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Abstract

Given a geometry defined by the action of a Lie-group on a flat manifold, the Fels–Olver moving
frame method yields a complete set of invariants, invariant differential operators, and the differential
relations, or syzygies, they satisfy. We give a method that determines, from minimal data, the dif-
ferential equations the frame must satisfy, in terms of the curvature and evolution invariants that are
associated to curves in the given geometry. The syzygy between the curvature and evolution invari-
ants is obtained as a zero curvature relation in the relevant Lie-algebra. An invariant motion of the
curve is uniquely associated with a constraint specifying the evolution invariants as a function of the
curvature invariants. The zero curvature relation and this constraint together determine the evolution
of curvature invariants.
Invariantizing the formal symmetry condition for curve evolutions yield a syzygy between different

evolution invariants. We prove that the condition for two curvature evolutions to commute appears
as a differential consequence of this syzygy. This implies that integrability of the curvature evolution
lifts to integrability of the curve evolution, whenever the kernel of a particular differential operator is
empty. We exhibit various examples to illustrate the theorem; the calculations involved in verifying
the result are substantial.
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1. Introduction

Much has been written about the connection between geometry and integrability. In-
deed, many integrable equations have been shown to describe the evolution of curvature
invariants associated to a certain movement of curves in a particular geometric setting
[2,6,11,17,20,24]. Some of the literature might give the impression that integrability arises
from intrinsic properties of the underlying geometry. As was pointed out clearly in [20] this
is not the case. However, it is easier to detect the integrability of the curvature evolution
than that of the curve evolution, cf. [3].
Therefore the question arises whether integrability of the curvature evolution can be

lifted to imply the integrability of the motion of the curve [12]. Hasimoto [6] showed that
the invariant function ψ = κ exp(i

∫
τ), where κ and τ are the curvature and torsion of a

curve γ in Euclidean three space, evolves according to the integrable nonlinear Schrödinger
equation

ψt = i

(
ψxx + 1

2
ψ|ψ|2

)
, (1)

provided that the curve γ evolves according to the vortex filament equation

γt = κe3, (2)

which relates the velocity of the curve to the bi-normal vector of the Serret–Frenet frame.
Subsequently, Langer and Perline [12] translated the hierarchy of generalized symmetries
of (1) to a hierarchy of commuting geometric curves, thereby establishing the integrability
of Eq. (2) itself. Thus it seems that assigning to a curve its curvature functions gives rise to
pairs of equivalent integrable equations [13].
In recent papers the lifting of integrability has been assumed. For example, in [2] it is

remarked, “in view of the equivalence between the integrable equations for the curvature
and the invariant motion, the motion law should also be integrable”. Again, in [18] we find,
“geometric evolutions would also be integrable in the sense that their associated curvature
evolutions are, given that these determine the curve up to the action of the group”.Moreover,
in [10] it is stated, “We’ll say such a flow is integrable if it induces a completely integrable
system of PDE for curvature and torsion”. However, such statements need justification, and
more precision as to what aspects of integrability are meant. We will take the existence
of symmetries to be the signature of integrability and we will demonstrate the lifting of
integrability in this precise way.
The method of moving frames provides a powerful tool to study geometric properties,

i.e., properties invariant under the action of a transformation group. This technique was
introduced by Darboux, who studied curves and surfaces in Euclidean geometry, and was
greatly developed by Cartan who used it in the context of generalizing Klein’s Erlangen
program. The formulation of the method by Fels and Olver [4,5] placed Cartan’s construc-
tions on a firm algebraic foundation. Their approach lead to new applications that would
not have been envisioned by Cartan, such as to computer vision and numerical schemes that
maintain symmetry [22].
The Fels–Olver moving frame method provides a generating set of invariants together

with a maximal set of invariant differential operators and the differential relations, or syzy-
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gies they satisfy. These data are all obtained with respect to a specific frame, which depends
on a choice of submanifold which is transverse to the group orbits. One advantage of the
method is its accessibility. In Section 2, we describe the ideas in the simplest possible lan-
guage, the main tool being the chain rule of multi-variable calculus. More importantly, the
method describes algorithmically what to do in any particular application and the calcula-
tions we require can be performed in a rigorous and straightforward way using symbolic
software packages [1,16].
The purpose of this paper is twofold. Firstly, in Section 3, we present a method that

provides the evolution equation for the curvature invariants of a curve, moving in a geometry
which is given by the local action of a Lie-group on a manifold. The equation for the
curvature invariants of a curve derives from a syzygy between sets of invariants. This is a
zero-curvature condition in the relevant Lie-algebra and can be written in the form

κt = HIt, (3)

where H is a (matrix) differential operator, κ are the curvature invariants and It are the
generating evolution invariants (see Section 2.3). Our contribution is to provide, from min-
imal data, the differential equations the frame satisfies using methods suitable for symbolic
computation. These are obtained without solving for the moving frame, which, in general,
is the central computational problem. The main result in Section 3, Theorem 8, is thus of
independent interest.
The actual curvature evolution equation is obtained from relation (3) by specifying a

constraint

It = F [κ],

whereF is a (vector) function of the curvature invariant and their derivatives. This constraint
is an invariant description of the evolution of the curve. Thus, one does not have to know
the curvature invariants explicitly to obtain their evolution. However, there is a price to
pay. From our point of view the filament equation is rather symbolic when one neither
knows the curvature function κ, nor knows how to calculate the frame ρ = (e1, e2, e3).
Within our approach there are two cases where an explicit form for the curve evolution may
be obtained. Either one is able to solve the normalization equations (Section 2.2) for the
frame, or one can use the Fels–Olver–Thomas replacement theorem (Section 2.3) to obtain
the invariants in terms of classically known invariants of the group action. In either case the
explicit expression for the curvature invariants provides the Miura transformation from the
curve evolution to the curvature evolution.
The constraint might lead to an integrable equation for the curvatures. In Section 4, we

answer the question whether integrability can be lifted: Suppose that a curvature evolution
is integrable, what can one say about the motion of the curve? This is the second purpose
of the paper. As we take the existence of infinitely many commuting symmetries to be
the signature of integrability, our approach is to compare the symmetry conditions of both
evolutions. The invariant form of the symmetry condition

Dt1ut2 − Dt2ut1 = 0
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becomes a relation between the evolution invariants

C(It1 , It2 ) = Dt1It2 + Mt1t2 −Dt2It1 − Mt2t1 = 0, (4)

with correction terms M (see Section 2.3). For two invariant curve evolutions, specified by

Iti = Fi[κ], i = 1, 2, (5)

the relation (4) gives a condition on the functionsFi, which is called the symmetry condition
and is denoted as

C(It1 , It2 )|Iti=Fi = 0. (6)

We show that the symmetry condition for curvature evolutions κti = HFi, i = 1, 2 appears
as a differential consequence of (6), that is

Dt1κt2 −Dt2κt1 − [Dt1 ,Dt2 ]κ = HC,

evaluated at the constraints (5). This implies that integrability does not necessarily lift from
the curvature evolution to the curve evolution. However, most commonly studied integrable
curvature equations are homogeneous polynomials or rational functions of the differential
invariants. Since in these classes the kernel of the differential operator H is empty, pairs of
integrable equations result, cf. [13]. In order to illustrate the scope of the theorem and the
power of the method, we include, for several geometries, the explicit calculations that one
would need to perform in the absence of the general result.

2. Moving frames à la Fels and Olver

In this section, we briefly describe the Fels and Olver moving frame formulation [4,5],
in the language of undergraduate calculus. We give those details necessary to understand
the proof of the main theorem of the next section, Theorem 8. We provide two expository
examples which will be used in the sequel.

2.1. Group actions and prolongation

We are concerned with q functions uα that depend on p variables xi. New functions are
obtained by differentiation and these will be denoted using a multi-index notation, e.g.

u2112 = ∂3

∂x21∂x2
u2.

We consider all functions as independent and let them be the co-ordinates of a space M.
Points in M will be denoted by z = (x1, . . . , xp, u1, . . . , uq, u11, . . .). In other words, M is
the jet bundle of the (p + q)-dimensional fibered manifold X × U where X is the space of
independent variables and U is the space of dependent variables.
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We will denote by A the ring of smooth functions on M, that depend on finitely many
arguments. To indicate functional dependence of f ∈ A we simply write f (z). The action
of ∂

∂xi
extends to an action on A by the total differentiation operator

Di = ∂

∂xi
+

q∑

α=1

∑

K

uαKi

∂

∂uαK
. (7)

We assume we are given a smooth left action of an r-dimensional Lie group G on the
manifold X × U. By prolongation we will get a left action onM, which is calculated using
the chain rule of differentiation. The action ∗ : G × M → M satisfies gh ∗ z = g ∗ h ∗ z.
A right action on A is then given by • : G ×A→ A; g • f (z) = f (g ∗ z).
The image of a point under the action is denoted variously as

g ∗ z = z̃ = F (z, g)

or in terms of the co-ordinate functions as

g • xj = x̃j = Fj(z, g), g • uαK = ũαK = FαK(z, g)

The different notations are used to ease the exposition, depending on the context. The
property of ∗ being a left action (or • being a right action acting component-wise on vector
valued functions) is equivalent to F (g ∗ z, h) = F (z, hg).
The prolonged action is given explicitly by

g • uαi...j = D̃i . . . D̃jF
α(z, g), (8)

where

D̃i =
p∑

k=1
(D̃x)ikDk (9)

and the coefficients are obtained from the Jacobian matrix (D̃x)ik = (Dix̃k)−1.
The group elements g ∈ Gwill be given in co-ordinates g = (g1, . . . , gr).With the group

action comes an action of its Lie-algebra, obtained by formally expanding the group around
its identity e ∈ G. Let g(ε) ⊂ G be any one parameter subgroup of G such that g(0) = e.
Using the chain rule and Taylor’s formula we obtain

z̃ = z + ε
r∑

i=1

∂z̃

∂gi(ε)

∣∣∣∣
g(ε)=e

dgi(ε)
dε

∣∣∣∣
ε=0

+ O(ε2).

where gi(ε) are the co-ordinates of g(ε). Thus the infinitesimal generator of any one param-
eter subgroup is a linear combination of ‘basic’ infinitesimal generators. Their components
are called the infinitesimals of the group action with respect to the i-th group parameter. A
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commonly used notation is

ξj,i(z) = ∂x̃j

∂gi

∣∣∣∣
g=e

, φα,i(z) = ∂ũα

∂gi

∣∣∣∣
g=e

(10)

They classically depend only on (x, u). By iterative use of the chain rule, we may obtain
recursion formula for the prolonged infinitesimals

φαK,i(z) = ∂z̃αK
∂gi

∣∣∣∣∣
g=e

(11)

in terms of the ξj,i andφα,i. The recursion formula and its derivation can be found in textbooks
on symmetries of differential equations cf. [[21], Theorem 2.36]. Further, they have been
implemented in virtually every computer algebra system as part of Lie’s algorithm to find
symmetries of differential equations. A review of the software packages available has been
given by W. Hereman in [9], (Vol. III, Chapter 13).
In the examples wewill give names to every component of x and u.We also use the names

of the components in the (multi)index instead of their numbers. For example in Example 1
we take p = q = 2. The components of x and u will be x1 = x, x2 = t, u1 = u and u2 = v.
And instead of u2112 we write vxxt .

Example 1. The Euclidean groupE(2) = SO(2)!R2 acts on the variables (x, t, u, v) with
g = (α, a, b) as

(
ũ

ṽ

)
=

(
cos α − sin α
sin α cos α

) (
u

v

)
+

(
a

b

)
.

leaving x and t invariant. Therefore we also have D̃x = Dx, D̃t = Dt and hence the pro-
longed action is simply given by

g •
(

uK

vK

)
=

(
cos α − sin α
sin α cos α

) (
uK

vK

)

The nonzero infinitesimals of the Euclidean group are

φu
K,α(z) = −vK, φv

K,α(z) = uK, φu
,a(z) = 1, φv

,b(z) = 1.

Example 2. The second example is the group SL(2) acting on the variables (x, t, u(x, t))
as t̃ = t and

(
x̃

ũ

)
=

(
a b

c (1+ bc)/a

) (
x

u

)
(12)
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where (a, b, c) are the co-ordinates of g ∈ SL(2) near the identity e = (1, 0, 0). Formula
(9) yields the following differential operators

D̃x = 1
a + bux

Dx, D̃t = Dt − but

a + bux
Dx

From Eq. (8) it now follows that

ũx = ac + ux(1+ bc)
a(a + bux)

, ũxx = uxx

(a + bux)3
, ũt = ut

a + bux

It can be checked that this is a right action. A table of infinitesimals is given below.

x u ux uxx uxxx

a x −u −2ux −3uxx −4uxxx

b u 0 −u2x −3uxuxx −4uxuxxx − 3u2xx

c 0 x 1 0 0

The entry in the (i, y) place is the infinitesimal action corresponding to the i-th group
parameter on the component y of z.

2.2. Constructing a moving frame

We use the Fels–Olver definition of a moving frame, and their approach to constructing
them. This does not depend in any way on the presence of a frame bundle.

Definition 1. A left moving frame is a left G-equivariant map,

ρ : M → G, ρ(g ∗ z) = gρ(z),

and a right moving frame is a right G-equivariant map,

ρ : M → G, ρ(g ∗ z) = ρ(z)g−1.

Amoving frame will exist if and only if the group action is free and regular. In our case the
(sufficiently high) prolongation of the group action on M will be locally free provided the
action on X × U is locally effective. We refer to [5] for the technical details.

The construction of a local moving frame in a neighborhood U proceeds as follows. Let
K ⊂ U be a sub-manifold which is transverse to the group orbits. We take U to be small
enough so that each orbit intersectsK at most once, cf. Fig. 1. Usually the cross-sectionK is
the locus of a set of equationsψk(z) = 0, k = 1, . . . , r, and then the so-called normalization
equations for the frame are ψk(z̃) = 0, k = 1, . . . , r. Solving these equations for the group
parameters in terms of z yields a right frame.
Geometrically, the construction is as follows. For z ∈ U, take k ∈ K and h ∈ G such that

k = h ∗ z. The rightmoving frameρ : U→ G is then defined byρ(z) = h, and the left frame
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Fig. 1. Construction of a right moving frame using a cross-section.

by ρ(z) = h−1. The right frame ρ is right equivariant since ρ(g ∗ z) = hg−1 = ρ(z)g−1 and
a similar remark holds for the left frame, which is left equivariant.
One can think of the Fels–Olver moving frame as providing, locally, a trivialization of

the manifold, i.e., when the frame is a right frame

ϕ : U→ G ×K, z → (ρ(z), ρ(z) ∗ z)

is a trivialization of U.
In the expository examples one can solve the normalization equations for the group pa-

rameters. In general, this will not be possible. However, to obtain the evolution of curvature
invariants we do not need the frame to be known explicitly. This will be made clear in
Section 3.

Example 1 (cont.).As normalization equations for the Euclidean group we choose

ũ = 0, ṽ = 0, ṽx = 0. (13)

These equations yield a right moving frame, mapping z ∈ M to ρ(z) ∈ G which has group
parameters

ρ(z) =
(

− arctan
(

vx

ux

)
, −uux + vvx√

u2x + v2x
,
uvx − vux√

u2x + v2x

)
.

A left moving frame is then given by the inverse ρ−1(z) which has parameters
(
arctan

(
vx

ux

)
, u, v

)
. (14)



1302 E.L. Mansfield, P.H. van der Kamp / Journal of Geometry and Physics 56 (2006) 1294–1325

Fig. 2. An orthonormal frame attached to a curve in the plane.

Considering the rotational part of the group we note that at g = ρ(z) the rows of
(
cos (α) − sin (α)
sin (α) cos (α)

)
= 1√

u2x + v2x

(
ux vx

−vx ux

)
(15)

are the orthonormal vectors e1 and e2 attached to the curve γ = (u, v) drawn in Fig. 2.

Note that we could also have started by defining the action of G onM to be the ‘inverse’
action

(
ũ

ṽ

)
=

(
cosα sin α

− sin α cos α

) (
u − a

v − b

)
.

The normalization equations (13) would then have yielded the moving frame (14) as a right
moving frame.

Example 2 (cont.). For the matrix action of SL(2) on (x, u), we can take the normalization
equations

x̃ = 0, ũ = 1, ũx = 0. (16)

The right frame is then given by

ρ(z) =
(

u, −x,
ux

xux − u

)
. (17)

2.3. Invariants and syzygies

In the sequel we assume that ρ(z) is a right moving frame. The normalized differential
invariants Ji, I

α, IαK are defined by evaluating the transformed dynamical variables on the
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frame. They are the components of

I(z) = ρ(z) ∗ z.

Since

g • (ρ(z) ∗ z) = ρ(g ∗ z) ∗ (g ∗ z) = ρ(z)g−1 ∗ (g ∗ z) = ρ(z)g−1g ∗ z = ρ(z) ∗ z,

the function I(z) is an invariant. The specific components of I(z) are denoted

Ji = x̃i|g=ρ(z) , IαK = ũαK

∣∣∣
g=ρ(z)

.

Wecan dealwith these objects abstractly. However, explicit expressions for them in terms
of the original variables can often be obtained. When the frame is known explicitly this is
done by direct computation. The next theorem shows how the frame dependent invariants
defined above may be related to known invariants, a procedure that will be illustrated in
Example 4 of Section 4.
An important result is that any differential invariant is a function of the above invariants.

This is a consequence of the Fels–Olver–Thomas replacement theorem ([5], Theorem 10.3),
which states:

Theorem 2. If f (z) ∈ A is an ordinary differential invariant then

f (z) = f (I(z)).

This is true since in particular the action ofg = ρ(z) ∈ G leavesf (z) invariant.As a corollary
the set {Ji, I

α, IαK} is a complete set of invariants.

The set of co-ordinates functions {uαK} can be obtained by acting with differentiation oper-
ators on the ‘fundamental’ set of dependent variables {uα}. Similarly the above complete
set of invariants can be obtained by acting with invariant differential operators on a (finite)
fundamental set of invariants.

Definition 3.Amaximal set of invariant operators is defined by evaluating the transformed
total differential operators on the frame. They are

Dj = D̃j

∣∣∣
g=ρ(z)

,

interpreted as derivations on A.

One should be careful with the order of differentiation and substitution. In general we have
that

DjI
α
K = D̃j

∣∣∣
g=ρ(z)

ũαK

∣∣∣
g=ρ(z)

'= D̃jũ
α
K

∣∣∣
g=ρ(z)

= ũαKj

∣∣∣
g=ρ(z)

= IαKj.
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This motivates the following definition.

Definition 4. The correction terms Nij andMα
K are defined by

DjJi = δij + Nij, DjI
α
K = IαKj + Mα

Kj, (18)

where δij is the Kronecker delta.

It follows from their definition that the invariants are left unchanged by permutations
within their index. The correction terms, however, are not invariant under permutations in
their index.

Proposition 5. ([5], Equation (13.8)) There exists an p × r correction matrix K such that

Nki =
r∑

j=1
Kijξk,j(I(z)), Mα

Ki =
r∑

j=1
Kijφ

α
K,j(I(z)) (19)

where j is the index for the group parameters and r = dim(G).

This result can be proved by application of the chain rule to D̃iI(z) evaluated at g = ρ(z).
It then follows that K is given by

Kij = D̃iρj(z̃)
∣∣∣
g=ρ(z)

Its rows will take on additional significance in Section 3.
The matrix K can be calculated without explicit knowledge of the frame. All that is

required are the normalization equations and the infinitesimal group action. Suppose the
variables actually occurring in the ψλ(z) are

ζi =
{

xki , 1 ≤ i ≤ m,

u
αi

Ki , m < i ≤ n.

Define T to be the invariant p × n total derivative matrix

Tij =
{
δkji, 1 ≤ j ≤ m,

I
αj

Kji
, m < j ≤ n.

Also, let Φ denote the r × n matrix of invariant generators

Φij =
{
ξkj,i(I), 1 ≤ j ≤ m,

φ
αj

Kj,i
(I), m < j ≤ n.
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Furthermore, define J to be the invariant n × r transpose of the Jacobian matrix of ψ, that
is

Jij =






∂ψj(I)
∂Jki

, 1 ≤ i ≤ m,

∂ψj(I)
∂I
αi

Ki

, m < i ≤ n.

Using the above defined matrices, which are easily calculated, the correction matrix can be
obtained as follows.

Theorem 6. (Olver, [23]) The correction matrix K, which provides the error terms in the
process of invariant differentiation in Proposition 5, is given by

K = −TJ(ΦJ)−1.

Proof. We compute the invariantization of the equations

Diψλ(ρ(z) ∗ ζ) = 0. (20)

The invariantized normalization equations are functions of both the variables ζl and the
co-ordinates of the frame ρj(z). Since the latter depend on the first we have to be careful.
We separate the different dependencies by writingψp(ρ(z) ∗ ζ) = Ψp(ζ, ρ(z)). Here theψ’s
are functions of n variables, whereas theΨ ’s depend on n + r variables. Thus from Eq. (20)
we obtain

r∑

j=1
Diρj(z)

∂Ψλ(ζ, ρ(z))
∂ρj(z)

+
n∑

l=1
Diζl

∂Ψλ(ζ, ρ(z))
∂ζl

= 0.

We use the chain rule once more and write

∂Ψλ(ζ, ρ(z))
∂ρj(z)

=
n∑

l=1

∂ρ(z) ∗ ζl
∂ρj(z)

∂ψλ(ρ(z) ∗ ζ)
∂ρ(z) ∗ ζl

.

The theorem is proved by invariantization of the different terms, that is, replace z by z̃ (ζ
by ζ̃) and evaluate at g = ρ(z). !
In a computer algebra environment, invariantization is achieved by substitution of the

normalized invariants and simplification with respect to the normalization equations. For a
discussion of the subtle issues that arise in this context we refer to [15]. In the meantime,
we suppose that the simplification can be done by substitution of certain invariants that are
highest with respect to a specified ordering. The set of such highest normalized invariants
will be denoted byH. Note thatH is a subset of {ρ • ζi, i = 1, . . . , n}.
A classical theoremdue toTresse [25] states that all differential invariants can be obtained

as functions of a finite number of invariants and their invariant derivatives. We have the
following theorem.
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Theorem 7. ([5], Theorem 13.4) The set given by

{Ji, Iα, IαKj|IαK ∈ H} −H (21)

is a generating set of differential invariants.

This set is not necessary minimal, as will be shown in the examples. A major difference
between the set {Di, xj, u

α} and the set of invariant differential operatorswith the generating
invariants is the existence of nontrivial syzygies. Let IαJ , IαL be two (generating) differential
invariants, and indexes K, M are such that IαJK = IαLM . Then

DKIαJ −DMIαL = Mα
JK − Mα

LM (22)

is a (fundamental) syzygy, [5].

Example 1 (cont.). Since we have calculated a frame explicitly, the invariants can easily be
expressed in terms of original variables. The components of ρ(z) ∗ z are the normalization
equations

Iu = ρ(z) • u = 0, Iv = ρ(z) • v = 0, Iv
x = ρ(z) • vx = 0,

and the invariant functions

Iu
x =

√
u2x + v2x, Iu

K = uxuK + vxvK√
u2x + v2x

, Iv
K = uxvK − vxuK√

u2x + v2x
.

The invariant operators are simply Dx = Dx and Dt = Dt . Let us calculate the K matrix.
We have

T =
(

Iu
x 0 Iu

xx Iv
xx

Iu
t Iv

t Iu
xt Iv

xt

)
, Φ =





0 0 Iu
x

1 0 0
0 1 0



 , J =




1 0 0
0 1 0
0 0 1



 ,

and hence

K = −
(

Iv
xx/I

u
x Iu

x 0
Iv
xt/I

u
x Iu

t Iv
t

)
. (23)

The correction terms are, for α ∈ {u, v}, i ∈ {x, t},

Mα
i = −Iαi , Mu

Ki = Iv
xiI

v
K

Iu
x

, Mv
Ki = −Iv

xiI
u
K

Iu
x

.
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The generating set of differential invariants is {Ix, It, I
u
t , Iu

x , Iv
t , Iv

xx, I
v
xt} and we have the

following fundamental syzygies.

DtI
u
x −DxI

u
t = − Iv

xxI
v
t

Iu
x

,

Iv
xt −DxI

v
t = Iv

xxI
u
t

Iu
x

,

DtI
v
xx −DxI

v
xt = Iv

xxI
u
xt−Iv

xtI
u
xx

Iu
x

.

(24)

It is seen that the generating set is not minimal since the invariant Iv
xt may be removed using

the second syzygy. For later reference, we note that the system may be written in the form
(3), with µ = Iu

xx, ν = Iu
x ,

(
µ

ν

)

t

=
(
Dx

µ
ν + µ

νDx + µνx
ν2
D2x − νx

ν Dx − µ2

ν2

Dx −µ
ν

) (
Iu
t

Iv
t

)
(25)

On the left hand side we have used subscript t to denote invariant time-differentiation and
similarly on the right hand side νx denotes Dxν (which in this example is equal to Dxν).

Example 2 (cont.). Since we have only one dependent variable we will omit the upper
index. Using the constructed moving frame we obtain the invariants

Ixx = uxx

(u − xux)3
, Ixxx = uuxxx − xuxuxxx + 3xu2xx

(u − xux)5
, It = ut

u − xux
.

The invariant operators are found by substituting the frame into the transformed differentials
(9). They are

Dx = 1
u − xux

Dx, Dt = Dt + xut

u − xux
Dx. (26)

Using the matrices

T =
(
1 0 Ixx

0 Iu
t Ixt

)
, Φ =





0 −1 0
1 0 0
0 0 1



 , J =




1 0 0
0 1 0
0 0 1



 ,

we calculate the K matrix

K =
(
0 −1 −Ixx

It 0 −Ixt

)
.

The generating set of invariants is {Jt, It, Ixt, Ixx}. Using the correction terms

Mtx = 0, Mxxt = −3ItIxx, Mxtx = ItIxx,
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we find the syzygies

Ixt −DxIt = 0,
DtIxx −DxIxt = −4ItIxx.

(27)

By eliminating Ixt we get

D2Ixx = (D2x − 4Ixx)It,

which is an equation in the form (3).

3. Evolutions in the Lie-algebra

InSection2wehave shown, using theFels–Olvermoving framemethod, that the syzygies
between the invariants can be obtained without solving for the frame. With regard to curves
there are certain invariant functions that play a special role, the curvature invariants. In this
section, we show how these can be obtained from the infinitesimals and the K matrix only.
Subsequently the evolution of the curvature invariants is easily understood in terms of an
evolution in the Lie-algebra of G.
Any sufficiently smooth curve onX × U will prolong to a curve inM. Suppose the curve

is s )→ z(s), and this lies in U where a moving frame is defined. Then the frame provides a
curve in G, s )→ G, given by s )→ ρ(z(s)), see Fig. 3.
Consider the 1+ 1-dimensional case (x, t) )→ z(x, t) where the two independent vari-

ables x and t are invariant and the operatorsDx andDt are thus invariant and commutative.
When the group G is given as a matrix group, then the maps

x )→ Qx = (Dxρ(z))ρ(z)−1, t )→ Qt = (Dtρ(z))ρ(z)−1

are curves in the Lie-algebra g of G, whose entries are invariants of the group action. The
matrixQx is called the curvature matrix and its entries the curvature invariants. Viewing t
to be ‘time’, the entries in Qt will be called evolution invariants.

Fig. 3. A right moving frame for a curve parametrized by s.
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We will show how to calculate these special invariants without knowing the moving
frame ρ(z) explicitly. The evolution of the curvature invariants is governed by a so called
zero-curvature equation [7],

[Dt −Qt , Dx −Qx] = 0. (28)

Here, the meaning of curvature in this phrase is not connected to that of the curve, but refers
to the fact that the manifold is flat. In this section we treat a more general setting where the
invariant operators do not necessarily commute. Thus the group may act non-trivially on
the independent variables.
An n-dimensional matrix representationR of a groupG is amapG → GL(Rn) such that

R(g)R(h) = R(gh). Note that this implies that R(e) is the identity matrix and R(g−1) =
R(g)−1. By differentiating with respect to the group co-ordinates g1, . . . gr at the identity
e, we obtain the infinitesimal generators

ai = dR(g)
dgi

∣∣∣∣
g=e

, i = 1, . . . r

which span the Lie-algebra g of G.
Let 2 denote the matrix 2 = R(ρ(z)). We define the curvature matrices

Qi = (Di2)2−1, i = 1, . . . , p (29)

The next theorem provides a new significance for the correction matrix K; its rows are
the co-ordinates of the curvature matrices, when expressed as a linear combination of the
relevant basis of the Lie-algebra.

Theorem 8. The curvature matricesQi can be constructed in the matrix representation of g
with basis {ai}, using only the normalization equations and the infinitesimal action. Indeed,

Qi =
∑

j

Kijaj

where K is the correction matrix given in Section 2.3.

Proof. Choose g ∈ G arbitrary with z̃ = g ∗ z. On the one hand we have

D̃iR(ρ(̃z))|g=ρ(z) = D̃i(R(ρ(z))R(g−1))|g=ρ(z) = D̃i(R(ρ(z)))R(g)−1|g=ρ(z) = Qi

and on the other hand

D̃iR(ρ(z̃))|g=ρ(z) =
r∑

j=1
D̃iρj(z̃)

dR(ρ(z̃))
dρj(z̃)

∣∣∣∣
g=ρ(z)

=
r∑

j=1
Kijaj

since ρ(ρ(z) ∗ z) = e. !
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The following proposition generalizes the zero-curvature Eq. (28) to include the case of
non-commuting invariant differential operators and is essentially the structural formula for
the Maurer-Cartan form.

Proposition 9. The curvature matrices (29) satisfy the syzygy

Dj(Qi)−Di(Qj) = ([Dj,Di]2)2−1 + [Qj,Qi]. (30)

Proof.

Dj(Qi)−Di(Qj) = Dj(Di(2)2−1)−Di(Dj(2)2−1)

= DjDi(2)2−1 −DiDj(2)2−1 +Di(2)Dj(2−1)−Dj(2)Di(2−1)

= [Dj,Di](2)2−1 + [Qj,Qi]

as 22−1 = 1 implies Dk(2−1) = −2−1Dk(2)2−1. !

The commutators of the invariant derivative operators can be calculated using only
the K matrix and the infinitesimals of the group action. The following formula is taken
from ([5], Equation 13.12). Denote the invariantized derivatives of the infinitesimals
ξ by

Ξk
li = D̃iξk,l(z̃)|g=ρ(z).

Then we have

[Di,Dj] = Ak
ijDk, Ak

ij =
r∑

l=1
KjlΞ

k
li − KilΞ

k
lj. (31)

Remark 10. We will denote the curvature invariants that appear in the matrix Qx by the
vector κ. If the normalisation equations do not involve time-derivatives then it is always
possible to rewrite the syzygy (30) in the form

κt = HIt, (32)

where H is a invariant matrix differential operator involving curvature invariants only. This
is done by replacing ItKj by Dxj ItK − MtKj repeatedly.

Example 1 (cont.). The matrix

R(g) =




cos α − sin α a

sin α cos α b

0 0 1



 (33)
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provides a representation of E(2). The infinitesimal generators of the Lie-algebra are

a1 =




0 −1 0
1 0 0
0 0 0



 , a2 =




0 0 1
0 0 0
0 0 0



 , a3 =




0 0 0
0 0 1
0 0 0



 .

The K matrix (23) is used to calculate the curvature matrices

Qx =




0 Iv

xx/I
u
x −Iu

x

−Iv
xx/I

u
x 0 0

0 0 0



 , Qt =




0 Iv

xt/I
u
x −Iu

t

−Iv
xt/I

u
x 0 −Iv

t

0 0 0



 (34)

and their commutator

QtQx −QxQt =




0 0 Iv

xxI
v
t /Iu

x

0 0 Iv
xt − Iv

xxI
u
t /Iu

x

0 0 0



 .

Therefore from the matrix Eq. (30) we get the three equations

Dt

(
Iv
xx
Iu
x

)
−Dx

(
Iv
xt

Iu
x

)
= 0,

Dt(Iu
x )−Dx(Iu

t ) = − Iv
xxI

v
t

Iu
x

,

Dx(Iv
t ) = Iv

xt − Iv
xxI

u
t

Iu
x

,

which are equivalent to the syzygies (24) obtained previously. With κ = Iv
xx/I

u
x , ν = Iu

x

these can be written as
(
κ

ν

)

t

=
(
Dx

κ
ν Dx

1
νDx

Dx −κ

) (
Iu
t

Iv
t

)
, (35)

which should be compared with the system (25).

Recall that the rows of the rotational part ofρ are the vectors e1 and e2 along the curve, see
Eq. (15). Suppose now that ν = 1; since Iu

x = e1 · Dxγ this corresponds to parameterizing
the curve by arc-length. Expressing the evolution of κ in terms of Iv

t yields

Dtκ = (D2x + κxD−1
x κ + κ2)Iv

t (36)

The same equation is obtained from Eq. (25) since Iu
x = 1 implies that Iu

xx = Iu
xt = 0. One

may recognize the recursion operator for the modified Korteweg–De Vries Eq. (47). Thus
an integrable evolution equation is obtained when one imposes the constraint Iv

t = κx.
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Example 2 (cont.). The infinitesimal generators in the Lie-algebra g are given by

a1 =
(
1 0
0 −1

)
, a2 =

(
0 1
0 0

)
, a3 =

(
0 0
1 0

)
.

Using the K matrix we get

Qx =
(

0 −1
−Ixx 0

)
, Qt =

(
It 0

−Ixt −It

)
.

By using Eq. (31), or the frame, we have [Dx,Dt] = 2ItDx. Eq. (30) becomes

DtQx −DxQt = −2ItQx + [Qt ,Qx]

and provides the syzygies (27).

4. Lifting integrability

In this section we answer the question whether integrability of a curvature evolution
does lift to the motion of its curve. We take the existence of infinitely many generalized
symmetries to be the signature of integrability. Therefore we aim to show, in general, that
a symmetry of the curvature evolution gives rise to a symmetry of the curve evolution.
Suppose we have given two evolutions of curves,

utj = Pj[u], j = 1, 2.

Here [u] denotes dependence on u as well as on xi-derivatives of u. We have the following
identity

(Dt1Dt2 − Dt2Dt1 − [Dt1 , Dt2 ])u = 0. (37)

We first look at (37) in the usual coordinates and then compare the calculations in the
invariantised setting. The vanishing of the commutator [Dt1 , Dt2 ] = 0 yields

Dt1ut2 − Dt2ut1 = 0, (38)

which is the lowest order syzygy between time-derivatives of evolution variables. This
identity in the differential algebra gives us a condition on the functions Pj . In practise one
has to verify that

(Dt1P2)|ut1=P1 − (Dt2P1)|ut2=P2 = 0. (39)

If it vanishes indeed, we say that the curve evolutions commute. This condition is called the
symmetry condition. To evaluate the expressions one uses the trivial syzygies DKu = uK



E.L. Mansfield, P.H. van der Kamp / Journal of Geometry and Physics 56 (2006) 1294–1325 1313

(there are no correction terms) and the vanishing of the commutators

[Dtj , Dxi ] = 0.

Next we will consider curve evolutions that are invariant under a given group action.
The lowest order syzygy involving invariant time derivatives of the fundamental evolution
invariants is

C(It1 , It2 ) = Dt1It2 −Dt2It1 + Mt2t1 − Mt1t2 = 0. (40)

Note that the correction terms may depend on the evolution invariants and space derivatives
thereof, but not on their time-derivatives. Suppose that two invariant evolutions of a curve
are given by

Iti = Fi[κ], i = 1, 2, (41)

where the Fi depend on the curvature invariants and their invariant derivatives. Let H be
the matrix differential operator, see Remark 10, such that the time evolutions of κ, denoted
κti = Dtiκ, are given by

κti = HFi, i = 1, 2. (42)

The invariant symmetry condition is now given by

(Dt1F2)|κt1=HF1 − (Dt2F1)|κt2=HF2 + (Mt2t1 − Mt1t2 )|Iti=Fi = 0, (43)

or, for short, by

C(It1 , It2 )|Iti=Fi = 0.

This is the same condition as condition (39), but now written in terms of invariants.

Theorem 11. The symmetry condition for two curvature evolutions (42) is a differential
consequence of the symmetry condition on the curve evolutions (41). We have that

Dt1HIt2 −Dt2HIt1 − [Dt1 ,Dt2 ]κ = HC(It1 , It2 ).

Proof. We look at both sides as differential expressions in the operators Dx,Dt1 and Dt2
acting on function of κ, It1 and It2 . Note that for example It1t2 does not appear in such
an expression and every κti has been replaced by HIti . We know that both sides vanish
identically in the differential algebra of invariants. Since we can expand both identities into
the form

HDt1It2 + . . . = 0.

where the dotted termsdonot dependonDt1It2 , both sides are equal as differential conditions
on the invariant functions Iti = Fi. !
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When the action of the Lie-group neither depends nor acts on the variables t1 and t2 and
no evolution variables appear in the normalisation equations we can make the connection
between the symmetry condition (38) and its invariantised form (40) more explicit. In this
case the evolution invariants Iti will depend linearly on the original evolution variables uti .
Let the Lie-group action be given by

x̃i = Fi(z, g), i = 1, . . . , p − 2,
t̃j = tj, j = 1, 2,
ũα = Fα(z, g), α = 1, . . . , q.

Suppose that the variables appearing in the normalisation equations are ζi = u
αi

Ki where t1
and t2 do not appear in Ki for any i. Then the p × p Jacobian matrix Dx̃ is

Dx̃ =




M 0 0
v1 1 0
v2 0 1



 .

Here M is the (p − 2)× (p − 2) matrix M = A + BC with Aij = ∂xiFj, Biα = uαi and
Cαj = ∂uαFj , and the vk, k = 1, 2 are given by (vk)j =

∑
α uαtkCαj . The inverse of this

Jacobian matrix is given by

D̃x =




M−1 0 0

−v1M−1 1 0
−v2M−1 0 1



 .

Hence the transformed time-derivative operators are
D̃tk = Dtk − vkM

−1Dx. (44)

Applying such an operator to the transformed variables ũ and then evaluating on the frame
g = ρ(z) gives us the matrix relating the evolution invariants and the evolution variables.

Proposition 12. We have in this case

Iti = R−1uti , i = 1, 2,

where R is a matrix of functions of uαK with ti not in the index K.

From Eq. (44) we also know that the invariant operatorsDtj equalDtj up to some correction
termwhich is a linear operator in theDx with coefficients that are linear in the Itj . Therefore
the identities (38) and (40) are related by

R−1(Dt1ut2 − Dt1ut2 ) = Dt1It2 −Dt2It1 + Mt2t1 − Mt1t2

by linearity of the derivations.
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Theorem 11 implies that integrability does not necessarily lift from the curvature evolu-
tion to the curve evolution.However,most commonly studied integrable curvature equations
are homogeneous polynomials or rational functions of the differential invariants. Since in
these classes the kernel of the differential operatorH is empty, pairs of integrable equations
result, cf. [13]. In order to illustrate the scope of the theorem and the power of the method,
we include, for several geometries, the explicit calculations that one would need to perform
in the absence of the general result.
It can be seen in the examples that verifying the equation in Theorem 11 can involve

substantial calculations. In particular, the fact that the operatorH factors out of the left hand
side is remarkable.
Another useful observation is that the explicit formulas for the curvature invariants pro-

vide a Miura-type transformation between the curve evolution and the curvature evolution.
This will also be illustrated in the following examples.

Example 3. One example is provided by the group SL(2) acting as x̃ = x, t̃ = t and

ũ = au + b

cu + d
, ad − bc = 1.

The transformation relating the Schwarzian KDV Eq. (46) to the KDV Eq. (45) arises
naturally in this context.

When we take ũ = ũx − 1 = ũxx = 0 as the normalization equations and take a, b, c as
co-ordinates of the group, we have

K =
(

0 −1 1
2Ixxx

− 1
2Ixt −It

1
2Ixxt

)
.

and, using the same basis for sl(2) as in Example 2, we get

Qx =
(

0 −1
1
2Ixxx 0

)
, Qt =

(
− 1
2Ixt −It

1
2Ixxt

1
2Ixt

)
,

and

[Qt ,Qx] =
(
1
2 (Ixxt − ItIxxx) Ixt

1
2IxtIxxx

1
2 (ItIxxx − Ixxt)

)
.

Eq. (30) gives the following syzygies

DxIxt = Ixxt − ItIxxx,

DxIt = Ixt,

DtIxxx −DxIxxt = IxxxIxt.
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We eliminate Ixt and Ixtt and denote Ixxx = κ to get κt = HIt , where

H = D3x + κDx +Dxκ

is one Hamiltonian operator of the KDV equation

κt = κxxx + 3κκx, (45)

which is famously integrable. When we impose the constraint It = κ this implies that κ
evolves according to KDV. Let us find out what the motion of the curve is. Using the
moving frame,

ρ =
(

1
√

ux
,

−u
√

ux
,

uxx

2ux
√

ux

)
,

we obtain explicit expressions for the invariants,

It = ut

ux
, κ = uxxx

ux
− 3
2

u2xx

u2x
.

Writing the constraint It = κ in terms of the original co-ordinates we get the Schwarzian
KDV equation,

ut = uxxx − 3
2

u2xx

ux
, (46)

which is also well known to be integrable. Thus κ = {x; u}, the Schwarzian derivative,
provides the Miura transformation between SKDV and KDV.
We compare the symmetry conditions on the different levels. Two different motions of

the curve are given by different choices for the evolution invariant It as a function of the
curvature invariant. The curve moves in different time-directions t1, t2 by uti = uxFi, i =
1, 2. The condition on the functions F1 and F2 for these evolutions to commute is

0 = ut1t2 − ut2t1

= Dt2 (uxF1)− Dt1 (uxF2)
= Dx(uxF2)F1 + uxDt2F1 − Dx(uxF1)F2 − uxDt1F2

= ux(Dt2F1 − Dt1F2 − F1DxF2 + F2DxF1).

The symmetry condition for the curvature evolutions, κti = HFi, to commute becomes

0 = κt1t2 − κt2t1
= Dt2HF1 − Dt1HF2

= HDt2F1 + H(F2)DxF1 + DxH(F2)F1−HDt1F2 − H(F1)DxF2 − DxH(F1)F2
= H(Dt1F2 − Dt2F1 − F1DxF2 + F2DxF1),
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where the last step can be verified by direct, albeit lengthy, computation, verifying Theorem
11.
The KDV equation has a recursion operator R = HD−1

x . We can use this operator to
write down the symmetries of SKDV. The constraint It = D−1

x R
n−1κx makes κ evolve

according to a symmetry of KDV: κt′ = Rnκx. Therefore we have

ut′ = uxD
−1
x R

n−1κx,

where κ = {x; u} is a symmetry of SKDV. Generating the symmetries this way is easier
than by using the recursion operator for SKDV given in [26].

Example 2 (cont.).Although we do not know whether there is an integrable equation that
arises as the curvature evolution of a curve moving in the geometric setting of the matrix
action of SL(2) on (x, u), still Theorem 11 implies that if it is in a class of equations where
the kernel ofH = D2x − 4κ is empty, then the motion of its curve is integrable as well. The
invariant evolution operators are, cf. Eq. (26),

Dti = Dti + xuti

u − xux
Dx,

which commute with each other but not with Dx. We impose constraints Iti = Fi, i = 1, 2
to describe the curve moving in different time ti directions. The motions of the curves
uti = (u − xux)Fi commute when

0 = ut1t2 − ut2t1

= Dt2 (u − xux)F1 − Dt1 (u − xux)F2
= (u − xux)((Dt2 + xF2Dx)F1 − (Dt1 + xF1Dx)F2)
= (u − xux)(Dt2F1 −Dt1F2).

Using the relation [Dx,Dti ] = 2FiDx it can be verified that

Dt2 (D
2
x − 4κ)It1 −Dt1 (D

2
x − 4κ)It2 = (D2x − 4κ)(Dt2F1 −Dt1F2),

supporting Theorem 11.

Example 2 (cont.). It is also possible to have non commuting operators Dti . Take different
normalisation equations;

x̃ = ũ = ũx + 1 = 1.

Then

R = u − xux, H = D2x −Dx(κ)− 4κ,
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with κ = Ixx. The commutators are

[Dt1 ,Dt2 ] = (It1Dx(It2 )− It2Dx(It1 ))Dx, [Dx,Dti ] = (2Iti −Dx(Iti ))Dx.

According to Theorem 11we have

Dt1HF2 −Dt2HF1 − (F1Dx(F2)− F2Dx(F1))Dx(κ)

= H(Dt1F2 −Dt2F1 + F1Dx(F2)− F2Dx(F1))

for arbitrary functions Fi. This can be verified by using the expressions for the operators in
the original variables, or, by using the above commutation relations. There are algorithms
available for processing differential systems given in terms of non-commutative derivations
[8,14]. In general, when a frame cannot be constructed explicitly, this is the only option.

Example 1 (cont.). For theEuclidean actionon the plane, after parameterizingby arc-length,
we have obtained the syzygy κt = RIv

t , with

R = Dx(Dx + κD−1
x κ),

cf. Eq. (36). TheoperatorDx is aHamiltonian operator andJ = Dx + κD−1
x κ is a symplectic

operator for the MKDV equation

κt = κxxx + 3
2
κ2κx, (47)

cf. [26].

However, to avoid the use of D−1
x , we prefer to write the syzygy as κt = HIu

t , where

H = Dx(κ + Dx
1
κ
Dx) (48)

We consider two different curve evolutions given by Iu
t = Fi, i = 1, 2. The motion can be

written in terms of frame vectors as

γti = Fie1 + 1
κ
Dx(Fi)e2.

We know from Qt , see Eq. (34) that

Dti

(
e1

e2

)
= (κ + Dx

1
κ
Dx)(Fi)

(
e2

−e1

)
.

Therefore the curves commute when

0 = Dt2γt1 − Dt1γt2 = Ce1 + 1
κ
Dx(C)e2,
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where

C = Dt2F1 − Dt1F2 − F2DxF1 + F1DxF2 − Dx(F1)D2
xF2 − Dx(F2)D2

xF1
κ2

.

Using formula (48) for H and the evolutions of κ, it can be verified that indeed we have

Dt2κt1 − Dt1κt2 = H(C),

in agreement with Theorem 11.
Under the constraint Iu

t = 1
2κ
2, or Iv

t = Dxκ, the curvature κ evolves according to the
MKDV Eq. (47). If one imposes, in succession, the constraints

Iv
tm

= Rm−1κx, m = 1, 2, . . . .

then their corresponding curvature evolutions are the symmetries of MKDV, namely κtm =
Rmκx. The curve evolutions defined by the constraints form a hierarchy as well. The lowest
order (m = 1) constraint yields the following evolution for the curve

γt = 1
2
κ2e1 + κxe2, (49)

which is called the planar filament equation. Using the recursion operator of MKDV to
generate its higher symmetries is easier than the procedure given in [13].
Since the frame is known explicitly, it is easy to write equation (49) in terms of the

original jet co-ordinates. By elimination of the second co-ordinate v using the constraint
u21 + v21 = 1 we get for u the equation

ut = uxxx + 3
2

uxu
2
xx

1− u2x
(50)

These kind of scalar equations, i.e., third order equations linear in the highest derivative
term, are classified with respect to integrability. Indeed, the above equation appears in the
list ([19], equation 4.1.14). The explicit expression for the curvature, that is

κ = (uxDx − uxx)
√
1− u2x,

provides the Miura transformation that transforms Eq. (50) into MKDV. Yet other descrip-
tions of the same geometric flow can be given, see Eqs. (53) and (54) in [2].

Example 4. We consider the motion of curves in 3 dimensional Euclidean space. The
Cayley representation of SO(3) is given by the matrix

R(g) =




g20 + g21 − g22 − g23 2(g1g2 − g0g3) 2(g1g3 + g0g2)
2(g1g2 + g0g3) g20 − g21 + g22 − g23 2(g2g3 − g0g1)
2(g1g3 − g0g2) 2(g2g3 + g0g1) g20 − g21 − g22 + g23



 ,
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where g20 + g21 + g22 + g23 = 1. Let us write the vector of translation as V (g) = (g4, g5, g6)
and define the action of the Euclidean group E(3) = SO(3)!R3 on γ = (u, v, w) by

g ∗ γ = R(g)(γ − V (g)).

A representation of the group E(3) is given by

(
R(g) V (g)
0 1

)
.

The normalization equations Iu = Iv = Iw = Iv
x = Iw

x = Iw
xx = 0 yield

Qx =





0 κ 0 −Iu
x

−κ 0 τ 0
0 −τ 0 0
0 0 0 0




, Qt =





0 a c −Iu
t

−a 0 b −Iv
t

−c −b 0 −Iw
t

0 0 0 0





where

κ = Iv
xx

Iu
x

, τ = Iw
xxx

Iv
xx

, a = Iv
xt

Iu
t

, c = Iw
xt

Iu
t

, b = Iw
xxtI

u
x − Iw

xtI
u
xx

Iu
x Iv

xx

. (51)

Eq. (30) yields, after elimination of c,

(
κ

τ

)

t

=
(

Dx + τD−1
x τ −τD−1

x κ

−κD−1
x τ Dx + κD−1

x κ

) (
a

b

)
.

Setting Iu
x to 1 and writing a, b, and c in terms of the generating evolution invariants yields




a

b

c



 =




κ + Dx

1
κDx −τ

τ + 1
κ (τDx + Dxτ) 1κDx

1
κ (D

2
x − τ2)

τ
κDx Dx





(
Iu
t

Iw
t

)
, (52)

where we have eliminated Iv
t = 1

κDxI
u
t .

The rotation part of our frame ρ, which has not been calculated explicitly, is related
to the standard Serret–Frenet frame (e1, e2, e3)T, that is, the i − th row of R(ρ) equals ei.
Therefore we have

Iu
x = e1 · γx, Iv

x = e2 · γx, Iw
x = e3 · γx.
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From the normalization equations we obtain γx = Iu
x e1. Hence having Iu

x = 1 corresponds
to x being arc-length. In terms of the Serret–Frenet frame the curve evolution is

γt = Iu
t e1 + 1

κ
Dx(Iu

t )e2 + Iw
t e3.

In this equation Iu
t and Iw

t must be given in terms of κ and τ and their derivatives for the
curve evolution to be invariant under the group action.
One integrable equation of this form is γt = κe3, called the filament equation, see [12].

This equation is equivalent to the constraints Iu
t = 0, Iw

t = κ. If γ evolves according to the
filament equation, then κ and τ evolve according to

κt = − 1
κDxτκ

2

τt = Dx( κxκ + 1
2κ
2 − τ2).

(53)

An explicit form for the filament equation in terms of the original variables can be
obtained from the explicit expressions for the frame dependent invariants κ, Iu

t and Iw
t .

Without knowledge of the frame these can be obtained using the Fels–Olver–Thomas re-
placement rule from the known classical invariants. In this case the normalization equations
yield

|γx| = Iu
x ,

|γx × γxx| = Iu
x Iv

xx,

γx · (γxx × γxxx) = Iu
x Iv

xxI
w
xxx,

|γt|2 = Iu
t
2 + Iv

t
2 + Iw

t
2,

|γx × γt|2 = Iu
x
2(Iv

t
2 + Iw

t
2),

γx · (γxx × γt) = Iu
x Iv

xxI
w
t .

More directly one can use the well known explicit expression for the Serret–Frenet frame,

e1 = γx, e2 = γxx

|γxx|
, e3 = γx × γxx

κ
.

When the third co-ordinate w is eliminated using |γx| = 1 the filament equation γt = γx ×
γxx, written in co-ordinates, is

ut = −vxx(1− u2x)+ uxxuxvx√
1− u2x − v2x

,

vt = uxx(1− v2x)+ vxxvxux√
1− u2x − v2x

.

(54)
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The Miura transformation from Eq. (54) to Eq. (53) is provided by the explicit formulas for
the curvature invariants

κ =
√

u2xx + v2xx − (uxxvx − vxxux)2√
1− u2x − v2x

,

τ = uxxvx − vxxux√
1− u2x − v2x

− (uxxxvxx − vxxxuxx)
√
1− u2x − v2x

u2xx + v2xx − (uxxvx − vxxux)2
.

The operator H is now a 2× 2 matrix. We have

(
κti

τti

)
= H

(
Iu
ti

Iw
ti

)
,

with

H =
(

Dxκ + (D2
x − τ2) 1κDx −(Dxτ + τDx)

τDx + Dxτ + Dx
1
κ (τDx + Dxτ) 1κDx Dx

1
κ (D

2
x − τ2)

)
.

This operator is related to the Hamiltonian operator P given in ([18], Theorem 2), in the
case of zero curvature, by interchanging the columns. We impose constraints

(
Iu
ti

Iw
ti

)
=

(
Fi

Gi

)
, i = 1, 2.

The corresponding curve ti-evolutions commute when

0 = Dt2γ1 − Dt1γ2 = C1e1 + 1
κ
Dx(C1)e2 + C2e3,

where we have used Qt and Eq. (52) to find

C1 = F2DxF1 − F1DxF2 + G1DxG2 − G2DxG1 + 2 τκ (G1DxF2 − G2DxF1)
+ 1
κ2
(Dx(F1)D2

xF2 − Dx(F2)D2
xF1),

C2 = F2DxG1 − F1DxG2 + 2 τ
κ3
(Dx(F2)D2

xF1 − Dx(F1)D2
xF2)

+ τ2

κ2
(G2DxF1 − G1DxF2)+ 1

κ2
(Dx(F2)D2

xG1 − Dx(F1)D2
xG2).

Theorem 11 tells us that

Dt2H

(
F1

G1

)
− Dt1H

(
F2

G2

)
= H

(
C1

C2

)
.
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To verify this requires quite a lengthy calculation. In particular, the integrability lifts from
Eq. (53) to Eq. (54). A recursion operator for Eq. (53) was given in [18]. Similar to the
planar case, this recursion operator can be used to write down the higher symmetries of the
curve evolution (54) easily.

Example 5. Given an evolution equation, integrable or not, it is sensible to ask whether
it arises as the curvature evolution for a curve moving in some geometry. However, this
may happen in more than one way. We illustrate this by proving that any scalar evolution
equation that allows a potential form arises both as the curvature evolution of a projected
curve on the line and as the curvature evolution of a scaled curve on the line. By Theorem
11, these curves are integrable if the curvature evolution is integrable.

Suppose that a scalar equation for κ can be written as

κt = DxF [κ], (55)

for some F which is a function of κ and its x-derivatives. Then the equation has a potential
form. The potential form of Eq. (55), obtained from the transformation κ = νx, is given
explicitly by

νt = F [νx].

For example, the potential form of Burgers’ equation κt = Dx(κx + κ2) is

νt = νxx + ν2x.

We first consider a curve u(x) moving on the line where the geometry is given by
x̃ = x, ũ = gu. As a representation of the group (R+, ·), we have R(g) = g. We impose
the normalization equation ũ = 1, which yields the right-moving frame ρ = 1/u. Among
the invariants of the action we have Ix = ux/u and It = ut/u. The curvature matrices are
scalars, i.e., Qx = −Ix, Qt = −It . Since these commute, Eq. (30) yields DtIx = DxIt ,
which is of the form (55). We write Ix = κ and It = F [κ]. Thus, Eq. (55) arises as the
curvature evolution for the a scaled curve, whose evolution is given by

ut = uF
[ux

u

]
. (56)

Next we consider curves u(x) moving on the line where the geometry is given by
x̃ = x, ũ = u/(1− gu). As a representation of the group (R, +) we haveR(g) = eg.We im-
pose the normalization equation ũ = 1. This yields the right-moving frame ρ = (1− u)/u.
Among the invariants of the action we have Ix = ux/u

2 and It = ut/u
2. The curvature ma-

trices areQx = −Ix andQt = −It , and we arrive to Eq. (55) again, however with different
curvatures invariants Ix = κ and It = F [κ]. Therefore, Eq. (55) also describes the curvature
flow of a projective curve moving on the line where the evolution of the curve is given by

ut = u2F
[ux

u2

]
. (57)
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Note that Eq. (57) is equivalent to the potential form of the equation by the invertible
transformation ν = −1/u.
In the following table we present the curve evolutions whose curvatures evolve accord-

ing to Burgers’ equation (or the heat equation if a = 0), the Korteweg–De Vries equation
and the nonlinear diffusion equation. Other equations which have a potential form include
the modified KDV equation, the Sawada-Kotera equation and the Kaup-Kupershmidt equa-
tion. Their scaled and projective curve evolutions can be obtained directly from (56) and
(57).

Curvature flow scaled curve projective curve

κt = κxx + aκxκ ut = uxx + (a − 1)
u2x
u

ut = uxx − 2 u2x
u + a

2
u2x
u2

κt = κxxx + aκxκ ut = uxxx − 3
uxxux

u
+ 2

u3x
u2

+ a

2
u2x
u

ut = uxxx − 6 uxxux
u + 6 u3x

u2
+ a

2
u2x
u2

κt = Dx
κx
κ2

ut = uxx
u2

u2x
− u ut = uxx

u4

u2x
− 2u3
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