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When an individual's fingerprint is scanned, although the global fingerprint pattern is unchanged, at the
local level, between different scans the minutiae pattern may vary. Minutiae translation and rotation are
caused by changing finger orientation and position shift during fingerprint acquisition. Minutiae patterns
may also suffer non-linear distortion due to finger skin elasticity. Despite a variety of approaches to de-
tecting deformations in fingerprint images, there has been no method available for capturing minutiae
variations between two impressions of the same finger in a unified model. In this paper we address
this issue by proposing a unified model to represent minutiae variations between fingerprint scans and
formulate the changes to minutiae feature patterns. We identify the Mobius transformation as a good
candidate for modelling minutiae translation, rotation and non-linear distortion, that is, different types
of minutiae variations are described in a single model. Not only do we mathematically prove that the
Mobius transformation based model is a unified model for capturing minutiae variations, but we also

experimentally verify the effectiveness of this model using a public database.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

With good recognition accuracy and strong security, fingerprint-
based biometric recognition [1] is becoming an appealing alterna-
tive to traditional password- and token-based authentication. Dur-
ing fingerprint acquisition, a fingerprint sensor or scanner acquires
fingerprint images through some means of contact sensing. The
quality of the acquired images can be affected by a number of
physiological, behavioral and environment factors, e.g., the amount
of pressure applied by the person, the elasticity of finger skin, the
disposition of the person (sitting or standing), the moisture con-
tent of finger skin (dry, wet or oily), the motion of the finger and
ambient temperature and light. As a result, fingerprint images con-
tain a fair amount of uncertainty and variability, giving rise to
intra-class variations and inter-class similarity [1]. How to extract
more useful information from noisy (or even poor-quality) finger-
print images has attracted intense research interest in the areas of
image processing and pattern recognition for many years.
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In a fingerprint image, apart from the global fingerprint pat-
tern, such as the ridge line flow, at the local level, minutiae points
provide salient information about an individual’s fingerprint fea-
tures [1] and play an important role in the design of fingerprint
recognition systems. In particular, in recent years researchers have
successfully applied minutia-based local structures [2] to the popu-
lar research topic of fingerprint template protection; see e.g., [3-7].
These minutia-based local structures have some desirable proper-
ties — they are stable and alignment-free. However, in the finger-
print acquisition process, when a person presses his/her fingertip
against the plain surface of a fingerprint scanner, the resultant fin-
gerprint image is produced through a three-dimension(3D)-to-two-
dimension(2D) mapping. In this process, minutiae variations occur
between different scans, because minutiae points are affected by
linear transformations like translation and rotation. Moreover, due
to skin elasticity — compression or stretch, minutiae are subject to
elastic deformation [8] or non-linear plastic distortion. The ideal
way to cope with minutiae variations is to invert the 3D-to-2D
mapping and compare minutiae in 3D, but how to invert this map-
ping has not been found.

A number of techniques have been presented in literature to
deal with the issue of minutiae variations (translation, rotation and
non-linear distortion) that are inherent in fingerprint images, re-
sulting in different approaches from different perspectives. Bazen
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and Gerez [8,9] used a thin-plate spline model to represent non-
linear distortion as a non-rigid transformation, which compen-
sates for elastic deformation to improve minutiae matching per-
formance. But this model has to be fitted in rounds of iterations
and the accuracy of this model is dependent on the size of the
tolerance zone around a minutia. Bolle et al. [10] and Fujii [11] in-
vented hardware-based methods to measure force and torque dur-
ing fingerprint image capture. These hardware devices are ex-
pected to allow contact sensing of fingerprints to be completed
with minimal distortion. Specifically, the mechanism designed by
Bolle et al. [10] detects and measures excessive force and torque at
image acquisition, while the fingerprint distortion detection unit
devised by Fujii [11] detects the amount of movement of a fin-
ger on a fingerprint sensor through a transparent elastic film or a
transparent board, which is mounted on or semi-fixed to the read-
ing face of the fingerprint sensor. These hardware units restrict the
application of force to be within a certain range during capturing.
The hardware rejects distorted records and prompts the user to
provide a new impression until the system requirements are sat-
isfied. There are several drawbacks related to the use of hardware-
based distortion detection methods: (a) specific sensors and/or ad-
ditional instrumentation are required; (b) they cannot handle dis-
torted fingerprint images from previously recorded samples; and
(c) the system becomes weak against malicious users who fake
their fingertips and ridge patterns.

To study the dynamic behavior of fingerprints, Dorai
et al. [12] proposed the use of fingerprint video streams and
applied joint temporal and motion analysis to structural distortion
detection. Although the proposed approach can reliably detect
non-linear plastic distortion of fingerprint impressions and esti-
mate fingerprint positions based on compressed fingerprint videos,
the use of streamed video sequences is inefficient or infeasible
in the mobile computing environment, where time and energy
consumption is highly restrictive. In addition, researchers have
come up with various models for non-linear distortion in finger-
print images. Unlike the thin-plate spline model [8,9], Cappelli
et al. [13] investigated distortion patterns in different parts of
fingerprint images taken with online acquisition sensors. It was
revealed in [13] that finger pressure against the sensor surface
was non-uniform, decreasing from the finger center towards the
outer area. Accordingly, a non-linear distortion model proposed
in [13] was based on finger pressure variations in three distinct
regions of a fingerprint: close-contact region (i.e., center region),
outer region and the region in between. Although this model ex-
plains the deformation of fingerprint images caused by improper
finger positioning, estimation of model parameters is hard and un-
reliable. Chen et al. [14] developed a fuzzy theory based algorithm
to tackle non-linear distortion. The proposed algorithm can detect
spurious minutiae and achieves good recognition accuracy for
deformed fingerprints. However, image alignment is a prerequisite
for the proposed algorithm, which means that if pre-alignment is
wrong, the proposed algorithm cannot perform well.

Despite aforementioned software- and hardware-based ap-
proaches to detecting deformations in fingerprint images, there has
been no method available for capturing minutiae variations in a
unified model. None of the existing models can deal with rigid
transformations (e.g., minutiae translation and rotation) and non-
rigid transformations (e.g., non-linear distortion) in a comprehen-
sive manner, so that they can be described in a single model. In
this paper we address this issue by proposing a unified model,
which is able to represent minutiae variations between fingerprint
scans and formulate the changes to minutiae feature patterns. By
observing the similarity between the process of pressing one’s fin-
gertip bulging outwards on a fingerprint scanner and taking ob-
jects on a curved surface and mapping them to a plane, we derive
a simple model, namely inversion, for non-linear distortion using

the Riemann sphere [15]. In addition, we use complex functions
to express minutiae translation, rotation and inversion. Further-
more, we identify the Mobius transformation [16] as a candidate
for modelling minutiae translation, rotation and non-linear distor-
tion, that is, different types of minutiae variations are described
in one, unified model. Not only do we mathematically prove that
the Mobius transformation based model is a unified model for
capturing minutiae variations, but we also experimentally verify
the effectiveness of this model using the public database FVC2002
DB2 [17].

The paper is organized as follows. Section 2 presents the com-
plex functions to describe minutiae translation, rotation and in-
version as well as develops the inversion model for non-linear
distortion. Section 3 proposes the Mobius transformation based
model and proves why it can be used to model minutiae variations.
In Section 4, we evaluate the efficacy of the Mébius transforma-
tion based model through experiments conducted over the public
database FVC2002 DB2 [17]. The conclusion and future work are
given in Section 5.

2. Minutiae translation, rotation and non-linear distortion

Minutiae variations that occur to different fingerprint scans in-
clude translation, rotation and non-linear distortion. Translations
and rotations are due to changing finger orientation and position
shift at fingerprint capturing time, while non-linear distortion is
introduced by variable skin pressure. In this section, we propose
inversion as a simple model for non-linear distortion.

Minutiae translation, rotation and inversion can be described by
complex-valued functions. In order to use these functions, a minu-
tia’s position is represented by a complex number z, which means
that the co-ordinates (x, y) of the minutia are given by x = Re(z)
and y = Im(z), where Re(z) is the real part of z and Im(z) is the
imaginary part of z. We now introduce the complex functions that
express these mappings.

Proposition 1. A translation in the complex plane is represented by
a function of the form

f@=z+y (1)
where y € C.

Proof. Observe that Re(y) displaces z along the real axis and
Im(y) displaces along the imaginary axis, the desired result
follows. O

Proposition 2. Rotation is described by

f@)=az (2)
where o € C.

Proof. It is straightforward to prove the result when we express z
and « in polar form. O

Non-linear distortion is inevitable during fingerprint capture.
However, we notice that pressing our fingerprint on a scanner is
similar to mapping points of a curved surface, e.g., a sphere, to a
plane. Motivated by this observation, we propose a model for non-
linear distortion based on projecting points in the x — y plane to
the surface of the Riemann sphere [15]. Consider the surface of the
Riemann sphere X of unit radius, centred at the origin in R3. Let
IT be the x — y plane and N denote the point (0,0,1). The com-
plex number z =x + iy can be represented by the point P = (x,y)
in I1. P can be mapped uniquely to the point P* by taking the in-
tersection of the line segment NP with X, or its extension for P
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Fig. 1. Projection of point P (i.e., z = x +iy) to the Riemann sphere.

Fig. 2. Triangle NOP.

inside X. The point P* can be represented by overlaying a spher-
ical co-ordinate system, where A € (—m, ] and ¢ € (-7 /2,7 /2).
This arrangement is shown in Fig. 1.

Fig. 2 shows the triangle NOP, where O is the origin. Let ¥ =
Z/ONP and Q be the point that bisects the line segment NP*. As
NOP* is an isosceles triangle by construction, the line segment
QO bisects «P*ON. Let p = Z/NOQ = (£P*ON)/2. As NOP is a right-
angled triangle, we have p =m/4 — ¢/2. We now derive ¥ in
terms of ¢ as follows:

g

1/f=§—/0
T ¢
=21732

We can now express the point P, represented by z = x + iy, with
respect to our spherical co-ordinates A and ¢. Observe argz = A
and |z| = tan . Therefore,

Z = tan (%+%)em (3)

Proposition 3. Let g denote the function that rotates the sphere ¥ by
angle 7 about the x-axis. Let h map the points in the x —y plane I1
to the sphere X, as discussed above. Inversion is described by f(z) =
h=1ogo h(z), where the symbol o denotes function composition, and

f@=1/z (4)

Proof. Observe rotation about the real axis corresponds to rotation
about the x-axis in Fig. 1. After rotation of the sphere, ¢ — —¢ and

A — —A. Using (3), we have

f(z) = tan (% - %) e it

sin ( —%) i
cos(4 - %)

in® ¢ _ 7 sin?
sin % cos § —cos  sin §

IERESE]

i ? 4 sinZ sin @
cos 7 cos 5 +sin % sin 5

T ¢ _sinZsin?
cosZcos$ —sinZ sin g

sinZ cos § + cos Z sin §
cos(Z+9%)
sin(% + %)
1
1

4
O

We have shown that inversion corresponds to projection from
a rotation of the Riemann sphere. Figs. 3 and 4 illustrate the effect
of inversion on a collection of example points in C that lie in a
square.

Remark. In practice, since fingerprint acquisition is normally a
monitored process, the amount of non-linear distortion should be
less drastic than that shown in Figs. 3 and 4.

3. The Mobius transformation based model

Based on the above analysis, we now introduce the Mdbius
transformation and show that it renders a good candidate for mod-
elling minutiae variations between two impressions of the same
finger.

Definition. A mapping of the form

(5)

is called a Mébius transformation [18], where a, b, c,d € C, and ad —
bc #£ 0.

Note that the assumption ad — bc # 0 is necessary [16] because
if ad — bc =0, the mapping f(z) in (5) becomes a constant map-
ping, sending every point z to the same image point a/c.

Despite its seemingly simplicity, the Mobius transformation has
abundant applications in fields such as computer vision and bio-
logical image analysis, thanks to its beautiful properties and abil-
ity to work with non-Euclidean geometry. For example, in order to
identify possible transformations in different images of the same
object, Marsland and Mclachlan [19] presented Mobius invariants
for both curves and images as well as developed invariant signa-
tures, by which shapes can be recognised. In the context of build-
ing a model for fingerprint minutiae variations, we shall prove that
the Moébius transformation (5) can represent minutiae translation,
rotation and non-linear distortion.

Theorem. The Mébius transformation is composed of translation, ro-
tation and inversion.

Proof. Let f(z) be a Mdbius transformation as defined in (5).
Case 1: ¢ = 0. This implies f(z) = (a/d)z+b/d. Let f; = (a/d)z
and f, =z + b/d. Thus,

frofi=(a/d)z+b/d = f(2)
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Fig. 3. Before inversion.
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Fig. 4. After inversion.

In this case, it follows from Propositions 1 and 2 that fis composed bc — ad a(cz+d)

of translation and rotation. = faofsofaofi = c(cz+d)  c(cz+d)
Case 2: c#0. According to [18], suppose f1(z) =z+d/c, f,(z) = c(az + b)

1/z, f3(2) = @z and f4(z) = z+ a/c. Based on Propositions 1, = ccz+d)

2 and 3, these functions describe translation, rotation and inver- +

sion. = f@@)
faofi=1/(z+d/c)
bc — ad Therefore, f{z) is composed of translation, rotation and inversion as
= fiofrofi= cz+d)c required. O
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Our proof above also echos the statement made by Needham
[16] that the Mdbius transformation can be decomposed into the
following fundamental transformations:

i. z+> z+ ¢, which is a translation.
1, which is inversion.
iii. zr— —%z, which is a rotation.
iv. z+— z+ 4, which is another translation.

ii. Z—

In addition, it is shown [16] that there exists a unique Mdbius
transformation mapping any three given points to three other
given points. Three points form a triangle and we know that tri-
angles play a special role in Euclidean geometry, which is under-
pinned by similarity transformations. However, for similarities to
exist in the realm of Euclidean geometry, the image points must
form a triangle that is similar to the triangle formed by the orig-
inal points, so this is considered as a type of rigid transformation.
On the other hand, such similarities can be expressed by complex
functions of the form f(z) = az+ b, which is exactly a simplified
version of the Mobius transformation (5). It is noted that minu-
tiae translation and rotation can be dealt with by rigid transfor-
mations using Euclidean geometry, whereas non-linear distortion
is caused by finger skin elasticity and such elastic deformation has
to be treated by more flexible, non-Euclidean geometries through
non-rigid transformations. The Mobius transformation fulfills that
role. In other words, the Md&bius transformation suits both rigid
and non-rigid transformations.

The Mobius transformation possesses some nice proper-
ties [16] that are beneficial for modelling minutiae variations.
These properties are:

e The Mobius transformation is conformal because it preserves
local angles.

The Mobius transformation preserves symmetry. Here, symme-
try means that if two points are symmetric with respect to a
circle, then their images under the Mobius transformation are
symmetric with respect to the image circle.

The Mobius transformation is bijective (i.e., one-to-one and
onto). This property can be shown by finding the inverse func-
tion of (5):

dz—b
—cz+a

)=
It follows that f~1(z) is also a Mébius transformation.

We have proved mathematically that the Mobius transforma-
tion is a suitable candidate for modelling minutiae translation and
rotation as well as non-linear distortion described by inversion.
In the next section, we carry out experiments using the public
database FVC2002 DB2 [17] to test the effectiveness of the pro-
posed Mobius transformation based model.

4. Experimental results and discussion

To evaluate how effective the Mobius transformation based
model is when modelling minutiae variations, we performed test-
ing over the public database FVC2002 DB2 [17]. It is a standard
database widely used in fingerprint-based biometrics research. This
database contains a sample size of 100 fingers with eight impres-
sions per finger. The minutiae points from the fingerprint images
were extracted using the commercial fingerprint recognition soft-
ware VeriFinger SDK [20]. We assume that the first impression of
each finger is the template T and the second impression of the
same finger is the query Q.

In order to test whether the proposed model can capture minu-
tiae variations accurately enough, we take the following steps in
our experiments:

1. Find the matching minutiae between two impressions of the
same finger so that we obtain the reference positions of match-
ing minutiae for subsequent comparisons.

2. From the matching minutiae found in Step 1, work out the
amount of minutiae variations between the template finger-
print T and the query fingerprint Q. Specifically, determine the
coefficients a, b, ¢, d of the Mobius transformation (5) by us-
ing three randomly selected minutiae in T and their matching
minutiae in Q.

3. Based on the values of q, b, ¢, d, use the minutiae in T to calcu-
late their position-varied minutiae counterpart in Q, or equiv-
alently, the matching minutiae in Q modelled by the Md&bius
transformation.

4. Compare the modelled minutiae’s positions against the minu-
tiae’s actual (reference) positions in Q to assess the perfor-
mance of our Mobius transformation based model.

For Step 1, to determine the matching minutiae between two
impressions of the same finger, we applied the pair-minutiae vec-
tor based matching method in [4]; refer to Section 3.3 of [4] for
the details on matching score calculation. For convenience, we use
Finger 7 and Finger 40 to demonstrate our test results. The first
impression of Finger 7 and Finger 10, respectively, is considered as
the template T and the second impression of the same finger as
the query Q.

Although it seems that in order to determine the coefficients
a, b, ¢, d of the Mobius transformation (5), we would need four
distinct minutiae (i.e., four different complex numbers) in the tem-
plate T and the four matching minutiae in the query Q, it turns out
that multiplying the coefficients by an arbitrary constant k, where
k+#0, yields the same mapping:

kaz + kb
" kez + kd

Therefore, the coefficients a, b, ¢, d of the Mébius transformation
are non-unique - only the ratios of the coefficients matter [16] and
three matching minutia pairs are sufficient to pin down the ratios.
That is why in Step 2, we randomly selected only three minutiae
rather than four in the template T and their three matching minu-
tiae in the query Q to seek the coefficients a, b, c, d.

First, we report the experimental results of Finger 7. Fig. 5
shows some examples of matching minutiae from Finger 7. By em-
ploying the matching mechanism in [4], we found the matching
minutia pairs. Some of the matched pairs are listed in Table 1;
for example, pairs 1 -2, 3—-11, 6 — 5 and 9 — 6 in the template T

Templain Fingerpent

Fig. 5. Examples of matching minutiae between the template T and the query Q
of Finger 7. (Note: For the sake of clarity, this figure only shows a portion of the
minutiae in Finger 7.)
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Table 1

Matched minutia pairs of Finger 7 and comparison of the modelled minutiae (last column)
with the actual query minutiae (second last column).

Template T Matched Query Q Modelled
Minutia pair ~ Minutia position =~ Minutia pair ~ Minutia position = minutia pair

1 159 + 260i 2 164 + 261i 164.2 + 261.0i
2 246 + 408i 3 252 +411i 252.4 +411.2i
2 246 + 408i 3 252 +411i 252.4 +411.2i
6 210 + 343i 5 215 + 344i 215.3 + 344.1i
9 194 + 266i 11 199 + 267i 198.8 + 266.8i
8 225+ 382i 6 230 + 384i 230.6 + 384.1i
3 100 + 277i 1 104 + 278i 106.1 + 277.2i
11 129 + 320i 9 135 + 320i 134.1 + 320.1i
12 199 + 229i 12 205 + 231i 203.3 +230.2i
4 182 + 360i 4 186 + 362i 186.6 + 361.3i
9 194 + 266i 11 199 + 267i 198.8 + 266.8i
6 210 + 343i 5 215 + 344i 215.3 + 344.1i
7 168 + 237i 10 174 + 238i 173.1 + 238.4i
8 225 +382i 6 230 + 384i 230.6 + 384.1i
9 194 + 266i 11 199 + 267i 198.8 + 266.8i
10 236 + 326i 8 241 + 328i 241.7 + 326.7i
6 210 + 343i 5 215 + 344i 215.3 + 344.1i
5 105 + 378i 13 110 + 378i 108.4 + 377.5i
1 159 + 260i 2 164 + 261i 164.2 + 261.1i
11 129 + 320i 9 135 + 320i 134.1 + 320.1i
12 199 + 229i 12 205 + 231i 203.3 +230.2i
13 184 + 401i 7 188 + 402i 188.1 + 403.2i

Table 2

Matched minutia pairs of Finger 40 and comparison of the modelled minutiae (last column)
with the actual query minutiae (second last column).

Template T Matched Query Q Modelled
Minutia pair ~ Minutia position ~ Minutia pair ~ Minutia position minutia pair

1 142 + 271i 2 140 + 284i 138.8 + 284.4i
2 221 + 275i 1 218 + 296i 216.7 + 295.8i
3 131 + 265i 4 128 + 277i 128.4 + 277.3i
4 93 + 320i 3 84 + 328i 84.0 + 328.6i
3 131 + 265i 4 128 + 277i 128.4 + 277.3i
5 229 +333i 6 219 + 353i 220.1 + 354.0i
6 111 + 240i 5 112 + 251i 111.5 + 250.1i
5 229+ 333i 6 219 + 353i 220.1 + 354.0i
7 117 + 156i 8 126 + 170i 127.9 + 168.5i
8 37 +310i 7 30 + 313i 28.0 + 311.6i
9 173 + 174i 10 177 + 192i 179.8 + 192.8i
4 93 + 320i 3 84 + 328i 84.0 + 328.6i
10 167 + 196i 9 168 + 213i 171.5 + 213.5i
11 112 + 342i 12 101 + 351i 101.1 + 353.1i
9 173 + 174i 10 177 + 192i 179.8 + 192.8i
11 112 + 342 12 101 + 351i 101.1 + 353.1i
15 177 + 219i 13 178 + 237i 178.8 + 236.9i
3 131 + 265i 4 128 + 277i 128.4 + 277.3i
7 117 + 1561 8 126 + 170i 127.9 + 168.5i
12 66 + 246i 11 66 + 252i 65.8 + 250.5i
13 176 + 461i 14 156 + 475i 157.6 + 481.1i
14 138 + 481i 15 113 + 490i 116.1 + 499.9i

match with pairs 2—-3, 1-9, 5-13 and 11 —5 in the query Q,
respectively.

The matching minutiae could be readily obtained from those
matched minutia pairs. After identifying the matched pairs, we
should be able to work out the minutiae variations between two
matching minutiae through the Md&bius transformation. Eq. (5) was
used to numerically calculate the amount of variations occurred
between the matching minutiae in the template T and the query Q.
That is, we should determine the coefficients a, b, ¢ and d in (5),

where f(z) is set as the minutia position in Q and z as the minu-
tia position in T. If we refer to Table 1, the minutiae’s positions
of the first two pairs (containing three distinct minutiae 1, 2 and
6) in T and their corresponding matching minutiae (2, 3 and 5) in
Q are used to find a, b, ¢ and d, which yield a = 0.8851 — 0.0019i,
b =14.9744 + 18.1392i, c = 0.000087467 + 0.00013611i, d = 1. We
then substitute these values of a, b, ¢ and d into (5) and use the
minutiae in T from Table 1 to calculate the modelled minutiae f{z).
The comparison between f(z) and the actual query minutiae’s po-
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Fig. 6. Comparison of the modelled minutiae with the actual query minutiae of Finger 7.

Template Firgerprin

Fig. 7. Examples of matching minutiae between the template T and the query Q
of Finger 40. (Note: For the sake of clarity, this figure only shows a portion of the
minutiae in Finger 40.)

sitions in Q should reveal the performance of the proposed model.
This comparison is shown by the last two columns of Table 1, from
which we can see that f(z) obtained from the Mobius transforma-
tion based model is quite close to the actual query minutiae.

In Fig. 6, we plot the minutiae’s positions modelled by the
Mobius transformation, in comparison with the actual minutiae in
the query Q of Finger 7. It is clear that a majority of minutiae cal-
culated from the Mobius transformation based model fall in the
proximity of actual query minutiae. These results demonstrate that
the Mobius transformation can model minutiae variations effec-
tively between two impressions of the same finger.

Next, we report the test results of Finger 40. Fig. 7 shows some
matching minutiae between the template T and the query Q of this
finger. The matching minutiae were obtained from the matched
minutia pairs, which followed the same method in [4] as used for
Finger 7. Table 2 lists some of the matching minutia pairs of Fin-

ger 40; for example, pairs 15—3, 3 -4, 13-14 and 7 — 8 in the
template T match with pairs 13 -4, 4 — 3, 14— 15 and 8 — 7 in the
query Q, respectively. By randomly selecting the second and third
minutia pairs in T (consisting of minutiae 3, 4 and 5) and their
matching minutiae 4, 3 and 6, the same procedure for Finger 7
was applied to Finger 40 to find the coefficients a, b, ¢ and d in
the Mdbius transformation, resulting in a = 0.9450 + 0.1934i, b =
40.8843 + 1.3577i, c = 0.00010239 + 0.00012495i and d = 1. After
substituting these values of a, b, ¢ and d into (5), we calculated
the modelled minutiae f(z) by setting z in (5) as the minutiae in
the template T from Table 2. It can be observed from the last two
columns of Table 2 that the modelled minutiae through the Mdébius
transformation are very similar to the actual query minutiae in
terms of minutia position. This similarity is also exhibited clearly
in Fig. 8.

The main computations incurred by the proposed method are:
(i) calculating the coefficients a, b, ¢, d of the Mdbius transforma-
tion (5); and (ii) determining the modelled minutiae based on g,
b, ¢, d and the (known) minutiae in the template. One way to
quantify the amount of arithmetic involved is to count flops. A
flop [21] is a floating point add, subtract, multiply or divide. The
values of a, b, ¢, d are obtained by calculating the determinants of
four 3 x 3 matrices [16], amounting to 56 flops in total. After a, b,
¢, d are found, using the template minutiae, we can calculate the
modelled minutiae according to (5). To acquire a modelled minu-
tia only requires 5 flops. Obviously, the total amount of arithmetic
work in the proposed method is low. All of these results are ob-
tained using Matlab, which is run on a PC with Core i7, 3.41 GHz
CPU and Operation System of 64-bit Win 10. It takes 0.0057 s to
calculate a, b, ¢, d for all of 100 fingers in the database FVC2002
DB2 [17]. It costs 0.0539 s to determine the modelled minutiae for
100 fingers of the same database. Thus, the proposed method is
computationally inexpensive.

The forensic guidelines require that to decide if it is the same
finger, the minimum number of matching minutiae should be 12
according to [22]. From Tables 1 and 2, which only include a por-
tion of the matched minutia pairs, we can see that the number of
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Fig. 8. Comparison of the modelled minutiae with the actual query minutiae of Finger 40.
Table 3

The average Euclidean distance (in pixels) between the actual and modelled minutiae of each

finger in the database FVC2002 DB2 (100 fingers).

Finger 1 Finger 2 Finger 3 Finger 4 Finger 5 Finger 6 Finger 7
1.235 1.365 1.429 1.297 1.334 2.256 0.559
Finger 8 Finger 9 Finger 10  Finger 11 Finger 12 Finger 13  Finger 14
1.813 1.903 0.674 1.433 1.707 1.425 2.658
Finger 15 Finger 16 Finger 17 Finger 18 Finger 19 Finger 20 Finger 21
0.891 6.464 1.636 1.616 1.535 2.592 1.050
Finger 22  Finger 23 Finger 24  Finger 25  Finger 26  Finger 27  Finger 28
1.209 0.729 1.023 0.772 1.874 1.957 3.661
Finger 29 Finger 30 Finger 31 Finger 32 Finger 33 Finger 34 Finger 35
1.256 0.440 0.925 1.013 0.646 1.134 1.073
Finger 36  Finger 37 Finger 38 Finger 39 Finger 40 Finger 41 Finger 42
3.053 0.976 1.209 1.065 0.800 0.966 1.150
Finger 43  Finger 44 Finger 45  Finger 46  Finger 47  Finger 48  Finger 49
0.891 0.787 1.159 0.895 0.950 0.678 1.185
Finger 50  Finger 51 Finger 52 Finger 53 Finger 54 Finger 55 Finger 56
0.779 0.641 1.142 0.527 2.938 0.940 0.652
Finger 57 Finger 58 Finger 59 Finger 60 Finger 61 Finger 62 Finger 63
2.415 1.414 0.531 1.861 0.699 0.885 1.118
Finger 64  Finger 65 Finger 66  Finger 67  Finger 68  Finger 69  Finger 70
1.341 0.708 0.417 1.285 1.547 1.325 0.414
Finger 71 Finger 72 Finger 73 Finger 74 Finger 75 Finger 76 Finger 77
0.756 0.354 4.409 0.763 0.578 0.803 0.649
Finger 78  Finger 79 Finger 80  Finger 81 Finger 82  Finger 83  Finger 84
0.831 1.724 0.984 0.512 0.404 1.397 1.336
Finger 85 Finger 86 Finger 87 Finger 88 Finger 89 Finger 90 Finger 91
1.927 0.794 0.918 1.474 2.576 0.463 1.121
Finger 92 Finger 93 Finger 94  Finger 95 Finger 96 Finger 97 Finger 98
1.306 0.990 0.811 2425 0918 3.021 1.024
Finger 99  Finger 100

0.984 1.194

matching minutiae is much greater than 12 and that our Mdébius
transformation based model accurately captures minutiae varia-
tions between two impressions of the same finger.

To thoroughly evaluate the proposed method, we conducted
further testing over the entire database FVC2002 DB2 [17] with a
total of 100 fingers. The forensic guidelines [22] require at least
12 mated pairs to make a ‘match’ verdict on two fingerprints, so
we found 12 best matched minutia pairs between the template

(i.e, the first impression) and the query (i.e., the second impres-
sion of the same finger) for each finger in the database FVC2002
DB2 [17] by applying the matching approach in [4]. We then
calculated the Euclidean distance between the actual and mod-
elled minutiae. That is, the Euclidean distance between the (ac-
tual) minutia (x;, y;) and its modelled minutia (x, y;) is d =
\/ (x2 —x1)%2 + (y2 —y1)2. The average Euclidean distance between
these actual and modelled minutiae is reported in Table 3. From
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the Euclidean distance in Table 3, it is clear that the modelled and
actual minutiae are very close to each other. Therefore, we have
experimentally verified the validity of the proposed model.

5. Conclusion

It is well known that minutiae variations occur to different im-
pressions of the same finger. How to capture these variations be-
tween fingerprint scans is a research problem of theoretical and
practical importance, yet a unified model for describing minutiae
variations has not been available. In this paper we have proposed
the Mobius transformation based model as a unified model to ex-
press minutiae variations - translation, rotation and non-linear dis-
tortion. We prove mathematically that the Mdbius transformation
based model is a unified model for representing different types
of minutiae variations. In addition, we use the public database
FVC2002 DB2 [17] to evaluate the effectiveness of the proposed
model. The experimental results show that the modelled minutiae
through the Mobius transformation are very close to the actual
minutiae in terms of minutia position, which verifies the efficacy
of the proposed model.

The Mobius transformation based model provides a useful tool
for the analysis and construction of minutia-based local feature
structures. As for future work, we will continue to improve this
model and investigate how to efficiently apply it to enhancing
the quality and accuracy of minutia extraction in modern-day
fingerprint-based biometric applications, e.g, e-passports, mobile
device authentication and mobile healthcare data protection.
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