sequence [29,32,44,52,56], the
theory of which recently found application in cryptography [49], and in generating large
primes [10]. An explicit solution for τn in terms of the Weierstrass elliptic function can be
found in [27,29]. From an integrable systems viewpoint, the Somos-4 recurrence (2) arises
as a ‘bilinearization’ of the following QRT map [45],

fn+1fnfn−1 = α + β

fn
, (3)

through the relation

fn = τn+1τn−1

τ 2n
, (4)

which encodes the singular confinement of the QRT map [28,30], cf. [46] for ‘multi-
linear’ forms of other integrable maps. Furthermore, Somos-4 is a special case of the much
more general Gale-Robinson recurrence (9), which is a reduction from the Hirota–Miwa
equation [19,22,40,57,58].

A deeper understanding of the Laurent property, for a wide class of recurrences, came
with the work of Fomin and Zelevinski [14,15], and subsequent developments [1,18,37].
The algebraic combinatorial setting of cluster algebras has had profound impact in diverse
areas of mathematics, such as algebraic Lie theory [20], Poisson geometry [21], higher
Teichmüller theory [12], the representation theory of quivers and finite-dimensional
algebras [5], and integrable systems [17], cf. the cluster algebra portal [13].

In this paper, which is an extended version of [24], we describe how one can obtain
recurrences which possess the Laurent property, such as (2), from equations that are
singularity confining, such as (3), which is different than via a transformation such as (4).
Starting from a rational recurrence (integrable or not), we homogenize to get a polynomial
map. Using an ultra-discretization we first determine the multiplicities of the divisors
of its components under iteration. This is then used to derive recurrence relations for
the sequences of divisors. Clearly, by definition, the divisors are polynomial. Hence one
expects the derived recurrence to possess the Laurent property.

It is not a priori clear what type of recurrence relation one would get out of such a pro-
cedure. Two characteristic properties of discrete integrable systems are slow growth, and
singularity confinement. Slow growth (= low complexity = vanishing algebraic entropy) is a
better indicator of the integrability of a mapping [2–4,11,42,54] than singular confinement
[26]. However, it is the latter property which allows us to say something about the kind
of recurrences our method produces. For rational maps with singularity confinement, the
reduced denominators depend on a fixed number of divisors as well as on the initial values.
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The reason for this is that a single divisor (singularity) occurs only finitely many times. It
implies that the order of the derived recurrence relation is fixed.

For non-confining rational maps the order of the derived recurrence relation may not
be fixed. We have included a non-integrable example, which gives rise to a polynomial
recurrence whose order and degree grow unboundedly. The Laurent property is obtained,
but it is trivial.

Finally, for a rational map that possesses the Laurent property the fixed number of
divisors in the reduced denominators will be 0. In such cases the method provides a
validation of Laurentness for free. In the light of this one could say that Laurent recurrences
are ultra-confining, in that they confine their singularities before they occur.

We remark here that Viallet, independently, has also found recurrence relations for
sequences of divisors [55]. In particular, he obtains recurrences of fixed order from non-
integrable confining maps [55, Sections 3.5, 3.6], and he presented a recurrence where
the order grows unboundedly, obtained from a linearizable map [55, Section 3.8]. It is
worth mentioning that in all cases considered in the present paper, as well as in the ones
considered in [55], the coefficients (which depend on the initial values) turn out to be
periodic functions. The reason for this is not yet understood.

In Section 2we provide a brief account of themainmethod,which uses homogenization,
ultra-discretization, and a technique that was introduced in [34], for which we coin the
phrase recursive factorization. The method is explained in more detail by the examples
in the subsequent sections. In Section 3 we show how the QRT-map (3), via recursive
factorization, gives rise to a Somos-4 recurrence of the form (2) but where the coefficients
are now functions of the initial values of the QRT-map, α = αn(f1, f2),β = βn(f1, f2),
which satisfy the periodicity conditions αn+p = αn, βn+p = βn with p = 8. Similarly
we show how another QRT-map yields a Somos-5 recurrence where the coefficients are
periodic functions with period p = 7. In Section 4 we follow the same procedure starting
with the Somos-4/5 sequences themselves. Surprisingly, or not, they give rise to Somos-4
and Somos-5 recurrences with more general periodic coefficients than those obtained in
Section 3. Explicitly we have found

cn+2cn−2 = αncn+1cn−1 + βnc2n, (5)

with coefficients

αn = α

4∏
i=1

τ
pn−i
i , βn = β

4∏
i=1

τ
qn−i
i . (6)

where1 pmod 8 = [1, 0, 0, 1, 0, 0, 1, 0], qmod 8 = [0, 0, 1, 0, 1, 0, 0, 2], and
dn+3dn−2 = γndn+2dn−1 + δndndn+1, (7)

with coefficients

γn = γ

5∏
i=1

σ
rn−i
i , δn = δ

5∏
i=1

σ
sn−i
i . (8)

where rmod 7 = [1, 0, 0, 0, 1, 0, 0], smod 7 = [0, 0, 1, 0, 0, 1, 1]. Both Equations (5) and (7)
are special cases of a non-autonomous Gale-Robinson recurrence, cf. [19], with v1 + u1 =
v2 + u2 = w,

hnhn+w = αnhn+v1hn+u1 + βnhn+v2hn+u2 , (9)
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which is a reduction of the Hirota–Miwa equation [58]. Moreover, they satisfy the integra-
bility condition,

αnαn+wβn+v1βn+u1 = αn+v2αn+u2βnβn+w , (10)

which is equivalent to Laurentness, see [40].
Integrable maps with periodic coefficients have appeared in the setting of QRT-type

maps, and are described in the general context of pencils of biquadratic curves in [47],
where there are references to other examples of non-QRTmaps with periodic coefficients.
It is worth noting that the condition (10) allows much more general behaviour than
just periodic: it includes discrete Painlevé equations of q-type. Conditions like (10), and
the associated discrete Painlevé equations, have recently been found to arise from the
theory of cluster algebras and Y-systems [31,43]. Interestingly, the particular periods of
the coefficients in (5) and (7) relate to the periods of the corresponding ultra-discrete
QRT-maps (52) and (62), cf. [41].

In Section 5 we consider the first two members of the hierarchy of equations
( N∑
k=0

un+k

)(N−1∏
l=1

un+l

)
= φ. (11)

which was introduced in [7], and whose degree growth has been studied in [23]. ForN = 2
the map is another QRT-map, from which we obtain the fifth order Laurent recurrence

en+5e2n+2en+1 + en+4e2n+3en + e2n+4e
2
n+1 = φe2n+3e

2
n+2. (12)

For N = 3 we find that the ultra-discretization of the homogenized system does not
yield a sharp bound on the multiplicities of the second divisor. Using primes as initial
values enables us to iterate the system sufficiently many times to formulate a conjecture for
these multiplicities. Via recursive factorization we then arrive at the following sixth order
Laurent recurrence with periodic coefficients,

kn+2

kn−1
(εnkn−3k2n + εn+1k2n−2kn+1)+ kn−2

kn+1
(εn+2kn−1k2n+2 + εn+3k2nkn+3) = φk3n

εn+1εn+2

with εn = uζn2 and ζmod 8 = [0, 1, 0,−1,−1, 2,−1,−1].
In the last section we consider two distinct choices for the parameters in the generalized

Lyness equation [6].
wn+3wn = μ+ νwn+1 + wn+2. (13)

The integrable subcase, ν = 1, gives rise to the Laurent recurrence

zn+3zn−2zn−7 = κnzn−1zn−2zn−3 + τnzn−1zn+1zn−6 + σnzn+2zn−3zn−5, (14)

where

κn = μ

3∏
i=1

wδn−i+δn−i+1
i , τn =

3∏
i=1

wδn−i+3
i and σn =

3∏
i=1

wδn−i+6
i ,
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are periodic functions with δmod 8 = [0, 1, 0, 1, 0, 0, 0, 0]. The non-integrable subcase,
ν �= 1, gives rise to

zn = μ

(n−1∏
i=1

zδn−i−2+δn−i−3
i

)
+ ν

(n−1∏
i=1

zδn−i
i

)
+
(n−1∏

i=1

zδn−i−5
i

)
. (15)

Here the Laurent property is trivially satisfied.
We stress that it is not surprising that the derived recurrences possess the Laurent

property. We know a priori that they produce polynomials and there has to be a good
reason for that to happen, cf. [8]. On the other hand, the Laurentness itself might not be
enough to prove the polynomiality. The Laurent recurrence generates the divisors of the
numerators and denominators of a rational map, which depend on both the parameters
and the initial values of the integrable equation. For the periodic Somos sequences, and for
the Lyness Laurent recurrence (14), this dependence is realized in the coefficients from the
Laurent recurrence and we can start the recurrence with unit initial values. Thus, in this
case, the polynomiality of the divisors is completely explained by the Laurentness of the
recurrence. For the recurrences we have obtained from the DTKQ equations this is not the
case. Here we have to initialize the recurrences with initial values that depend in a specific
way on the initial values of the DTKQ equation. Therefore in these cases the Laurentness
of the recurrences is not enough to explain the polynomiality of the divisors. One would
need a strong Laurent property such as given for Somos-4/5 in [32]. This issue is left open
for future research.

2. Ultra-discrete limits and recursive factorization

Given a rational recurrence (1) one can set un = an/bn, and thus obtain a system of
recurrences for a sequences of pairs of polynomials {an, bn}∞n=1. Such a system has two
ultra-discrete versions: In the max-plus algebra one gets an upper bound on the growth of
the degrees of the polynomials an and bn, and the min-plus algebra yields a lower bound
on the multiplicities of their divisors.

• The max-plus system is obtained by considering degrees. Let p, q, r be polynomials.
The degree of pq + r satisfies

deg(pq + r) ≤ max (deg(p)+ deg(q), deg(r)).

• The min-plus system is obtained by considering the multiplicities of divisors. The
multiplicity of any divisor f of pq + r satisfies

mulf (pq + r) ≥ min (mulf (p)+ mulf (q), mulf (r)).

For a discussion of ultra-discretization as a limiting procedure, see [53].
The degree of un is obtained from the degree of an (or bn) minus the degree of the

greatest common divisor gn = gcd (an, bn). Thus, one has to control the divisors of an
and bn. By iterating the system finitely many times and using the observed factorization
as initial values in the ultra-discrete system for multiplicities, one obtains a lower bound
on the multiplicities of divisors. In many cases this lower bound on the multiplicities is
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sharp. In any case, by recursively defining the next divisor to be the quotient of a term in
the sequence after division by the previous divisors, one produces an exact factorization of
the polynomial sequences (although not necessarily into irreducible factors). For example,
if no new divisors appear in bn we can write, in terms of a sequence of divisors {ci}∞i=1,

bn =
n−1∑
i=1

cm
b
n(ci)

i ,

where mb
n(ci) denotes the multiplicity of the ith divisor ci in bn. And, the nth divisor cn is

defined by

an = cn
n−1∑
i=1

cm
a
n(ci)

i .

In other cases, new divisors do appear in bn and the sequences an and bn may be defined
in terms of two sequences of divisors {ci} and {di}. If one is after degree growth one now
writes the degree of an (or bn) as a convolution of the degrees of the divisors and their
multiplicities. Using (the solution to) the ultra-discrete degree recurrence one may then
obtain a recurrence for the degrees of the divisors and, when all but finitely many divisors
are common, retrieve an upper bound on the growth of degrees of un [23,34].

The idea of recursive factorization is, as far as we are aware, first published in the paper
[34] where it was used to establish polynomial upper bounds on the growth of degrees
of rational mappings. Although the max-plus ultra-discretization was used to bound
the degrees of an’s and bn’s, the multiplicities in the factorization were obtained from
a recursion formula for the multiplicities of the divisors of the greatest common divisor
gn = gcd (an, bn). This is not always sufficient. In [23] the min-plus ultra-discretization
was used to find a lower bound on the multiplicities of the divisors, and so to obtain
a factorization formula for the iterates of the Nth order DTKQ map (11). This was
subsequently used to prove an upperbound on the growth of their degrees.

In this paper we obtain recurrence relations for the sequence of divisors by substituting
the factorizations into the system of recurrences for the polynomial sequences {an} and
{bn}. When all but a fixed number of divisors are common, this yields a nonlinear rational
recurrence for the divisors {cn}. As the divisors cn are polynomial, we expect the recurrence
to possess the Laurent property. If the number of divisors that are not common grows
unboundedly (i.e. when the recurrence is not confining) the resulting recurrence does not
have a fixed order, cf. Section 6. If one starts with a recurrence (1) that has the Laurent
property, all divisors but powers of the initial variables, will be common to both an and bn
for all n. This then proves the Laurent property.

In a recent paper by Viallet [55], an alternative approach is taken. The maps are
considered projectively and hence all common divisors are divided out. Viallet determines
the form of the iterates, in terms of what he calls blocks, by iteration of the map until
it stabilizes. He then poses algebraic relations for the blocks, i.e. recurrence relations for
the divisors, and proves the validity of these relations and the stability of the form of
the iterates simultaneously by induction. Another difference between the work of Viallet
and the present paper is that for a given kth order rational map he homogenizes the
corresponding first order k-dimensional system. The result is that his map lives in P

k

whereas, if we would divide out common divisors, we would work in the kth Cartesian
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power of P
1. A given divisor (block) will appear as a divisor of an earlier iterate in P

k.
Thus, when taking divisors along, their multiplicity grows faster than in (P1)k which is
computationally a disadvantage. Other than that, this difference in homogenization is not
a fundamental one. Both approaches yield the exact same recurrence relations.

We hope to further convince the reader of the usefulness of taking ultra-discretization
limits in the study of growth of degrees and multiplicities of divisors with one more
example. In [55, Section 3.9] Viallet mentions an ‘unruly’ model, φ : P

3 → P
3 given by

the monomial map

[x, y, z, t] �→ [yt, zt, x2, xt], (16)

which he coins a limiting case for further developments. Monomial maps do not yield
recurrence relations for its divisors because the only divisors that will appear are the ones
that are already there, namely the initial values, i.e. the ith component of an iterate will
have the form xδ

x
i yδ

y
i zδ

z
i tδ

t
i . However, one may study the sequences of degrees. As for

monomial maps the degree sequences coincide with the sequences of multiplicities, the
recursion relations for these sequences satisfy both the max-plus and the min-plus ultra-
discretizations and so the ≤ and ≥ coincide in =. The degree sequences for the map (16)
are given by the piecewise linear map in N

4

⎛
⎜⎜⎝
δs1
δs2
δs3
δs4

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎝
δs2 + δs4
δs3 + δs4
2δs1

δs1 + δs4

⎞
⎟⎟⎠− min (δs2 + δs4, δ

s
3 + δs4, 2δ

s
1, δ

s
1 + δs4)

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠ , (17)

where the second term on the right takes care of dividing out the common divisors. The
initial values are δx = (1, 0, 0, 0), δy = (0, 1, 0, 0), δz = (0, 0, 1, 0), δt = (0, 0, 0, 1).
We don’t know how to obtain the algebraic entropy from a recurrence such as (17). For a
description of the complexity of degree growth in monomial maps we refer the reader to
[25, Proposition 7.3], where themap (16)was given as a counter-example to a conjecture by
Bellon and Viallet that the degree sequence of any rational map satisfies a linear recurrence
with constant coefficients.

3. FromQRTmaps to Somos-4/5 recurrences with periodic coefficients

In this section we show how by homogenization, an ultra-discrete limit and recursive
factorization the QRT-map (3) leads to a special case of periodic Somos-4, Equation (5). A
similar result for Somos-5 is also given.

3.1. To periodic Somos-4

We substitute fn = an/bn in (3). This gives

an+1

bn+1
= wn+1bnbn−1

an−1a2n
,
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with wn+1 := αan + βbn, from which we obtain a system of recurrences for polynomial
sequences {an}∞n=1 and {bn}∞n=1,

an+1 = wn+1bnbn−1, (18)
bn+1 = an−1a2n. (19)

This we supplement with initial values a1 = f1, a2 = f2, b1 = b2 = 1. Iterating (18) and
(19) three more times give us:

an+2 = an−1a2nbnr1, bn+2 = anb2n−1b
2
nw

2
n+1,

an+3 = an−1a4nb
2
n−1b

3
nr2w

2
n+1, bn+3 = a2n−1a

4
nbn−1b3nwn+1r21 ,

an+4 = a3n−1a
9
nb

4
n−1b

8
nr

2
2r3w

4
n+1, bn+4 = a3n−1a

10
n b4n−1b

7
nr

2
2w

4
n+1,

where {ri}3i=1, are irreducible polynomials in an−1, bn−1, an, bn, α and β . We observe the
following factorization properties: wn+1 does not divide an+2, it divides bn+2 and an+3
with multiplicity 2, it divides bn+3 with multiplicity 1, and wn+1 is a divisor of both an+4
and bn+4 with multiplicity 4. Furthermore, from (18) and (19), we find the following
ultra-discrete system of recurrences for multiplicities:

ma
n+2 ≥ min (ma

n+1,m
b
n+1)+ mb

n + mb
n+1,

mb
n+2 = ma

n + 2ma
n+1.

where mp
i (f ) denotes the multiplicity of a polynomial f in polynomial pi and we have

suppressed the dependence on f . Using the equal sign in the first equation, we get a lower
bound for the multiplicities, which we denote using Euler’s fraktur typesetting. Thus, we
will employ the following system:

ma
n+2 = min (ma

n+1,m
b
n+1)+ mb

n + mb
n+1,

mb
n+2 = ma

n + 2ma
n+1. (20)

To get a lower bound for the multiplicity of wk (k > 2) in the sequences {an} and {bn}, we
solve (20) with the following initial values: ma

k+1 = 0, mb
k+1 = 2, ma

k+2 = 2, mb
k+2 = 1

and ma
k+3 = mb

k+3 = 4. We find, for n � k + 3, that ma
n(wk) = mb

n(wk) = mn−k, where

m1 = 0, m2 = 2, mn+1 = 2mn + mn−1.

This can be seen by taking ma
k = mb

k in the right hand sides of (20). One finds equality and
hence ma

n+2 = mb
n+2. We define sequences {ma

n(ci)}∞n=1 and {mb
n(ci)}∞n=1, for i ∈ {1, 2}, by

(20) and initial values ma
j (ci) = δij and mb

j (ci) = 0.
The polynomials an and bn can be expressed in terms of a sequence {cn}∞n=1, of polyno-

mials in a1, a2, α and β . Each polynomial cn is defined as the quotient of an after division
by powers of ci for i < n as follows,

an =

⎧⎪⎨
⎪⎩
cn if n � 3,
c1c22c4 if n = 4,
cm

a
n(c1)

1 cm
a
n(c2)

2

(∏n−3
i=3 cmn−i

i

)
c2n−2cn if n > 4.

(21)
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It is clear that cn is polynomial because ci|wi for all i > 4 and hence ma
n(ci) � ma

n(wi). We
know that

∏n
i=1 c

mb
n(ci)

i |bn. Taking bn to be given by

bn =

⎧⎪⎨
⎪⎩
1 if n � 2,
cn−2c2n−1 if n ∈ {3, 4},
cm

b
n(c1)

1 cm
b
n(c2)

2

(∏n−3
i=3 cmn−i

i

)
cn−2c2n−1, if n > 4,

(22)

we verify Equation (19) is satisfied. Thus, defining gn = gcd (an, bn) to be the greatest
common divisor of an and bn, we get

gn =
n∏

i=1

cm
g
n(ci)

i = cm
g
n(c1)

1 cm
g
n(c2)

2

(n−3∏
i=3

cmn−i
i

)
cn−2, (23)

where m
g
n(ci) = min (ma

n(ci),mb
n(ci)). Note, from

bn
gn = cm

b
n(c1)−m

g
n(c1)

1 cm
b
n(c2)−m

g
n(c2)

2 c2n−1,
it can be seen that the map (3) does not posses the Laurent property, but that it does
confine singularities. Indeed, the singularities from the previous iterate are still present but
all others have disappeared.

Considering the lower bounds for the multiplicities of c1, c2 in an and bn, we observe
the following differences are periodic.
Lemma 1: We have:

ma
k(ci)− mb

k(ci) =
{
vk if i = 1,
vk−3 if i = 2,

where v mod 8 = [1, 0,−1, 1,−1, 0, 1,−2].
Proof: By induction. Suppose we havema

k(c1) = mb
k(c1)+vk andma

k−1(c1) = mb
k−1(c1)+

vk−1. Then

ma
k+1(c1) = min (ma

k(c1),m
b
k(c1))+ mb

k−1(c1)+ mb
k(c1)

= 2mb
k(c1)+ mb

k−1(c1)+ min (vk, 0), and

mb
k+1(c1) = ma

k−1(c1)+ 2ma
k(c1)

= 2mb
k(c1)+ mb

k−1(c1)+ 2vk + vk−1.

One verifies that min (vk, 0) − 2vk − vk−1 = vk+1. For c2 the same equation is obtained
(with vk → vk−3). �

From (21), (22), (23), it follows that

αn := αan
cncn−2gn

and βn := βbn
c2n−1gn

(24)

are polynomials in c1 and c2. As a corollary to Lemma 1, it follows that αn and βn are
periodic sequences of period 8, which is the period of the ultra-discrete QRT-map (52), cf.
[41].
Corollary 2: We have:

αn = αcpn1 cpn−3
2 and βn = βcqn1 cqn−3

2 , (25)
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with p mod 8 = [1, 0, 0, 1, 0, 0, 1, 0] and q mod 8 = [0, 0, 1, 0, 1, 0, 0, 2].
Proof: We have:

αn = αan
gncncn−2

= αcm
a
n(c1)−m

g
n(c1)

1 cm
a
n(c2)−m

g
n(c2)

2 ,

where

ma
n − m

g
n =

{
ma

n − mb
n if ma

n − mb
n > 0,

0 if ma
n − mb

n � 0.

Therefore,

ma
n(ci)− m

g
n(ci) =

{
pn if i = 1,
pn−3 if i = 2,

where pk = max (0, vk). Similarly, we have:

βn = βbn
gnc2n−1

= βcm
b
n(c1)−m

g
n(c1)

1 cm
b
n(c2)−m

g
n(c2)

2 ,

where

mb
n(ci)− m

g
n(ci) =

{
qn if i = 1,
qn−3 if i = 2,

with qk = max (0,−vk). �
Theorem 3: The polynomials cn, as defined by (21), satisfy

c3 = αc2 + β , c4 = αc3 + βc1c22, c5 = αc1c2c4 + βc23, c6 = αc5c3 + βc1c24, (26)

and, for n � 6,
cn−3cn+1 = αncncn−2 + βnc2n−1. (27)

Proof: Using Equations (18) and (19), initial values and (21), we find:

c3 = a3 = (αa2 + βb2)b1b2 = (αc2 + β).

Furthermore,

c4 = a4

cm
a
4(c1)

1 cm
a
4(c2)

2

= (αa3 + βb3)b2b3
c1c22

= αc3 + βc1c22,

as b3 = c1c22, ma
4(c1) = 1 and ma

4(c2) = 2. Similarly, the formulae for c5 and c6 are
obtained. Solving Equations (24) for an and bn and substituting in Equation (18), we find:

cn−3cn+1 = Zn(αncncn−2 + βnc2n−1),

with

Zn = βn−1βn

β2
α

αn+1

gn−1g2n
gn+1

cn−1c2n−2cn−3.
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Substituting in Equation (19) gives us:

gn+1 = β

βn+1

α2nαn−1

α3
gn−1g2ncn−1c2n−2cn−3,

which we use to simplify

Zn = α4βn−1βnβn+1

αn−1α2nαn+1β3
= 1,

as qn−1 + qn + qn+1 = pn−1 + 2pn + pn+1. �
The fact that the sequence {cn}∞n=1, with special initial values given by (26) and generated

by the rational recurrence (27), is a polynomial sequence is curious. First of all, it follows
from the definition of cn given by (21)which is based on factorization properties of theQRT
map (3). But there is a second explanation. When we express the coefficients, cf. Corollary
2, in terms of the initial values of the QRT-map (3), c1 = a1 = f1 and c2 = a2 = f2, i.e.

α
f
n =

⎧⎪⎪⎨
⎪⎪⎩
αf1 if n ≡ 1 mod 8,
αf2 if n ≡ 2 mod 8,
αf1f2 if n ≡ 4, 7 mod 8,
α if n ≡ 3, 5, 6, 8 mod 8,

β
f
n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β if n ≡ 1, 2, 4, 7 mod 8,
βf1f 22 if n ≡ 3 mod 8,
βf1 if n ≡ 5 mod 8,
βf2 if n ≡ 6 mod 8,
βf 21 f2 if n ≡ 8 mod 8,

(28)

and supplement the recurrence

cn−3cn+1 = α
f
ncncn−2 + β

f
nc2n−1. (29)

with initial values ci = 1 for i ∈ {−1, 0, 1, 2} we find the following expressions

c3 = αf2 + β , c4 = αc3 + βf1f 22 , c5 = αf1f2c4 + β23 , c6 = αc5c3 + βf1c24,

which agree with (26). Therefore, the fact that the sequence consist of polynomials is fully
explained by the Laurent property of (29), cf. Section 4.3.

3.2. To periodic Somos-5

We will now show how the QRT-map

hn+1hnhn−1 = γ hn + δ, (30)

which is related to Somos-5,

σn+3σn−2 = γ σn+2σn−1 + δσn+1σn, (31)

via the transformation, cf. [29],

hn = σn+2σn−1

σn+1σn
, (32)



800 K. HAMAD AND P. H. VAN DER KAMP

leads to a special case of periodic Somos-5, Equation (7). Substituting hn = an/bn, the
homogenized system for numerators and denominators is given by:

an+1 = vn+1bn−1,
bn+1 = anan−1, (33)

where vn+1 := γ an + δbn. We take {bi = 1}2i=1, so that {ai = hi}2i=1. Iterating (33), we
find:

an+2 = bns1, bn+2 = vn+1bn−1an,
an+3 = anan−1s2, bn+3 = bnbn−1s1vn+1,

an+4 = anbn−1s3vn+1, bn+4 = anan−1bns1s2,
an+5 = anbn−1bns1s4vn+1, bn+5 = an−1a2nbn−1s2s3vn+1,

where {si}4i=1 are irreducible polynomials in {an+i, bn+i}0i=−1, δ, and γ . In addition, from
(33), the ultra-discrete system of recurrences for a lower bound on the multiplicities is:

ma
n+1 = min (ma

n,m
b
n)+ mb

n−1,

mb
n+1 = ma

n + ma
n−1. (34)

To get a lower bound for the multiplicity of vk (k > 3) in the sequences {an} and {bn}, we
solve (34) with initial values: ma

k+1 = ma
k+2 = mb

k+3 = 0 and mb
k+1 = mb

k+2 = ma
k+3 =

ma
k+4 = mb

k+4 = 1. We find, for all n � k + 4, that ma
n(vk) = mb

n(vk) = mn−k−3 where

m1 = 1, m2 = 2, mn+2 = mn+1 + mn.

For i ∈ {1, 2}wedefine sequencesma
n(di) andmb

n(di) by (34) and the initial valuesma
j (di) =

δij and mb
j (di) = 0. Then, a polynomial sequence {dn}∞n=1 is defined by

an =

⎧⎪⎨
⎪⎩
dn if n � 4,
d1d2d5 if n = 5,(∏2

i=1 d
ma

n(di)
i

) (∏n−4
i=3 dmn−i−3

i

)
dn−3dn, if n > 5,

(35)

and we have

bn =

⎧⎪⎪⎨
⎪⎪⎩
1 if n � 2,
dn−2dn−1 if n = 3, 4,(∏2

i=1 d
mb

i (di)
i

)(∏n−4
i=3 dmn−i−3

i

)
dn−2dn−1 if n � 5.

(36)

As in the previous section, the difference between themultiplicities of the initial divisors,
d1 and d2, is periodic. We have:

ma
k(di)− mb

k(di) =
{
wk if i = 1,
wk−4 if i = 2,
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where wmod 7 = [1, 0,−1, 0, 1,−1,−1], which can be proven by induction as was done in
the proof of Lemma 1. From this, it follows that in terms of the initial values of the map
(30), h1 and h2, we have

γ h
n := γ an

dndn−3gn
= γ hrn1 h

rn−4
2 and δhn := δbn

dn−1dn−2gn
= δhsn1 h

sn−4
2 , (37)

where rk = max(0,wk), sk = max(0,−wk), i.e.

rmod 7 = [1, 0, 0, 0, 1, 0, 0] and smod 7 = [0, 0, 1, 0, 0, 1, 1]. (38)

Solving (37) for an and bn in terms of γ h
n and δhn and substituting into (33), we find the

following recursion relations.
Theorem 4: The sequence {dn}∞n=1, defined by (35), satisfies

d1 = h1, d2 = h2, d3 = γ h2 + δ, d4 = γ d3 + δh1h2,
d5 = γ d4 + δh2d3, d6 = γ h1h2d5 + δd3d4, d7 = γ d3d6 + δh1d4d5, (39)

and, for all n � 8,

dn−4dn+1 = γ h
n dndn−3 + δhndn−1dn−2. (40)

We note that (39) are obtained from (40) by taking initial values di = 1 for i ∈
{−2,−1, 0, 1, 2}. Therefore, the fact that {dn}∞n=1 is a sequence of polynomials is again
explained by the Laurent property of (40), see Section 4.3.

Finally, we’d like to mention that the third order mapping [29, Equation 2.9],

un+2u2nu
2
n+1un−1 = γunun+1 + δ, (41)

which is related to Somos-5 via

un = σn+1σn−1

σ 2
n

,

can be recursively factorized as un = an/bn with

an =

⎧⎪⎨
⎪⎩
dn if n � 4,
d1d22d

3
3d5 if n = 5,

dma
n(d1)

1 dma
n(d2)

2 dma
n(d3)

3

(∏n−3
i=4 dmn−i

i

)
d3n−2dn, if n > 5,

(42)

and

bn =

⎧⎪⎨
⎪⎩
1 if n � 3,
dn−3d2n−2d

2
n−1 if n = 4, 5,

dmb
n(d1)

1 dmb
n(d2)

2 dmb
n(d3)

3

(∏n−3
i=4 dmn−i

i

)
d2n−2d

2
n−1, if n > 5,

(43)

where

m1 = 0, m2 = 3, m3 = 7, mn+2 = 2mn+1 + 2mn + mn−1,
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and, for i ∈ {1, 2, 3}, {ma
n(di)}∞n=1 and {mb

n(di)}∞i=1 are defined by initial values {ma
j (di) =

δij,mb
j (di) = 0}3i,j=1, and

ma
n+2 = min (ma

n + ma
n+1,m

b
n + mb

n+1)+ mb
n + mb

n+1 + mb
n−1,

mb
n+2 = 2ma

n + 2ma
n+1 + ma

n−1. (44)

Here, the differences between the multiplicities of d1, d2, and d3 are periodic sequences
with period 14. We have:

ma
k(di)− mb

k(di) =
⎧⎨
⎩
hk if i = 1,
hk + hk+3 mod 14 if i = 2,
hk−4 if i = 3,

where hmod 14 = [1, 0, 0,−1, 1, 0,−1, 0, 1,−1, 0, 0, 1,−2], fromwhich it follows that φn :=
an

dndn−2gn and ψn := bn
d2n−1gn

are periodic with period 14. However, the coefficients of the
periodic Somos-5 recurrence for the sequence {dn}∞n=1 defined by (42),

dn−3dn+2 = γ u
n+2dn−2dn+1 + δun+2dndn−1, (45)

turn out to have period 7,

γ u
n+2 = γ

ψn−1ψnψn+1ψn+2

φn−1φnφn+1φn+2
= γurn1 u

rn+rn−3
2 urn−3

3 ,

δun+2 = δ
ψn−1ψ

2
nψ

2
n+1ψn+2

φn−1φ2nφ
2
n+1φn+2

= δusn1 u
sn+sn−3
2 usn−3

3 ,

with r, s as before. Thus, Equation (45) sits inside the periodic Somos-5 family mentioned
in the introduction, Equation (7).

4. FromSomos-4/5 recurrences toSomos-4/5 recurrenceswith (moregeneral)
periodic coefficients

In this section we apply our method to the Somos-4/5 sequences. We obtain the Somos
sequenceswith periodic coefficientsmentioned in the introduction,which are slightlymore
general than the ones obtained from QRT-maps in the previous section. Whereas in the
previous section the differences between the multiplicities ma

n − mb
n of the initial divisors

were periodic functions of n. Here they satisfy ultra-discrete Somos-4/5 recurrences, which
are not periodic.

4.1. Periodic Somos-4

By taking τn = an/bn in Somos-4 we find the system of recurrences for polynomial
sequences {an}∞n=1 and {bn}∞n=1:

an+2 = wn+2bn−2, (46)
bn+2 = bn+1b2nbn−1an−2, (47)
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with wn+2 := αan+1b2nan−1 + βbn+1a2nbn−1. Taking {bi = 1}4i=1, we have {ai = τi}4i=1.
From (46) and (47), we get the following ultra-discrete system of recurrences for a lower
bound on multiplicities:

ma
n+2 = min (ma

n+1 + 2mb
n + ma

n−1,m
b
n+1 + 2ma

n + mb
n−1)+ mb

n−2,

mb
n+2 = mb

n+1 + 2mb
n + mb

n−1 + ma
n−2. (48)

Iterating the recurrences (46), (47) four times gives us

an+3 = bn−1bn+1p1, bn+3 = an−2an−1bn−1b3nb
3
n+1,

an+4 = an−2bn−1b4nb
3
n+1p2, bn+4 = a3n−2an−1anb3n−1b

7
nb

6
n+1,

an+5 = a3n−2an−1b3n−1b
9
nb

10
n+1p3, bn+5 = a6n−2a

3
n−1anan+1b6n−1b

15
n b13n+1,

an+6 = a10n−2a
3
n−1anb

10
n−1b

25
n b23n+1wn+2p4, bn+6 = a13n−2a

6
n−1a

3
nan+1bn−2b13n−1b

32
n b28n+1wn+2,

where p1, p2, p3, p4 are irreducible polynomials in {an+i, bn+i}1i=−2, α and β . We obtain
a lower bound for the multiplicity of wk (k > 4) in the sequences {an} and {bn}, by
solving (48) with the following initial values: ma

k+i = mb
k+i = 0, where i ∈ {1, 2, 3} and

ma
k+4 = mb

k+4 = 1. We find, for n � k + 1,

ma
n(wk) = mb

n(wk) = mn−k,

where the integer sequence {mn}∞n=1 is defined by

mn+2 = mn+1 + 2mn + mn−1 + mn−2,

and m1 = m2 = m3 = m4 − 1 = 0. We define sequences {ma
n(ci)}∞n=1 and {mb

n(ci)}∞n=1,
for i ∈ {1, 2, 3, 4}, by (48) and the initial values {ma

j (ci) = δij,mb
j (ci) = 0}4i,j=1. Next,

polynomials cn are defined as a quotient of an, as follows,

an =
{
cn if n � 6,(∏4

i=1 c
ma

n(ci)
i

) (∏n−1
i=5 cmn−i

i

)
cn, if n > 6, (49)

and bn can be expressed as

bn =
⎧⎨
⎩
1 if n � 4,(∏4

i=1 c
mb

n(ci)
i

)∏n−1
i=5 cmn−i

i , if n > 4.

Note that, with gn = gcd (an, bn) and m
g
n(ci) = min (ma

n(ci),mb
n(ci)), we have

gn =
( 4∏
i=1

cm
g
n(ci)

i

) n−1∏
i=5

cmn−i
i and

bn
gn

=
4∏

i=1

cm
b
n(ci)−m

g
n(ci)

i , (50)

which confirms that Somos-4 possesses the Laurent property. We next study the multi-
plicities of the divisors {ci}4i=1. But first, let us define the ultra-discrete Somos-4 recurrence
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rn+4 = −rn + max (rn+3 + rn+1, 2rn+2), (51)

for which we take initial values r1 = −1, r2 = r3 = r4 = 0, cf. [17, Example 3.6]. The
second difference of this sequence, xk = rk+2 − 2rk+1 + rk, is a periodic sequence of order
8. This follows by iteration of

xk+2 + 2xk+1 + xk = max (xk+1, 0), (52)

which itself is an ultra-discrete version of the QRT-map (3). We have

xmod 8 = [−1, 0, 1,−1, 1, 0,−1, 2].

Note, for general ultra-discrete QRT maps (as piecewise linear maps in R
2, not just with

integer values for dependent variables) Nobe proves the periodicity of all orbits, and gives
explicit formulae for the periods in all cases [41].
Lemma 5: For all 1 � i � 4, we have: mb

n(ci)− ma
n(ci) = rn−i+1.

Proof: It is enough to prove the lemma for i = 1, because ma
n(ci) = ma

n−1(ci−1) and
mb

n(ci) = mb
n−1(ci−1) for i = {2, 3, 4} and n > 1. For brevity we omit the dependence of

ma
k and mb

k on c1. From initial values, we see that mb
n − ma

n = rn for 1 � n � 4. According
to the induction hypothesis, we may replace ma

l = mb
l − rl , for l � k, in the right hand

sides of (48), with n = k − 1. This gives

ma
k+1 = min (mb

k + 2mb
k−1 + mb

k−2 − rk − rk−2,mb
k + 2mb

k−1 + mb
k−2 − 2rk−1)+ mb

k−3

= mb
k + 2mb

k−1 + mb
k−2 + mb

k−3 + min (− (rk + rk−2),−2rk−1)

= mb
k + 2mb

k−1 + mb
k−2 + mb

k−3 − max (rk + rk−2, 2rk−1)

mb
k+1 = mb

k + 2mb
k−1 + mb

k−2 + mb
k−3 − rk−3.

Thus, mb
k+1 − ma

k+1 = −rk−3 + max (rk + rk−2, 2rk−1) = rk+1. �
Theorem 6: For all n > 4, the polynomials ci defined by (49) satisfy the Somos-4 recurrence

cn−2cn+2 = ατncn+1cn−1 + βτn c
2
n, (53)

with initial values {ci = 1}4i=1 and periodic coefficients

ατn = α

4∏
i=1

τ
pn−i mod 8
i , βτn = β

4∏
i=1

τ
qn−i mod 8
i , (54)

where p and q are given in Corollary 2.
Proof: From (49), (50) and the initial values we obtain

c5 = αc2c4 − βc3, c6 = αc3c5 + βc1c4, c7 = αc1c4c6 + βc2c5, c8 = αc1c4c6 + βc2c5.
(55)
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Using Lemma 5, we find an = gncn and bn = (
∏4

i=1 c
rn−i+1
i )gn. Substituting these

expressions in (46) gives, for n > 8

cn+2gn+2 = gn−1gn−2g2ngn+1

(
αcn+1cn−1

4∏
i=1

c2rn−i+1+rn−i−1
i + βc2n

4∏
i=1

crn−i+2+rn−i−1+rn−i
i

)
.

From (47), we find:

4∏
i=1

crn−i+3
i gn+2 = gn−1gn−2g2ngn+1

( 4∏
i=1

crn−i+2+2rn−i+1+rn−i
i

)
cn−2.

Eliminating gn+2 from the above yields

cn+2cn−2 = α

( 4∏
i=1

crn−i+3−rn−i+2−rn−i+rn−i−1
i

)
cn+1cn−1+β

( 4∏
i=1

crn−i+3−2rn−i+1+rn−i−1
i

)
c2n,

which can be expressed in terms of p and q, as follows,

rn−i+3 − rn−i+2 − rn−i + rn−i−1 = xn−i+1 + xn−i + xn−i−1 = pn−i mod 8,

and

rn−i+3 − 2rn−i+1 + rn−i−1 = xn−i+1 + 2xn−i + xn−i−1 = qn−i mod 8.

Taking unit initial values {ci = 1}4i=1, the relations (55) are generated by (53). �

4.2. Periodic Somos-5

For Somos-5 we follow the same steps. Homogenising σn = an/bn gives

an+3 =vn+3bn−2, (56)
bn+3 =bn+2bn−1bnbn+1an−2, (57)

where vn+3 := γ an+2an−1bnbn+1 + δanan+1bn+2bn−1. We take {bi = 1}5i=1 and so {ai =
σi}5i=1. Iterating (56) and (57) five more times, we find:

an+4 = bn+2bn+1bn−1q1, bn+4 = an−2an−1bn−1b2nb
2
n+1b

2
n+2,

an+5 = an−2bn−1b2nb
2
n+1b

2
n+2q2, bn+5 = a2n−2an−1anb2n−1b

3
nb

4
n+1b

4
n+2,

an+6 = a2n−2an−1b3n−1b
3
nb

6
n+1b

5
n+2q3, bn+6 = a4n−2a

2
n−1anan+1b4n−1b

6
nb

7
n+1b

8
n+2,

an+7 = a5n−2a
2
n−1anb

6
n−1b

8
nb

11
n+1b

12
n+2q4, bn+7 = a8n−2a

4
n−1a

2
nan+1an+2b12n b14n+1b

15
n+2,

an+8 = a12n−2a
5
n−1a

2
nan+1b14n−1b

18
n b24n+1b

25
n+2vn+3q5,

bn+8 = a15n−2a
8
n−1a

4
na

2
n+1an+2bn−2b15n−1b

23
n b27n+1b

29
n+2vn+3,
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where {qi}5i=1 are irreducible polynomials in {an+i, bn+i}2i=−2, δ and γ . From (56) and (57),
the system that gives a lower bound for multiplicities is:

ma
n+3 = min (ma

n+2 + ma
n−1 + mb

n + mb
n+1,m

a
n + ma

n+1 + mb
n+2 + mb

n−1)+ mb
n−2,

mb
n+3 = mb

n+2 + mb
n−1 + mb

n + mb
n+1 + ma

n−2. (58)

To obtain a lower bound for ma
n(vk) and mb

n(vk), we solve (58) with the following initial
values: ma

k+i = mb
k+i = 0 for all i ∈ {1, 2, 3, 4} and ma

k+5 = mb
k+5 = 1. We find, for all

n � k + 1,

ma
n(vk) = mb

n(vk) = mn−k,

wheremn+4 = mn+3+mn+2+mn+1+mn+mn−1 andm1 = m2 = m3 = m4 = m5−1 = 0.
Then, the formulae for an and bn in terms of a new sequence {dk}∞k=1 are given as follows,
with n > 5,

an =
( 5∏
i=1

dma
n(di)

i

)(n−1∏
i=6

dmn−i
i

)
dn, bn =

( 5∏
i=1

dmb
n(di)

i

) n−1∏
i=6

dmn−i
i , (59)

where sequences {ma
n(di≤5)}∞n=1 and {mb

n(di≤5)}∞n=1 are defined by (58) and the initial
values {ma

j (di) = δij,mb
j (di) = 0}5i,j=1. These formulae illustrate that Somos-5 possesses

the Laurent property. The differences between the multiplicities of ci≤5 can be expressed
in terms of the ultra-discrete Somos-5 sequence defined by

tn+5 = −tn + max (tn+4 + tn+1, tn+3 + tn+2), (60)

and initial values t1 = −1, {ti = 0}5i=2. The quantity

yk = tk+3 − tk+2 − tk+1 + tk, (61)

which relates to (32), satisfies the ultra-discrete QRT-map, related to Equation (30),

yk+2 + yk+1 + yk = max (yk+1, 0), (62)

and is periodic of order 7, in fact we have ymod 7 = [−1, 0, 1, 0,−1, 1, 1], see [16, Example
3.1] and the more general result in [41]. It follows from (58) that

mb
n(di)− ma

n(di) = tn−i+1, (63)

for all 1 � i � 5.
Theorem 7: Let r, s be given as in (38). For all n > 7, the polynomials dn>5 defined by (59),
satisfy the Somos-5 recurrence with periodic coefficients

dn+3dn−2 = γndn+2dn−1 + δndndn+1, (64)
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where

γn = γ

5∏
i=1

σ
rn−i mod 7
i , δn = δ

5∏
i=1

σ
sn−i mod 7
i , (65)

and initial values {di = 1}5i=1.
Proof: Using (56), (57), initial values and (59), we find

d6 = ασ5σ2 + βσ3σ4, d7 = αd6σ3 + βσ4σ5σ1, d8 = αd7σ4 + βσ2d6σ5,
d9 = αd8σ5σ1 + βσ3d7d6, and d10 = αd9d6σ2 + βσ1σ4d8d7. (66)

For all n > 10, from (59) and (63), we find an = gndn and bn = (
∏5

i=1 d
tn−i+1
i )gn.

Substitution in Equation (56) gives

dn+3gn+3

gn−2gn−1gngn+1gn+2
= γ dn+2dn−1

5∏
i=1

dtn−i+1+tn−i+2+tn−i−1
i

+ δdndn+1

5∏
i=1

dtn−i+3+tn−i+tn−i−1
i .

From (57), we find:

gn+3

gn−2gn−1gngn+1gn+2

5∏
i=1

dtn−i+4
i =

( 5∏
i=1

dtn−i+3+tn−i+tn−i+1+tn−i+2
i

)
dn−2.

Eliminating gn from the above equations yields the required result, as

tn−i+4 − tn−i+3 − tn−i + tn−i−1 = yn−i+1 + yn−i−1 = rn−i mod 7,
tn−i+4 − tn−i+1 − tn−i+2 + tn−i−1 = yn−i+1 + yn−i + yn−i−1 = sn−i mod 7.

Moreover, taking {di = 1}51, then (66) are generated by (64). �

4.3. On the Laurent property of periodic Somos-4/5 sequences

As the periodic Somos-4/5 sequences (53), (64) are special cases of Equation (9) and
condition (10) is satisfied, they possess the Laurent property.

If we would not have had the Gale-Robinson equation at hand, or one wants a direct
proof, this can be done. Actually, most of the work has already been done. Considering
(53), the substitution cn = an/bn yields the same system of recurrences (46), (47) for
polynomials an and bn. The only difference is that in the expression for wn+2, α and
β are now periodic functions of n with period 8. This means that the iteration of the
recurrences (four more times) has to be repeated for different values of n ≡ i mod 8, with
i ∈ {0, 1, 2, . . . , 7}. For each value of i we found that wn+2 does not divide an+k or bn+k,
with k = 3, 4, 5, and that it does divide both an+6 and bn+6. As the system of recurrences
is similar, the derived ultra-discrete system (48) is the same, polynomials cn are defined by
Equation (49), and the proof carries over. Also no surprises were found when iterating the
system (56), (57) five more times, for p = 7 different values for nmod p.
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5. FromDTKQ equations to Laurent recurrences

The aim of this section is to show how the second and third order DTKQ equations give
rise to recurrences that possess the Laurent property. The Nth order DTKQ equation,

N∑
s=0

un+s

N−1∏
q=1

un+q = φ, (67)

was derived in [7], by applying the principle of duality for difference equations. It was
shown to admit sufficiently many integrals to be completely integrable. The growth of the
equations has been studied in [23].

5.1. From the second order DTKQ equation to a fifth order Laurent recurrence with
four terms

In the case N = 2, the DTKQ equation is

un+2 = φ

un+1
− un − un+1. (68)

This is another example of a symmetric QRT map. The period of its ultra-discretization
can be found in [41]. However, here the resulting Laurent system does not have periodic
coefficients. In fact, that is the case for all additive QRT-maps [35].

Substituting un = an/bn in (68) and identifying the numerators and denominators, we
get a system of recurrences for polynomial sequences {an}∞n=1 and {bn}∞n=1:

an+2 = φbnb2n+1 − anan+1bn+1 − bna2n+1, (69)
bn+2 = an+1bnbn+1, (70)

with a1 = u1, a2 = u2, b1 = b2 = 1. Via ultra-discretization and recursive factorization,
they are written in terms of a polynomial sequence {en} as

an =
{
en if n � 3,
enen−3

∏n−3
i=2 emn−i−2

i if n > 3,

bn =
⎧⎨
⎩
1 if n � 2,
e2 if n = 3,
en−1en−2

∏n−3
i=2 emn−i−2

i if n > 3,
(71)

with m1 = 2, m2 = 6, and ml = 2ml−1 + ml−2. More details can be found in [23] where a
polynomial upperbound on the growth of (68) was obtained.
Theorem 8: The polynomials en satisfy, for n > 3,

en−1en−5

e2n−3
+ e2n−1e

2
n−4

e2n−3e
2
n−2

+ en−4en
e2n−2

= φ, (72)

where
{ei = 1}1i=−1, e2 = u2 and e3 = φ − u1u2 − u22. (73)
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Proof: From (69)–(70) and initial values, we obtain

e2 = a2, e3 = a3 = φb1b22 − a1a2b2 − b1a22 = φ − u1u2 − u22.

Similarly, we find

e4 = φu22 − e3u22 − e23, e5 = φu22e
2
3 − e4e23 − e24

u22
, e6 = a6

e3g6
= φe23e

2
4 − e5e24 − e25u

2
2

u2e23
.

(74)

Now consider, for n > 4, replacing an+i by en+icn−3+ign+i and bn+i by en−1+ien−2+ign+i
in the right hand side of Equation (69):

en+2en−1gn+2 = gng2n+1en−1en−2(φe2ne
2
n−1 − e2nen−3en+1 − e2n+1e

2
n−2).

From Equation (70) we find gng2n+1 = gn+2

e2n−1e
2
n−2

and these combine to give the

recurrence equation for e′s, (72). By taking e−1 = e0 = e1 = 1, the recurrence Equation
(72) generates the above expressions (74). �

We could now recursively factorize the Equation (72), but if one just wants to verify
the Laurent property there is an easier method, invented by Hickerson and described in
[48]. By iterating the map five times we obtain {en = pn/qn}10n=5, for polynomials pn and
monomials qn in the initial values {en}5n=1. As p5 is prime to pn for all n ∈ {6, 7, 8, 9, 10}
the recurrence (72) satisfies the Laurent property.

We remark that a reduction of order, by introducing the variable en+1/en−1, is apparent,
however, this does not preserve Laurentness. Furthermore we shouldmention that the fact
that the rational recurrence (72) with initial values (73) produces a polynomial sequence
does not follow from the Laurent property of (72). One needs a strong Laurent property
such as given in [32] for Somos sequences.

5.2. From the third order DTKQ equation to a sixth order Laurent recurrence with
five terms, with coefficients that are periodic with period 8

Taking N = 3 in Equation (67), this gives the third order DTKQ equation,

un+3 = φ

un+1un+2
− un − un+1 − un+2.

This equation has two first integrals. Using one of them it should be possible to reduce it
to a second order map of QRT-type. However, let us proceed with the third order map as
given. Homogenising yields,

an+3 = φb2n+1b
2
n+2bn − an+1an+2anbn+1bn+2 − a2n+1an+2bn+2bn − an+1a2n+1bn+1bn,

bn+3 = bn+1bn+2bnan+1an+2. (75)
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If we choose {an = un, bn = 1}3n=1 then all an and bn are polynomials in the initial variables
u1, u2, u3 and parameter φ. A sequence of polynomials {kn}∞n=1 is defined by:

an =

⎧⎪⎨
⎪⎩
kn if n < 5,
k3k5 if n = 5,
km

a
n(k2)

2

(∏n−3
i=3 kmn−i−2

i

)
kl−3kl−2kl if n > 5,

bn =

⎧⎪⎨
⎪⎩
1 if n < 4,
k2k3 if n = 4,

k
mb
l (k2)

2

(∏n−3
i=3 kmn−i−2

i

)
k2n−2kn−1 if n > 4,

(76)

where {mn}∞n=1 is the integer sequence defined by m1 = 4, m2 = 13, m3 = 37 and
mn = 2mn−1 + 2mn−2 + mn−3. In this case the ultra-discretization of the homogenized
system does not give us a sharp bound on the multiplicities ma

n(k2) and mb
n(k2). By using

prime numbers as initial values we were able to iterate the map (75) a little further than
usual, which led us to formulate the following.
Conjecture 9: The difference of the multiplicities of k2 in an and bn is periodic, we have
ma

n(k2)− mb
n(k2) = ζn, with ζmod 8 = [0, 1, 0,−1,−1, 2,−1,−1].

Assuming the conjecture, from (76), it follows that

an
cn−3cngn

= kmax (0,ζn)
2 and

bn
cn−2cn−1gn

= kmax (0,−ζn)
2

are polynomial sequences in k2. Using these functions we find the following theorem
Theorem 10: The polynomials kn>1, as defined by (76), satisfy

εn
kn−3kn+1

k2n−1
+ εn+1

k2n−2k
2
n+1

k2n−1k2n
+ εn+2

kn−2kn+2

k2n
+ εn+3

kn−2kn+3

kn−1kn+2
= φ

εn+1εn+2

knkn+1

kn−1kn+2
,

(77)
with εn = uζn2 , {kn = 1}2n=−1, k3 = u3 and k4 = φ − u2u3(u1 + u2 + u3).

The Laurentness of (77) can be verified as before, this time the iteration has to be
repeated for every congruence class n mod 8. We will discuss a generalization of the
Hickerson method which includes periodic coefficients in [35], cf. Section 4.3.

6. From a generalized Lyness equation to two quite different Laurent recur-
rences

In this section, we compare two choices for the parameters in the generalized Lyness
equation,

wn+3wn = μ+ νwn+1 + wn+2. (78)

For μ = ν = 1 the sequences generated by this recurrence are 8-periodic. Equation (78)
with ν = 1 has vanishing algebraic entropy and its dynamics is rather well understood. For
example, for μ > 0, there are continua of initial conditions giving rise to even 2q-periodic
sequences for all but finitelymany q ∈ N [6]. On the other hand, taking ν �= 1 the algebraic
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Table 1. The multiplicities of qn in an+k−1 and bn+k−1, from iterating the map (79).

k 1 2 3 4 5 6 7 8 9 10 11

m̄a
k 1 0 0 0 0 1 3 6 10 18 34

m̄b
k 0 0 0 1 1 2 3 5 10 18 34

entropy of the map does not vanish, in fact, the map is not confining. We are interested
in the different recurrences satisfied by the divisors occuring in these distinct families of
equations.

6.1. Integrable case ν = 1

The homogenized map (78) reads

an = bn−3qn, (79)
bn = an−3bn−2bn−1, (80)

where qn = an−2bn−1 + an−1bn−2 + μbn−2bn−1. We take {ai = wi}3i=1 and {bi = 1}3i=1.
From (79), the ultra-discrete system for a lower bound on the multiplicities is:

ma
n = mb

n−3 + min (mb
n−2 + mb

n−1,m
a
n−2 + mb

n−1,m
b
n−2 + ma

n−1),

mb
n = ma

n−3 + mb
n−2 + mb

n−1. (81)

Solving this system with initial values

ma−1 = ma
0 = 0, ma

1 = 1, and mb−1 = mb
0 = mb

1 = 0, (82)

one finds the periodic difference

mb
n − ma

n = sn, smod 8 = [−1, 0, 0, 1, 1, 1, 0, 0]. (83)

Combining (81)–(83) we obtain

ma
n+3 = ma

n + ma
n+1 + ma

n+2 + rn and mb
n+3 = mb

n + mb
n+1 + mb

n+2 − sn, (84)

where rn = sn+2 + sn−1 − sn−3. These sequences describe the multiplicity of the initial
values exactly. However, the multiplicity of the divisors qn grow a bit faster. The sequences
of multiplicities of qn in an+k−1 and bn+k−1 are denoted m̄a

k, m̄b
k. Their first 10 values

are given in Table 1 and their tails coincide and can be expressed in terms of tribonacci
numbers m̄k = m̄k−1 + m̄k−2 + m̄k−3 with m̄0 = m̄1 = m̄2 = 1 [50, A000213], i.e for
all k > 8, m̄a

k = m̄b
k = 2m̄k−5. It is remarkable that q34n divides an+10, which can’t be seen

from the ultra-discrete system.
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Weexpress the polynomials an and bn in terms of a sequence {zk}∞k=1, where zn is defined
as the quotient of an after division by powers of zi with i < n, as follows,

an =
( 3∏
i=1

z
ma

n−i+1
i

)( n∏
i=4

z
m̄a

n−i+1
i

)
, bn =

( 3∏
i=1

z
mb

n−i+1
i

)( n∏
i=4

z
m̄b

n−i+1
i

)
. (85)

Making explicit the common divisor, we write (for n ≥ 11)

an =
( 3∏
i=1

zεn−i+1
i

)
zn−7zngn, bn =

( 3∏
i=1

zςn−i+1
i

)
zn−4zn−3gn, (86)

with εn = max (0,−sn), ςn = max (0, sn) and,

gn =
( 3∏
i=1

z
m

g
n−i+1

i

)(n−5∏
i=4

z2m̄n−i−4
i

)
zn−6

zn−7
, m

g
k = ma

k − εk. (87)

Substituting (86) in (80), we find

gn
gn−3gn−2gn−1

=
3∏

i=1

zεn−i−2+ςn−i−1+ςn−i−ςn−i+1
i z2n−5zn−6zn−10, (88)

which is satisfied by (87). By substituting (86) in (79) and using (88),we find:

zn+3zn−2zn−7 = μ

3∏
i=1

zςn−i−2−εn−i+1+ςn−i+1−εn−i−2
i zn−1zn−2zn−3

+
3∏

i=1

zεn−i−1+ςn−i−2−εn−i+1+ςn−i+1−ςn−i−1−εn−i−2
i zn−1zn+1zn−6

+
3∏

i=1

zεn−i+ςn−i−2−εn−i+1+ςn−i+1−ςn−i−εn−i−2
i zn+2zn−3zn−5. (89)

Express the coefficients in terms of

δmod 8 = [0, 1, 0, 1, 0, 0, 0, 0], (90)

we arrive at the following theorem.
Theorem 11: The polynomials zn�4, as defined by (85) are generated by

zn+3zn−2zn−7 = κnzn−1zn−2zn−3 + τnzn−1zn+1zn−6 + σnzn+2zn−3zn−5, (91)

where

κn = μ

3∏
i=1

wδn−i+δn−i+1
i , τn =

3∏
i=1

wδn−i+3
i and σn =

3∏
i=1

wδn−i+6
i ,
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from initial values {zi = 1}3i=−6.
Therefore, the fact that {zn}∞n=1 is a sequence of polynomials is explained by the Laurent

property of (91).

6.2. Non-integrable case ν �= 1

In this case the multiplicities of all divisors are given by the ultra-discrete system (81) with
initial values (82), which yields (84). No surprising factorization occurs. Hence we get

an =
n∏

i=1

z
ma

n−i+1
i and bn =

n∏
i=1

z
mb

n−i+1
i , (92)

for all n > 0. Thus we have gn = ∏n
i=1 z

m
g
n−i+1

i , wherem
g
n is given by (87) and wemay write

an =
n∏

i=1

zεn−i+1
i gn and bn =

n∏
i=1

zςn−i+1
i gn. (93)

By substituting (93) in (80), we find:

gn
gn−3gn−2gn−1

=
n−3∏
i=1

zεn−i−2+ςn−i−1+ςn−i−ςn−i+1
i . (94)

Moreover, by substituting (93) in (79) and using (94), we find:

zn = μ

n−1∏
i=1

zςn−i−2−εn−i+1−εn−i−2+ςn−i+1
i (95)

+ ν

n−1∏
i=1

zεn−i−1+ςn−i−2−εn−i+1−εn−i−2−ςn−i−1+ςn−i+1
i

+
n−1∏
i=1

zεn−i+ςn−i−2−εn−i+1−εn−i−2−ςn−i+ςn−i+1
i

Expressing the result in terms of (90), we obtain the following theorem.
Theorem 12: The nth term in the sequence {zk}∞k=1 is given by the polynomial expression

zn = μ

(n−1∏
i=1

zδn−i−2+δn−i−3
i

)
+ ν

(n−1∏
i=1

zδn−i
i

)
+
(n−1∏

i=1

zδn−i+3
i

)
. (96)

Note

1. Notation: a periodic function pn+m = pn is defined bym values: with pmodm = [v1, . . . , vm]
we mean pn = vnmodm.
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