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Abstract
We generalise the concept of duality to lattice equations. We derive a novel
3-dimensional lattice equation, which is dual to the lattice AKP equation.
Reductions of this equation include Rutishauser’s quotient-difference (QD)
algorithm, the higher analogue of the discrete time Toda (HADT) equation and
its corresponding quotient—quotient-difference (QQD) system, the discrete
hungry Lotka—Volterra system, discrete hungry QD, as well as the hungry
forms of HADT and QQD. We provide three conservation laws, we conjecture
the equation admits N-soliton solutions and that reductions have the Laurent
property and vanishing algebraic entropy.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Our aim in the present paper is threefold:

1. To generalise the concept of duality (introduced in [29] for ordinary difference equations)
to lattice equations.
2. To use duality to derive the 3-dimensional (3D) lattice equation
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3. To provide conservation laws for equation (1), to present reductions to two dimensional
integrable systems, and to support our conjecture that equation (1) admits N-soliton solu-
tions and its reductions have the Laurent property and vanishing algebraic entropy.

Most of currently known integrable 3D lattice equations are related to discretizations of the
three continuous 3D Kadomtsev—Petviashvili equations called AKP, BKP and CKP. The lat-
tice AKP equation,

AT Lim Tt 1m+1 T BT tmTer tim+1 + CTigmt 1 Ter 1i1.m = 0, 2)

was first derived by Hirota [18], and is also called the Hirota—Miwa equation [28]. The more
general lattice BKP equation (also called the Miwa equation),

ATt LT+ Ln+1 + BT it tn Tt 10m+1 + CTifm+1 Tt Lk L + DTt Tt Lk tmt1 = 0, 3)

was first found by Miwa in [28]). The lattice CKP equation,

2
(TRt Tht L Lnt 1 Thb T L1 — T4 Ln Tk LLmb1 — Thdam1 Tk-+1i+1,m)
:4(Tk,l,m7k+l,l,m+l - Tk,l+|,mTk,1,m+l)(Tk+1,l,m7'k+|,1+1,m+1 - Tk+1,l+1,m7'k+l,1,m+1) “

was first derived by Kashaev as a 3D lattice model associated with the local Yang—Baxter
relation [22], and later was independently found by Schief [31] as a superposition principle
for the continuous CKP equation. This equation is also formulated as a hyperdeterminant in
[33].

The AKP equation is a bilinear equation on a six-point octahedral stencil (A3 lattice).
Equations of this type have been classified with respect to multi-dimensional consistency
in [1]. The lattice BKP and CKP equations are both defined on an 8-point cubic stencil.
However, whereas lattice BKP is bilinear, the lattice CKP is quartic and nonlinear. A non-
linear form of the AKP equation (quartic and defined on a 10-point stencil) was given in
[13, equation (5.5)]. A quintic nonlinear non-potential lattice AKP equation was given in
[11, equation (3.19)]. This equation is defined on a 10-point stencil [11, figure 3]. A quadri-
linear 3D lattice equation related to the lattice BKP equation, defined on a 14-point stencil
(D5 lattice), is presented in [23, equation (24)]. Our equation (1), which we will obtain as
a dual to the AKP equation (2), is a quadrilinear equation defined on the 14 point stencil
depicted in figure 1.

To our knowledge equation (1) is new. Given that the number of known integrable 3D lat-
tice equations is quite small, see [16, sections 3.9-3.10], any possible addition to this number
would seem worthwhile pursuing.

The idea of duality for ordinary difference equations is as follows: given an ordi-
nary difference equation (OAE), E = E(uy,upsi1,- - uprq) =0, with an integral,
K[n] = K(uy, ttyt15 - - - s nta—1), the difference of the integral with its upshifted version
factorises K[n + 1] — K[n] = EA. The quantity A is called an integrating factor. The equa-
tion A = 0 is a dual equation to the equation E = 0, both equations share the same integral.
If E = 0 has several integrals K, then a linear combination of them gives rise to a dual with
parameters:
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Figure 1. The 14-point stencil of equation (1).

ZaiKi[n +1] - ZaiKi[n} =E <Z a,-A,-) :

In [29] duals to (d — 1, —1)-periodic reductions of the modified Korteweg—de Vries (mKdV)
lattice equation are shown to be integrable maps, namely level-set-dependent mKdV maps. In
[4] a novel hierarchy of maps is found by applying the concept of duality to the linear equa-
tion U, = Uptq, and L%J integrals are provided explicitly. The integrability of these maps is
established in [20]. We note that dual equations are not necessarily integrable, examples exist
where the dual is not integrable [5]. In [21], the authors study several integrable 4th order
maps and integrable maps that are dual to them.

Given a 2D lattice equation, E = E(ug, . . . , Ug+ds+e) = 0, instead of considering differ-
ences of integrals we now consider conservation laws:

Plk+ 1,1] — Pk, 1] + Q[k,1 + 1] — Q[k. ] = EA.

Here the quantity A is called the characteristic of the conservation law. Again the equa-
tion A = 0 or a linear combination, ), a;A; = 0, can be viewed as the dual equation to E = 0.
The situation for 3D lattice equations is similar.

The structure of the paper is as follows. In section 2 we present a 3D lattice equa-
tion which is dual to the lattice AKP equation, and we provide a matrix formula which
simultaneously captures four conservation laws for the AKP equation as well as three
conservation laws for the dual AKP equation. In section 3 we show that these conservation
laws give rise to quotients-difference formulations, in the same way that Rutishauser’s
quotient-difference (QD) algorithm [30] is a quotient-difference formulation of the dis-
crete-time Toda equation [19]. In section 4 we provide 1-soliton and 2-solition solutions,
and we provide evidence to support a conjectured form for the general N-soliton solution.
In section 5 we provide evidence to support our conjecture that 2-periodic reductions to
ordinary difference equations have the Laurent property. In section 6 we provide details of
calculations which indicate that 2-periodic reductions of the dual AKP equation have quad-
ratic growth. In section 7 we show that reductions of the dual AKP equation (1) to 2D lat-
tice equations include the higher analogue of the discrete time Toda (HADT) equation and
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its corresponding quotient—quotient-difference (QQD) system [32], the discrete hungry
Lotka—Volterra system, discrete hungry QD, as well as the hungry forms of HADT and
QQD introduced in [3].

2. Derivation of a dual to the lattice AKP equation, and a matrix
conservation law

Seven characteristics of conservation laws for the lattice AKP equation can be obtained from
the results in [26]. We choose to only consider the parameter independent ones and we set all
arbitrary functions equal to one. We will denote shifts in & using tildes, shifts in / by hats, and
shifts in m by dots, e.g. % = Ti+14+1.m—1. The four characteristics (denoted Aj, Ay, Az, A7 in
[26]) are given by

wolf = & 7 TooTr 7
R S S R v
One can now check the following matrix conservation law
P-P+Q0—-Q+R—-R=V'W, (5)
where P, O, R are the 3 x 4 matrices
P=|-Z o Z o |, 0o=|0 -Z o -Z|, R=|Z 0 —= 0 |,
-E F 0 o0 Z-Z 0 o0 0 0 - _i

and V7 denotes the transpose of
v = (## #4, #7).

Denoting two vectors of coefficients by X = (A,B,C) and Y = (ay,ay,as,as), we have
that XV7 = 0 represents the AKP equation (2) and the equation WY7 = 0 is equivalent to
equation (1).

Hence, pre-multiplying (5) with X gives four conservation laws for the lattice AKP equa-
tion, and post-multiplying (5) with Y7 yields three conservation laws for equation (1). Thus the
lattice AKP equation and equation (1) are dual to each other.

3. Corresponding quotients-difference systems

The lattice AKP equation and the dual AKP equation can each be written as a system of one
difference equation combined with a number of quotient equations.
Let us introduce variables

T T T
P=== qg= == V= —.

T T TT
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Note that p = —Py4, ¢ = — Q4 and v = —R34. Hence, the fourth conservation law for the AKP
equation can be written as the difference equation
A(p—p)+B(Gg—q)+C(h—v) =0. (6)
Taking logarithms, we find _ ) .
In(p)=c+c—¢c—¢=(1-=8)(1-29)c
In(g) =c+c—¢c—¢=(1-8)(1 -3¢
In(v)=c4+c—c¢—c¢=(1-8)(1-58)c
where ¢ = In(7), capital S denotes the shift operator in k (and similarly Sand$ represent shifts
in [ resp. m), and 1 is the identity. This gives (1 —8)In(p) = (1 — 8)In(g) = (1 — §) In(v),
which can be written in quotient form,
v
=-. (N

1%

p
p
As (7) contains only two independent equations the system of equations for p, g, v defined by

(6) and (7) can be referred to as a QQD-system.
Similarly, we can write the dual AKP equation in variables

QI

- . P
u="2 =L w=_, ®)
TT TT TT
and the variable v introduced above. We have u = —P3; = Q31, 2 = P3» = —Qx, and w = R33.
The third conservation law becomes
ai(t—u)+a(Z—z) +azs(w—w) +as(v—7v) =0. 9)
Taking logarithms we find
S—1)(S§—S S—1)(S-8 S—8)(S—-S
In(u) = 7( )N( )c, In(z) = $=DE=5) )A( )c, In(w) = $=9=5) )( )c.
S S S
One can now derive quotient equations which are either ratios of quadratic terms
BB W
or ratios of linear terms
v iV oi_w (10)
u v u w Z v Z w

of which only three are independent. In the sequel, we will refer to the system of quotient and
difference equations (9) and (10) as the Q3D-system.

4. The N-soliton solution

4.1. 1-soliton

Equation (1) admits the 1-soliton solution 7y, = 1 —l—clx’l‘yllz’f with dispersion relation
0, =0, where
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Qi =yizi (xi — 1) (xi — i) (xi — zi) ar +xizi (vi = 1) (vi — %) (vi — z) @2
+xyi(zi = 1) (@ — %) (i — yi) a3 +xvizi (6 — 1) (vi — 1) (7 — 1) aa. an

In the sequel we will use the following notation, x; = x:xj, ¢;; = ¢;c;, and if Q; = Q(x;, yi, zi)
then Q,‘j = Q(xij,yij,zij).
4.2. 2-soliton
Equation (1) admits the 2-soliton solution
Thdm = 1+ clx'{yllz'{‘ + clez‘ylzzg‘ + C16‘2R12x1f2y112Zr1n2
where Q1 = Q> =0,
N alSij + Cleg + Cl3S;j + CMSZ
Qjj '

Rjj
with
S = ( (i = x5) (eyi — yimi) (e — 25) + (6 — %) (2 — gx) (x5 — i)
+ (2 — zxi) (v — yixi) (1= xz5) )Yijzij’
= (1= 0= 3) (5= 2) + (=3 (1= 39) G 5)
+ (6 —x) i — ) (1 — ) )x[jyijzl‘j,
and SZ for k =2, resp. k = 3, are obtained from Sij by interchanging the symbols x and y,

respectively x and z. This has been checked by direct computation, using a Groebner basis in
Maple [25].

4.3. N-soliton

Let P(N) denote the powerset of the string 12... N, e.g. we write
P(3) ={e,1,2,3,12,23,13,123},

where ¢ is the empty string, and let P»(S) be the subset of the powerset of a string S containing
all 2-letter substrings, e.g.

P>(123) = {12,23,13}.
Conjecture 1. Equation (1) admits the following N-soliton solution:

Tem= 3 ( I1 Rv>cwx’;ylwz’;, with 0; =0, i € {1,2,...,N}.
weP(N) veEPy(w)
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Note that in the above formula ¢, = x. = --- = 1 is understood. The formula can be
computationally checked as follows: taking particular values for a;, as, a3 and a4, one can
find rational points p; = (x;,yi,z;) € Q* such that Q; = 0. Using N € N points, one sub-
stitutes the N-soliton solution, which contains N arbitrary constants cy,...,cy, into the
equation for fixed points (k,l,m) € Z>. For example, taking (ay,az, a3, as) = (1,2,3,2) the
following points

pr = (2,4,2/3), P = (6,21, —14), ps = (7,14, -6),
ps = (8,15,-40/9), ps = (14,80, —560), pe = (18,120, —15/2)

satisfy Q; = 0. Taking k = —2,/ = 1,m = 3 one needs to verify that

T—324T—1,13T—1,14T—123 + 2712,1,3712,2,4711,1,4711,2,3 — T-214T-223T-22470,13
— 2T 21 4T—223T—1,13T—124 + 3 T2 14T—224T—114T—122 — 2T—214T—233T—1,13T—1,14

— 37T 15T 003T—1.13T—123 + 2T 223T_224T—104T—123 (12)

vanishes. Using the above 6 points p; the value of the 6-soliton solution at (k,l,m) = (—3,2,4)
is

32¢;  235298¢, 5184c¢;  125000c¢s 9973 408256.10% ¢icacsca
T 3 7 T 79 2850829229 061
17537436614 656.10" cicacs 286643773 308 928.10'3 ¢pcacs
304 882 184 692 881 B 5379614362287
31023435087 872.10" c3cacs 8355684 882055 168.107 cjcacs  244.100 ¢icy
B 1827 893357279451 B 3557331 - 2735937
419082155327488.10'% cicses 25192657 019901 837 312.107 chc3cs
79592 065203 B 414577637413
15625 cg 430515.10° ¢3¢~ 1220703 125 c4c6
313747 34992
6272.10% ¢scg 5.10°cic 1838265625 cac
B 339 1539 422
4563788408 614 224 681 500 672.10'7 cicacscacs 1075 648.10° cacses
3335745 327609453768 757 318 923 253204479
9415684 768.10° cicocs  T4176.108 ciescs 359696 691 200 ¢ coc3
1595051271 10556764911 13161
323830284 288.10° ¢c5 68956750243 187 158 016.10% ¢ cacscacscs
B 367 13520106 051 588 549 460 696 520 569 492 377
203190312 540790063 104.10"7 ¢icacsesce 270945 647.102 cpcacsc
22721904043 520272 815 643 3405295891327 671
2558749998 443 072.10%% ¢ cacscscs 512857367787 136.10% cic3cacscs
87 172894 850 121 902 722 923 17456412275319361592913 150717
5065859375.10% ¢cjcscace 8.100¢3cs 1197498 441289 024.10%2 cyc3cacsce
©1419494280227793 22869 3344920733 568 156 174 088 032717
486525134375.10'0 ¢icacscacs  433061888.107 cies 5190429 687 500 c3cacs

3851564 365825970013 29079 a 3075034 347

T 324 =1+

+229376.10°¢5 +
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3785197879296.107 c3¢5  152276992.103 c4e5 23683 072.10' ¢ csc

1802479 226286703 187297 839
1353499793 462 147 416 064.10' ¢1cacacs 24 118045.10° ¢1cacs
7248 099 679 897 056 849 B 324729
34110994 995.105 cocsce 297851562500 cicace 287 875.10'8 cacsce
5926981771 B 155948 409 2036 580 327
308710976 cic; 143614501953 125 cacace  8504.108 ¢ic3¢6
+ 243 358705908 38590881
4427367 168.10% cacscs 972800¢1c5 224599 144.108 ¢ cacace
- 8750381 B 861 B 5926981771
1916804736 cac3  117649.100cocs 929743 819565759987 712.10'° ¢y cac3cs
B 4387 425007 148 833371831267
5239 147585536.10" c3c5¢6 16971308 117950201 856.10'7 ¢y c3cacs
1304 163 853 181 302920719026 139857929 671
8342573976 349 835264.10' cyczcacs 183176 122990592.10'7 ¢y csescs
825274 865 866 379 324 583 B 172763 889794 740 251
66307976.10% cicacsce 4984 888 671 875.10% chcscacs
52134 853582482651 342087 606 876 807
52304285961 241509 888.10' cacsesce 8906247 704.10%2 c3cacs¢6
B 63292211820390732077 105336010499 942 922 777
574687791015 625.10% cicacace 228475758493 696.10™ cicacsce
B 6394 560 545 439 B 1611531417627 ’

and we obtain similar expressions for the values of the 6-soliton solution at the other 13 lattice
points of the stencil, see figure 1. Substituting these expressions into (12) gives zero. This has
been checked also for other values of a;, other points p; and other values for k, I, m.

We have also performed another computational verification, this time of the 3-soliton solu-
tion. Starting with expressions for py, ps, p3 of the form p; = bix + ¢; where b;,c; € Q are
randomly chosen and x is a parameter, we have solved the linear system Q1, = Q13 = Q3 =0
for a1, ay, as, as, and verified the solution for a range of values for k, [, m.

In figure 2 we have plotted two cross sections of a three soliton solution.

5. Laurent property

Consider an ordinary difference equation of order d,

P(Tnfd’ o ’Tnfl)
Q(Tn—dv cee ’Tn—l)’

where P is a polynomial and Q is a monomial. Let R be the ring of coefficients. From a set of
d initial values U = {74 }o<k<q> One finds 7, as rational functions of the initial values, given by

Th =

(13)

_ pa(70,- -+ Ta1)

- , 14
Gn(T05 - - Ta—1) (14)

n
with greatest common divisor ged( py,g,) = 1. By definition, if g, € R[U] is a monomial
for all n > 0, then (13) has the Laurent property. The first examples of recurrences with the
Laurent property were discovered by Michael Somos in the 1980s [12]. Since then many
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more have been found [2, 6, 8, 15, 24], and the Laurent property is a central feature of cluster
algebras [9, 10]. In [27, definition 2.11] the author defines the Laurent property for discrete
bilinear equations. The idea is that a lattice equation has the Laurent property if all good ini-
tial value problems have the Laurent property. The author points out that not all well-posed,
see [34], initial value problems are good. Certainly, the initial value problems obtained from
(doubly periodic) reductions given below, see (15), are good.

In [14] a more specific Laurent property was introduced, where the terms are Laurent poly-
nomials in some of the variables but polynomial in others. The form of (13) guarantees that all
components ¢, are monomials for 0 < n < d. Suppose these monomials depend on a subset
of the initial values V C U. The following conditions guarantee that g, is a monomial € R[V]
forall n > 0, see [14, theorem 2].

Theorem 2. Suppose that g, is a monomial in R[V]. If p, is coprime to payy for all
k=1,....d and q, € R[V]is a monomial for d + 1 < m < 2d, then (13) has the following
Laurent property: all iterates are Laurent polynomials in the variables from V and they are
polynomial in the remaining variables from W = U \ V.

Introducing the variable n = z1k + zo/ + z3m, where we take zi, 22, 23 to be non-negative
integers such that ged(z;,22,23) = 1, and performing a reduction 74 ,, — 7, one obtains the
ordinary difference equation

0=a (Tn-i-m Tntzi42 Tntzi+23 Tn—z1+z22+z3 — Tn+221Tn+zzTn+Z3Tn+Zz+Z3)
+ 2 (Tutzy Tty s Tnkzabas Tnba—zates — Trbar Tnk 220 Tnokas Tnbz423)
+a3 (Tn+stn+11+zs Tntz+z3Tntzi+z—z3 — Tntz Tntz Tn4223 Tn+Z1+Zz)

+ay (TnTn+11+zzTn+Z1+Z3 Tntz423 = Ttz Tntzo Tntas Tn+m+zz+zz) > (15)

which has order

d = max(2z1,222,220,21 + 220+ z3) —min(0,z1 + 22 — 23,21 + 23 — 22,22 + 23 — 21)-

Conjecture 3. The iterates 7, are Laurent polynomials in the initial values 7;, with
i=p,p+1,....,d —p—1where

p=min(z1,22,22) —min(0,z; + 220 — 23,21 + 23 — 22,22 + 23 — 21)>

and polynomial in the others, 7o, 71, ..., T—1, Ta—p, - - - » Ta—2, Ta—1.

This conjecture has been proven, using Theorem 2 and [25], for z; =z = 1,1 < z3 < 20,
for z; = 1,z = 2,z3 = 3, and some but not all of the conditions of Theorem 2 have been veri-
fied for all co-prime z; < 75 < z3 < 10.

6. Degree growth

Given an ordinary difference equation of the form (13) one can define an integer sequence
{dP}22, where d} denotes the degree of the polynomial p, defined by (14). According to the
degree growth conjecture [7, 17] we have

e Growth is linear in n == equation is linearizable.
e Growth is polynomial in n == equation is integrable.

9
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e Growth is exponential in n = equation is non-integrable.

Conjecture 4. For all positive integers z1, z2, z3 such that gcd(z;,22,23) = 1 equation (15)
has quadratic growth.

We have verified the following. Choosing (randomly) rational values for the coefficients
a;, starting with rational initial values 7o, . .., T4—2 and letting 74— = a + bx, where a, b are
rational values and x a parameter, we have calculated up to a 150 iterates until the degree
(in x) exceeded 250. Taking the second difference of the degree sequence yielded a periodic
sequence in almost all cases with 1 < z; <4,1 < 2o < z3 < 7. In two cases more iterations
were required. Keeping the maximal degree fixed at 500, for z = (1, 1,7) we calculated 370
iterations and found that the period of the second difference is 259, for z = (3,7,7) we calcu-
lated 354 iterations and found that the period of the second difference is 240. Curiously, the
leading order terms are all of the form (MZ!_ )~'n* with

[2 4 15 40 85 156 259] (4 7 12 25 60 94 172]
4 7 12 25 60 94 172 7 x 15 x 40 x 154
15 12 16 24 40 76 150 12 15 28 25 60 55 132
M'= |40 25 24 29 40 60 108|, M*=|25 x 25 x 40 x 76
85 60 40 40 46 60 82 60 40 60 40 84 60 140
156 94 76 60 60 67 84 94 x 55 x 60 x 82
259 172 150 108 82 84 92 | 172 154 132 76 140 82 172]
(15 12 16 24 40 76 150] (40 25 24 29 40 60 108]
12 15 28 25 60 55 132 25 x 25 x 40 x 76
16 28 x 40 40 «x 77 24 25 40 69 60 55 168
MP= |24 25 40 69 60 55 168], M*=129 x 6 x 8 x 77/,
40 60 40 60 114 76 76 40 40 60 85 136 94 132
76 55 x 55 76 x 108 60 x 55 x 94 x 150
1150 132 77 168 76 108 240] 1108 76 168 77 132 150 296

where x indicates that ged(zy,22,723) > 1.

7. Reductions to 2D integrable lattice equations

We give some reductions to integrable 2D lattice equations known in the literature.
e Setting =", u=e, v=¢q, z=w=20 and a; + a4 =0 the Q3D—system reduces to
Rutishauser’s QD-algorithm
étg=e+q  eq=eq.
e Taking z=a,=0 and a; =a3 = —a4 =1 and introducing variables i=k — I,

J=3l4+m, ey, = Aij , equation (1) reduces to the higher analogue of the discrete-time
Toda (HADT) equation [32, equation (3.18)],

10
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Figure 2. Two cross sections, m = 0 resp. m = 50, of the function u defined in (8)

where 7 is the three soliton solution of dual AKP with (a1, a2, a3,a4) = (1,2,3,2) and

=G5 8 n=G5mpr=0243)adc=c=cg=1

J (A AL AT A2 A AT AT AL A
AV (Ai—ZAi—HAi = ATATTATT + A AT )
_ AJT4 j JH1 AJ+3 JF2 AJH+L AJ+] JAJFL AJ+3
_Ai—l <_Ai+2Ai Ai—1+Ai Ai Ai—i—l_AiAi-i-lAi )3

and the Q’D-system reduces to the QQD-system [32, equation (1.4)],
Uizt + Vitlj+1 + Wir1j = Wit2j + Vig1j T Wit1j+1
Ui3+jVij+1 = Uit1,Vit1
Ui34iWij+1 = Uip 1 j+-1Wit1,j41-
e By introducing some special bi-orthogonal polynomials, in [3] the so-called discrete
hungry quotient-difference (dhQD) algorithm and a system related to the QD-type
discrete hungry Lotka—Volterra (QD-type dhLV) system have been derived, as well as

hungry forms of the HADT-equation (hHADT) and the QQD scheme (hQQD). These
systems are all reductions of the Q°D system, or of the dual to the AKP equation (1).

Setting z =w =0, u = g, v = e and introducing i = k, j = pl + m we get QD-type dhLV
[3, equations (6) and (7)],

€ij+qij=e€ij+1+ qgi—1j+p
Cijt+19ij+p = €it149ij-
Setting z=w =0, u =g, v= e and introducing i =k, j = [ + pm we get dhQD [32,
equations (9) and (10)],
€ij+qij=€ijrp+ qi—1j+1

Cij+pqij+1 = €itr1,4ij-

1
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With z = 0 the reduction i = k — I, j = (p + 2)I + pm yield hQQD [3, equation (23)],

Wijp+2 T Vitljtp T Wit1j = Uit2j + Vig1j + Wit1j+p
Uijtp+2Vij+p = Uit1jVit1,
Uij+aWij = Uit1jWit1,-
Performing the same reduction on equation (1), with a, = 0, gives the hHADT equa-
tion [3, equation (18)],

JH2p+2 A j+p AJ+PF2 J+2p AJHP+2 AJ+P+2 J+2p+2 A J+p AJFP2 J
(Ai72 Ai+1Ai _Ai Aifl Ai +Ai Ai Aifl )Ai+1

_ J Jj+p AJ+P+2 J+2 AJ+P AP JAJFP AJHP+2 J+2p+2
*(Ai+2Ai AT = ATTATTA  AA A )Ai—l :

8. Conclusion

In this paper we have generalized the concept of duality introduced in [29] for ordinary differ-
ence equations (OAEs) to the realm of lattice equations (PAEs). The dAKP equation (1) and
the AKP equation (2) are dual to each other. Generally speaking, dual equations to integrable
equations do not need to be integrable themselves; the only thing that is guaranteed is the exis-
tence of integrals (for OAEs), or conservation laws (for PAEs). However, our equation (2)
unifies a number of known (hierarchies of) integrable 2D lattice equations, which arise as
reductions. Together with the support we have provided for our conjectures, that equation (1)
admits an N-soliton solution, and its reductions have the Laurent property and zero algebraic
entropy, we believe it is a new integrable 3D lattice equation.
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