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Abstract
We describe a method to obtain Lax pairs for periodic reductions of a rather
general class of integrable non-autonomous lattice equations. The method is
applied to obtain reductions of the non-autonomous discrete Korteweg–de
Vries equation and non-autonomous discrete Schwarzian Korteweg–de Vries
equation, which yield a discrete analogue of the fourth Painlevé equation, a
q-analogue of the sixth Painlevé equation and the q-Painlevé equation with a
symmetry group of affine Weyl type E (1)

6 .
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Mathematics Subject Classification: 39A14, 37K15, 35Q51
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Introduction

Integrable partial difference equations are discrete time and discrete space analogues
of integrable partial differential equations, which often admit classical integrable partial
differential equations as continuum limits [1, 15, 24, 33]. Integrable ordinary difference
equations are discrete analogues of integrable ordinary differential equations. Integrable
ordinary difference equations admit integrable ordinary differential equations as continuum
limits [7]. Integrable ordinary and partial difference equations possess discrete analogues
of many of the properties associated to the integrability of their continuous counterparts
[7, 30, 39, 42].

We consider partial difference equations whose evolution on a lattice of points, wl,m, is
determined by the equation

Q(wl,m, wl+1,m, wl,m+1, wl+1,m+1;α, β) = 0, (0.1)

where α and β are parameters associated with the horizontal and vertical edges respectively.
The equation is imposed on each square on the space of independent variables, (l, m) ∈ Z
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From a suitable staircase of initial conditions [31], one may determine wl,m for all (l, m) ∈ Z
2.

Imposing the periodic constraint, that

wl+s1,m+s2 = wl,m, (0.2)

defines a periodic reduction [31, 22, 43]. We will assume for simplicity that s1 and s2 are both
positive. In an analogous way to how similarity reductions of partial differential equations
yield ordinary differential equations [6], periodic reductions given by (0.2) yield ordinary
difference equations [10, 29, 31, 43].

Given a partial differential equation with some similarity reduction, there is a procedure
that allows one to obtain a Lax representation of the resulting ordinary differential equation
from the Lax representation of the partial differential equation. This holds for autonomous
and non-autonomous reductions [9]. The discrete analogue of this procedure is fairly
straightforward for autonomous reductions [39, 42, 32], however, there has been no direct
method for determining the Lax representation for non-autonomous reductions [13, 14].

Given a reduction, another task is to determine whether the reduction is a known system
of difference equations. For autonomous reductions, one may be able to find a certain
parameterization which identifies the system as a known QRT mapping [34, 35], which
may be classified in terms of elliptic surfaces [8]. For nonautonomous reductions, one may be
able find a parameterization of the equation that identifies the system as one of the Painlevé
equations, which are classified by the group of symmetries of their surface of initial conditions
[40].

The aim of this note is to demonstrate a method, which we outline in section 1, by
which we may directly obtain a Lax representation of both autonomous and non-autonomous
reductions from a Lax representation of partial difference equations in an algorithmic manner.
The method gives Lax representations in a manner that is general and concise enough to
directly provide the Lax integrability of entire hierarchies of reductions. As an application of
this method, we present a reduction of the non-autonomous discrete Schwarzian Korteweg–de
Vries equation (which is a non-autonomous version of Qδ=0

1 in the classification of Adler et al
[2, 3]) to the q-Painlevé equation with E (1)

6 symmetry, which is associated with a surface with
A(1)

2 symmetry (or q-P(A(1)

2 )):

(y′z − 1)(y′z′ − 1) = (a1y′ − 1)(a2y′ − 1)(a3y′ − 1)(a4y′ − 1)

(b1q4ty′ − 1)(b2q4ty′ − 1)
, (0.3a)

(yz − 1)(y′z − 1) = θ1(z − a1)(z − a2)(z − a3)(z − a4)

(b1b2tz + θ1)(a1a2a3a4 + θ1q4tz)
, (0.3b)

where t ′ = q4t, the ai, bi and θ1 are fixed parameters and q is some complex number whose
modulus is not 1. This is the q-Painlevé equation whose group of Bäcklund transformations is
an affine Weyl group of type E (1)

6 [40].
Our method stands in contrast to two methods of performing reductions of partial

difference equations in the literature, namely the method of Rasin and Hydon [38] which
is based on the existence of certain Lie point symmetries, and the method of Grammaticos and
Ramani, who perform autonomous reductions, then deautonomize the equation via singularity
confinement [36]. While the first method seems to rely on a similar approach to ours, neither
method gives rise to the associated linear problem for the reduced equation. The approach
most similar to our method has been discussed by Hay et al [14], in which the form of the
monodromy matrix for autonomous reductions, and its properties, are used as an ansatz for an
associated linear problem of the non-autonomous reductions of the lattice modified Korteweg–
de Vries equation. A further extension to this work successfully determined the associated
linear problem for a hierarchy of systems [13].
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To demonstrate our method we first provide some simple examples in section 2. We present
an autonomous reduction of the discrete potential Korteweg–de Vries equation (dKdV) [24],
then present the non-autonomous generalization of this example. In section 3 we first present
the q-Painlevé equation associated with the A(1)

3 surface (otherwise known as q-PVI [17]) as
a reduction of (3.1) before going to the higher case where we present the above-mentioned
reduction of (3.1) to (0.3), which we believe to be the first known reduction to this equation.

1. The method

We start by imposing (0.2) as a constraint on our initial conditions, then the periodicity gives us
that there are s1+s2 independent initial conditions to define. We solve this periodicity constraint
by a specific labelling following [31, 43]; let s1 = ag and s2 = bg where g = gcd(s1, s2), then
the direction of the generating shift, (c, d), associated with the increment n → n+1 is chosen
so that

det

(
a b
c d

)
= 1.

We specify an n ∈ Z and a p ∈ Zg by letting

n = det

(
a b
l m

)
, p ≡ det

(
l m
c d

)
mod g,

where the labelling of variables is specified by

wl,m �→ wp
n . (1.1)

In the case in which g = 1 the superscript will be omitted. The reduction in the autonomous
case is a system of g equations given by

Q
(
wp

n , w
p+d
n−b , w

p−c
n+a, w

p−c+d
n+a−b ;α, β

) = 0, p = 0, 1, . . . , g − 1, (1.2)

where α and β are constants. In the nonautonomous setting, we have

Q
(
wp

n , w
p+d
n−b , w

p−c
n+a, w

p−c+d
n+a−b ;αl, βm

) = 0, p = 0, 1, . . . , g − 1, (1.3)

where αl and βm will be, a posteriori, constrained functions of l and m. We will now outline how
to obtain Lax representations for the autonomous and nonautonomous reductions respectively.

1.1. Autonomous reductions

It is known that multilinear partial difference equations that are consistent around a cube are,
in a sense, their own Lax pair [21, 4, 5]. For a generic multilinear equation, (0.1), that is
consistent around a cube, a Lax pair may be written as

φl+1,m = Ll,mφl,m, (1.4a)

φl,m+1 = Ml,mφl,m, (1.4b)

where

Ll,m = λl,m

⎛
⎜⎝−∂Q(x, u, v, 0;α, γ )

∂v
−Q(x, u, 0, 0;α, γ )

∂2Q(x, u, v, y;α, γ )

∂v∂y

∂Q(x, u, 0, y;α, γ )

∂y

⎞
⎟⎠

∣∣∣∣∣∣∣ x = wl,m

u = wl+1,m

, (1.5a)
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Ml,m = μl,m

⎛
⎜⎝−∂Q(x, u, v, 0;β, γ )

∂u
−Q(x, 0, v, 0;β, γ )

∂2Q(x, u, v, y;β, γ )

∂u∂y

∂Q(x, 0, v, y;β, γ )

∂y

⎞
⎟⎠

∣∣∣∣∣∣∣ x = wl,m

v = wl,m+1
,

(1.5b)

where γ is a spectral parameter. The compatibility condition is

Ml+1,mLl,m = Ll,m+1Ml,m, (1.6)

forcing the prefactors, λl,m and μl,m, to be chosen in a manner that satisfies the equation
det Ll,m+1

det Ll,m
= det Ml+1,m

det Ml,m
.

When the prefactors are appropriately chosen, imposing (1.6) is equivalent to (0.1). In practice,
it is often computationally convenient to deal with some transformation of this Lax pair.

To obtain a Lax representation for the system of ordinary difference equations, (1.2), we
define two operators, An and Bn, associated with the shifts (l, m) → (l + s1, m + s2) and the
generating shift, (l, m) → (l + c, m + d), respectively. These operators have the effect

φn = Anφn, (1.7a)

φn+1 = Bnφn, (1.7b)

where one representation1, that is simple to write, is as follows:

An ← �

s2−1∏
j=0

Ml+s1,m+ j

s1−1∏
i=0

Ll+i,m,

Bn ← �

d−1∏
j=0

Ml+c,m+ j

c−1∏
i=0

Ll+i,m,

where the dependence on n and p is specified by

Ll,m(wl,m, wl+1,m; γ ) �→ Lp
n (γ ) = Lp

n

(
wp

n , w
p+d
n−b ; γ

)
,

Ml,m(wl,m, wl+1,m; γ ) �→ Mp
n (γ ) = Mp

n

(
wp

n , w
p−c
n+a; γ

)
.

The compatibility condition,

An+1Bn − BnAn = 0, (1.8)

is equivalent to imposing (1.2). We call An the monodromy matrix for the following reason:
by identifying all points in Z

2 that are multiples of (s1, s2) apart, we may consider the space in
which the new system exists as being cylindrical. We wrap around in a manner that connects
the points that are identified by the periodic reduction. The monodromy matrix, rather than
presenting a trivial action as (1.7a) suggests, expresses the action of wrapping around the
cylinder, as in figure 1.

The monodromy matrix can be expressed as a function of the s1 + s2 initial conditions,
(w0

n, w
0
n+1, . . . , w

g−1
a+b−1), by following the standard staircase. Geometrically, the standard

staircase is the path between two lines which squeeze a set of squares with the same values,
i.e. a set of squares shifted by (s1, s2) [43].

One advantage of the generating shift is that every other shift in n may be expressed as
some power of the generating shift by construction [44]. Furthermore, this generating shift
allows us to constrain the nonlinear component, where we need to use (1.2), to just g places.
We have illustrated the standard staircase and generating shift in figure 2.

1 In practice, the product follows the path of a standard staircase [44].
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w0
n

w1
n

w2
n

Figure 1. A pictorial representation of the way in which the monodromy matrix wraps around to
similar points for a (9,6)-reduction. The points w

p
0 given for reference to figure 2.

w0
n−1

w0
n

w1
n−1

w1
n

w2
n−1

w2
n

w0
n−1

w0
n

w0
n+1

w1
n+1

w2
n+1

Figure 2. The full labelling of variables in the (9, 6)-reduction of figure 1. In this example, the
shift (p, n) → (p+ 1, n) corresponds to the shift (a, b) = (3, 2) and the shift (p, n) → (p, n + 1)

corresponds to the shift (c, d) = (1, 1).

In the example defined by figure 2, if we allow our monodromy matrix to follow the
standard staircase, the monodromy matrix is

An ← � Ll+8,m+6Ml+8,m+5Ll+7,m+5Ll+6,m+5Ml+6,m+4Ll+5,m+4Ml+5,m+3

×Ll+4,m+3Ll+3,m+3Ml+3,m+2Ll+2,m+2Ml+2,m+1Ll+1,m+1Ll,m+1Ml,m,
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and the other half of the Lax pair is

Bn ← � Ml+1,mLl,m.

The resulting compatibility condition, (1.8), gives the evolution equations for the wi
n+1,

i = 0, 1, 2:

Q
(
w1

n−2, w
2
n−4, w

0
n+1, w

1
n−1;α, β

) = 0,

Q
(
w2

n−2, w
0
n−4, w

1
n+1, w

2
n−1;α, β

) = 0,

Q
(
w0

n−2, w
1
n−4, w

2
n+1, w

0
n−1;α, β

) = 0.

In general, this procedure gives us an s1 + s2 dimensional mapping,

φ : C
s1+s2 → C

s1+s2 ,

which, applied to (w0
n, w

0
n+1, . . . , w

g−1
n+a+b−1), gives (w0

n+1, w
0
n+2, . . . , w

g−1
n+a+b). This new set

of values forms a new standard staircase. As a matter of fact, this new standard staircase is the
old one translated by the generating shift.

1.2. Nonautonomous reductions

To deautonomize this theory, we consider the α and β to be functions of l and m. As Ll,m and
Ml,m are shifted in only m and l respectively in the compatibility condition, (1.6), replacing α

and β with αl and βm, which are arbitrary functions of l and m respectively, preserves the Lax
integrability. Hence, our basic non-autonomous lattice equations may be considered to be of
the form

Q(wl,m, wl+1,m, wl,m+1, wl+1,m+1;αl, βm) = 0, (1.9)

where the Lax representation is specified by (1.4) where

Ll,m = λl,m

⎛
⎜⎝−∂Q(x, u, v, 0;αl, γ )

∂v
−Q(x, u, 0, 0;αl, γ )

∂2Q(x, u, v, y;αl, γ )

∂v∂y

∂Q(x, u, 0, y;αl, γ )

∂y

⎞
⎟⎠

∣∣∣∣∣∣∣ x = wl,m

u = wl+1,m
,

(1.10a)

Ml,m = μl,m

⎛
⎜⎝−∂Q(x, u, v, 0;βm, γ )

∂u
−Q(x, 0, v, 0;βm, γ )

∂2Q(x, u, v, y;βm, γ )

∂u∂y

∂Q(x, 0, v, y;βm, γ )

∂y

⎞
⎟⎠

∣∣∣∣∣∣∣ x = wl,m

v = wl,m+1
,

(1.10b)

where γ is a spectral parameter and the prefactors, λl,m and μl,m, are chosen to satisfy the
compatibility conditions, in an analogous manner to the autonomous case.

If one assumes that the α and β are functions of both l and m, i.e. α = αl,m and β = βl,m,
then demanding that αl,m is independent of m and βl,m is independent of l has also been shown
to be a necessary condition for singularity confinement for equations in the ABS list [11]. The
above constitutes a Lax pair interpretation of this constraint.
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Table 1. A list of various lattice equations (taken from [2, 3]) in a suitable form for non-autonomous
reductions.

ABS Q(x, u, v, y; αl, βm)

H1a (wl,m − wl+1,m+1)(wl+1,m − wl,m+1) + βm − αl

H1m

(
wl,m − βm+1

βm
wl+1,m+1

)(
wl+1,m − βm+1

βm
wl,m+1

)
+ 1 − α2

l

β2
m

H2m

(
wl,m − βm+1

βm
wl+1,m+1

)(
wl+1,m − βm+1

βm
wl,m+1

)
− α2

l

β2
m

+
(

1 − αl

βm

)(
wl,m + wl+1,m + βm+1

βm
(wl,m+1 + wl+1,m+1)

)
+ 1

H3δ=0
m

αl

βm
(wl,mwl+1,m + wl,m+1wl+1,m+1) − (wl,mwl,m+1 + wl+1,mwl+1,m+1)

H3δ �=0
m

α2
l

β2
m

(
wl,mwl+1,m + β2

m+1

β2
m

wl,m+1wl+1,m+1

)

−βm+1

βm
(wl,mwl,m+1 + wl+1,mwl+1,m+1) + δ

(
α4

l

β4
m

− 1

)

Q1δ=0
m

αl

βm
(wl,m − wl,m+1)(wl+1,m − wl+1,m+1)

−(wl,m − wl+1,m)(wl,m+1 − wl+1,m+1)

Q1δ �=0
m

α2
l

β2
m

(
wl,m − βm+1

βm
wl,m+1

) (
wl+1,m − βm+1

βm
wl+1,m+1

)

−βm+1

βm
(wl,m − wl+1,m)(wl,m+1 − wl+1,m+1) + δα2

l

β2
m

(
α2

l

β2
m

− 1

)

Q2m
αl

βm

(
wl+1,m − β2

m+1

β2
m

wl+1,m+1

) (
wl,m − β2

m+1

β2
m

wl,m+1

)

−β2
m+1

β2
m

(wl,m − wl+1,m)(wl,m+1 − wl+1,m+1)

− αl

βm

(
αl

βm
− 1

) (
wl,m + wl+1,m + β2

m+1

β2
m

wl,m+1 + β2
m+1

β2
m

wl+1,m+1

)

− αl

βm

(
αl

βm
− 1

) (
α2

l

β2
m

− αl

βm
+ 1

)

Let us now specialize our choice of systems to those that admit representations of the
additive form

Q(wl,m, wl+1,m, wl,m+1, wl+1,m+1;αl − βm) = 0, (1.11)

or the multiplicative form

Q

(
wl,m, wl+1,m, wl,m+1, wl+1,m+1; αl

βm

)
= 0, (1.12)

with a possible additional dependence on αl+1 − αl and βm+1 − βm in the additive case, or
αl+1/αl and βm+1/βm in the multiplicative case. A list of transformed equations appears in
table 1, where subscripts m and a denote those functions, (0.1), dependent on a multiplicative
or additive combination of αl and βm respectively. This list is restricted to equations that we
could find transformations to forms admitting additive or multiplicative reductions. This does
not include the equations Q3 or Q4.
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With each lattice equation written in terms of αl −βm or αl/βm, the necessary requirement
for (0.2) to be consistent is the requirement that

αl − βm = αl+s1 − βm+s2 ,

in the additive case, and
αl

βm
= αl+s1

βm+s2

,

in the multiplicative case. By a separation of variables argument, we define h and q by letting

αl+s1 − αl = βm+s2 − βm := habg, (1.13a)

αl+s1

αl
= βm+s2

βm
:= qabg, (1.13b)

in the additive and multiplicative cases respectively. Although it is not a technical requirement,
we will assume that h is not 0 and that q is not a root of unity. We solve the additive and
multiplicative case by letting

αl = hlb + al, βm = hma + bm,

αl = alq
bl, βm = bmqam,

where al and bm are sequences that are periodic of order s1 and s2 respectively (not related to
the constants, a and b). This choice of αl and βm ensures the consistency of the reduction with
as many degrees of freedom as the sum of the orders of the difference equations satisfied by
αl and βm, (1.13a) and (1.13b), i.e. s1 + s2.

To provide a non-autonomous Lax pair for the non-autonomous reduction, we need to
choose a spectral variable, x, in a manner that couples a linearly independent direction with
the spectral variable, γ . While any linearly independent direction may be considered a valid
choice, we present a simple choice. Our choice of spectral parameter is specified by introducing
the variable k = l and x = hbk − γ in the additive case and x = qbk/γ in the multiplicative
case. In the additive case

Ll,m = Ll,m(αl − γ ) �→ Ln(al + x),

Ml,m = Ml,m((βm − αl ) + (αl − γ )) �→ Mn(x + hn + bm),

and in the multiplicative case

Ll,m = Ll,m(αl/γ ) = Ll,m(alx),

Ml,m = Ml,m((βm/αl )(αl/γ )) = Ml,m(bmxqn).

This gives us a non-standard Lax pair, which, in the additive case reads

Yn(x + abgh) = An(x)Yn(x),

Yn+1(x + cbh) = Bn(x)Yn(x),

and in the multiplicative case reads

Yn(q
abgx) = An(x)Yn(x),

Yn+1(q
cbx) = Bn(x)Yn(x),

where

An(x) ← �

s2−1∏
j=0

Ml+s1,m+ j

s1−1∏
i=0

Ll+i,m, (1.14a)

Bn(x) ← �

d−1∏
j=0

Ml+c,m+ j

c−1∏
i=0

Ll+i,m. (1.14b)

8
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w1 w0

w2 w1 w0

w2 w1w3w4

w4 w3

w3

Figure 3. The labelling of initial conditions with (2,1) periodicity and an evolution in the (1, 1)-
direction.

The compatibility conditions,

An+1(x + cbh)Bn(x) = Bn(x + abgh)An(x),

An+1(q
cbx)Bn(x) = Bn(q

abgx)An(x),

in the additive and multiplicative cases respectively, gives us (1.3). This choice of spectral
variable has the advantage that the spectral matrix and deformation matrix, An(x) and Bn(x),
have a simple dependence on the independent variable, n.

2. Some simple examples

In this section, we present some examples of the theory above. An example that has appeared
recently is the example of q-PVI as a reduction of the discrete modified Korteweg–de Vries
equation [28], which also gave rise, via ultradiscretization, to the first known Lax representation
of u-PVI.

2.1. Autonomous example

We consider some additive examples, in particular, we will consider reductions of the dKdV
equation,

(wl,m − wl+1,m+1)(wl+1,m − wl,m+1) = α − β, (2.1)

labelled as H1a in table 1, which possesses a Lax representation of the form (1.4) where Ll,m

and Ml,m are specified by

Ll,m =
(

wl,m α − γ − wl,mwl+1,m

1 −wl+1,m

)
, (2.2a)

Ml,m =
(

wl,m β − γ − wl,mwl,m+1

1 −wl,m+1

)
. (2.2b)

Let us consider a reduction, (0.2), where s1 = 2 and s2 = 1, with a labelling indicated in
figure 3. This gives us g = 1, a = 2 and b = 1, hence n = 2m − l, and the direction that
characterizes the generating shift, (c, d), is chosen to be (1, 1).

The product formula for the monodromy matrix, An, and the matrix that is related to the
generating shift, Bn, are

An = Ml+2,mLl+1,mLl,m

=
(

wn β − γ − wnwn+2

1 −wn+2

)(
wn+1 α − γ − wnwn+1

1 −wn

) (
wn+2 α − γ − wn+1wn+2

1 −wn+1

)

9
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Bn = Ml+1,mLl,m

=
(

wn+1 β − γ − wn+1wn+3

1 −wn+3

) (
wn+2 α − γ − wn+1wn+2

1 −wn+1

)
.

The compatibility condition, given by (1.8), reads

Ml+3,m+1Ll+2,m+1Ll+1,m+1Ml+1,mLl,m = Ml+3,m+1Ll+2,m+1Ml+2,mLl+1,mLl,m.

This simplifies to

Ll+1,m+1Ml+1,m = Ml+2,mLl+1,m,(
wn+3 α − γ − wn+2wn+3

1 −wn+2

) (
wn+1 β − γ − wn+1wn+3

1 −wn+3

)

=
(

wn β − γ − wnwn+2

1 −wn+2

)(
wn+1 α − γ − wnwn+1

1 −wn

)
,

which defines the evolution of this autonomous reduction to be given by the equation

(wn − wn+3)(wn+1 − wn+2) = α − β. (2.3)

If we let yn = wn − wn+1, this equation is equivalent to

yn−1 + yn + yn+1 = α − β

yn
, (2.4)

which is a well known example of a second order difference equation of QRT type.

2.2. Nonautonomous example

The autonomous equation and Lax representation generalize naturally to the non-autonomous
case by replacing α and β by αl and βm respectively. Furthermore, we may satisfy the
periodicity constraint,

αl+2 − αl = βm+1 − βm := 2h.

We solve this constraint by letting

αl = hl + al, βm = 2hm + bm,

where al is periodic of order two and bm is constant, and hence, may be taken to be 0 without
loss of generality. The evolution equation for this system may be represented as an application
of the nonautonomous version of (2.1) translated by the vector (1, 1);

(wn − wn+3)(wn+1 − wn+2) = αl+1 − βm+1, (2.5)

recalling that n = 2m − l. The increment in l and m by 1 directly corresponds to the increment
in n by 1. In the simplest case where al = a1 is constant (rather than periodic), letting

yn = wn − wn+1,

results in the evolution equation

yn + yn+1 + yn+2 = αl+1 − βm+1

yn+1
= −hn − h + a1

yn+1
,

or alternatively

yn−1 + yn + yn+1 = −hn + a1

yn
. (2.6)

To form the Lax pair for this reduction, we choose a spectral variable to be

x = hl − γ .

10
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Since αl and βm appear with γ in Ll,m and Ml,m, this gives us

αl − γ = hl − γ + a1 = a1 + x,

βm − γ = 2hm − γ = hn + x,

which means we may interpret our l and m variables in terms of x and n variables. The
(l, m) → (l + 2, m + 1) shift and (l, m) → (l + 1, m + 1) gives us (n, x) → (n, x + 2h) and
(n, x) → (n + 1, x + h), hence, we have a linear system of the form

Yn(x + 2h) = An(x)Yn(x),

Yn+1(x + h) = Bn(x)Yn(x),

where

An(x) ← � Ml+2,mLl+1,mLl,m

=
(

wn hn + x − wnwn+2

1 −wn+2

)(
wn+1 a2 + x − wnwn+1

1 −wn

) (
wn+2 a1 + x − wn+1wn+2

1 −wn+1

)
,

Bn(x) ← � Ml+1,mLl,m,

=
(

wn+1 hn + x − wn+1wn+3

1 −wn+3

) (
wn+2 a1 + x − wn+1wn+2

1 −wn+1

)
.

The compatibility condition is

An+1(x + h)Bn(x) = Bn(x + 2h)An(x), (2.7)

which gives (2.5). To express everything in terms of yn = wn − wn+1, we use the
matrices obtained from applying a gauge transformation, Ll,m → S−1

l+1,mLl,mSl,m and Ml,m →
S−1

l,m+1Ml,mSl,m, where

Sl,m =
(

1 wl,m

0 1

)
,

in which case An(x) and Bn(x) are given explicitly in terms of products of matrices with entries
expressible in terms of the yn variables:

An(x) =
(−yn − yn+1 (yn + yn+1)

2 + hn + x
1 −yn − yn+1

) (
yn a1 + h + y2

n + x
1 yn

)

×
(

yn+1 a1 + y2
n+1 + x

1 yn+1

)
,

Bn(x) =
(−yn+1 − yn+2 (yn+1 + yn+2)

2 + hn + x
1 −yn+1 − yn+2

)(
yn+1 a1 + y2

n+1 + x
1 yn+1

)
,

for which (2.7) now gives (2.6) as required. We recover Lax matrices for (2.4) by letting

An := lim
h→0

An(x),

Bn := lim
h→0

Bn(x),

whose compatibility, (1.8), gives (2.4) where α−β = a1. This is a way in which the autonomous
and nonautonomous reductions are related.

While the simple case above demonstrates the basic mechanisms in the method, the
periodicity constraint allows us to build in an extra variable. If we allow the full generality of
a periodic value of al , by letting

αl =
{

hl + a1 where l is odd,
hl + a2 where l is even,

11
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we obtain

An(x) ← � Ml+2,mLl+1,mLl,m

An(x) =
(

wn hn + x − wnwn+2

1 −wn+2

)(
wn+1 a2 + x − wnwn+1

1 −wn

) (
wn+2 a1 + x + wn+1wn+2

1 −wn+1

)
,

Bn(x) ← � Ml+1,mLl,m,

Bn(x) =
(

wn+1 hn + x − wn+1wn+3

1 −wn+3

) (
wn+2 a1 + x − wn+1wn+2

1 −wn+1

)
.

The compatibility condition needs to take into account that the shift, (n, x) → (n + 1, x + h),
also shifts the position on the lattice, hence, we need to couple the nonlinear component with
a swapping of the roles of a1 and a2, hence, the compatibility condition, given by (2.7), results
in the evolution

(wn − wn+3)(wn+1 − wn+2) = hn + a2,

a1 → a2 + h, a2 → a1 − h.

If we restrict our attention to even powers of this map, the ai are constant. We proceed to
specify a change of variables, which is motivated by some historical context. In the 1980s,
Novikov and Veselov formalized the derivation of the Hamiltonian structure of hierarchies
of soliton equations from their Lax representations [45, 19]. The Darboux coordinates are
the poles of the Baker–Akhiezer function and the eigenvalues of the spectral matrix at these
poles, which for 2 × 2 matrices coincides with the roots in the spectral variable of the
off-diagonal elements and the diagonal elements evaluated at those roots. The Hamiltonian
description of the isomonodromic deformations of [16] are expressed in these coordinates.
While the link between the symplectic structure for discrete Painlevé equations and the
discrete isomonodromic deformations is not as well developed, it is interesting to note that the
parameterizations of many known discrete Lax pairs are provided in terms of these coordinates
[20, 41, 17]. Perhaps a discrete analogue of the Baker–Akhiezer function holds the key to
linking the geometric theory and the theory of discrete isomonodromic deformations. It may
also provide an algorithmic manner of describing the symplectic structure for hierarchies of
equations.

Our new coordinates are (yn, zn) where yn is the root in the spectral variable of the (2, 1)-
element and zn is a variable which parameterizes the diagonal elements at this root. In the
lattice variables, wn, these are

yn = (wn+2 − wn)(wn+2 − wn+1) − a2,

zn = (wn+2 − wn)(yn + a1)

yn + nh
,

from which we extricate the second-order system

yn + yn+2 = z2
n − (a1 + a2),

znzn+2 = − (yn+2 + a1)(yn+2 + a2)

(yn+2 + (n + 2)h)
.

This system is equivalent to

(yn + yn−2 + a1 + a2)(yn + yn+2 + a1 + a2) = (yn + a1)
2(yn + a2)

2

(yn + nh)2
,

which is a special version of d-PIV [37]. The second power of the generating shift is equivalent
to the shift (l, m) → (l, m + 1), hence, a simplified Lax representation for this system is

Yn(x + 2h) = An(x)Yn(x),

Yn+2(x) = Bn(x)Yn(x),

12
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where Bn(x) ← � Ml,m. We may simplify the spectral matrix, via a gauge transformation, to be

An(x) ≡
⎛
⎝− (yn + a1)(yn + a2)

zn
x2 + δx + ε

x − yn (yn + nh)zn

⎞
⎠ ,

where

δ = yn + a1 + a2 + hn,

ε = (yn + hn)(yn + a1) + (hn + yn + a1)a2,

and a deformation matrix, under the same transformation, becomes

Bn(x) =
(−zn x + hn + z2

n
1 −zn

)
.

Using this method, one is able to provide product formulas for the Lax representations of q-PII,
q-PV of Hay et al [14] and the Lax pair for a version of q-PIII of Joshi et al [18]. Furthermore,
this shows and explains that the Lax pairs for the reductions of [14] factorize in a nice way.
The resulting factorizations provide a simple way to compute the compatibility.

3. Reductions of dSKdV

We consider periodic reductions of the nonautonomous discrete Schwarzian Korteweg–de
Vries equation;

αl

(
1

wl,m+1 − wl+1,m+1
+ 1

wl+1,m − wl,m

)
= βm

(
1

wl+1,m − wl+1,m+1
+ 1

wl,m+1 − wl,m

)
,

(3.1)

which possesses a Lax representation of the form (1.10) where

Ll,m =
(

1 wl,m − wl+1,m
αl

γ (wl,m − wl+1,m)
1

)
, (3.2a)

Ml,m =
⎛
⎝ 1 wl,m − wl,m+1

βm

γ (wl,m − wl,m+1)
1

⎞
⎠ . (3.2b)

3.1. q-P
(
A(1)

3

)
Recently, one of the authors derived a q-analogue of the sixth Painlevé equation (or q-P(A(1)

3 ))
as a reduction of the non-autonomous modified Korteweg–de Vries equation [28]. This work
demonstrated the specified method where the transformation between the lattice variables, the
wi, and the Painlevé variables was relatively simple. We provide a similar but more complicated
relation between the lattice variables for the discrete Schwarzian Korteweg–de Vries equation
and the Painlevé variables of q-P(A(1)

3 ).
We now provide a new reduction of the lattice equation to a version of q-PVI given by

yy′ = b1b2(z − 1)(q2z − 1)

q2(b1b2t − θ1z)(b1b2t − θ2z)
, (3.3a)

zz′ = (b1q2ty′ − 1)(b2q2ty′ − 1)

q2(a1y′ − 1)(a2y′ − 1)
, t ′ = q2t, (3.3b)

13
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Figure 4. The reduction and the labelling of variables.

where θ1θ2 = a1a2b1b2. This extends our previous result in [28] by the addition of an extra
parameter, which represents an integral that is used to reduce the order of the map, given by θ1

(or θ2). Obtaining a q-analogue of the sixth Painlevé equation from a discrete analogue of the
Schwarzian KdV equation has some historic significance as it could be considered a discrete
analogue of the reduction of the Schwarzian KdV equation to the sixth Painlevé equation
[25, 26].

We consider a reduction of (3.1), given by (0.2) where s1 = s2 = 2. The labelling, given
by (1.1), is depicted in figure 4. The constraint, (1.13b), becomes

αl+2

αl
= βm+2

βm
:= q2 (3.4)

which introduces the parameter q.
We satisfy the periodicity constraints of (3.4) by explicitly setting

αl =
{

a1ql if l is even,

a2ql if l is odd,
βm =

{
b1qm if m is even,

b2qm if m is odd.

Naturally, the dependent variable, n, is invariant along the direction of the reduction. The
correspondence between the associated linear problem here and that of Sakai [41] is made
more natural by specifying an independent variable, t, and our spectral variable, x, following
previous sections:

t = qm−l = qn, x = ql

γ
= qk

γ
.

For the sake of clarity, the reduced lattice variables may be regarded as functions of t or n
under the identification

wi
n+k

∼= wi(qkt),

so that the shift n → n + 1 is equivalent to the shift t → qt. We know that the shift,
(l, m) → (l + 2, m + 2), is equivalent to the shift (x, t) → (q2x, t). Since a = 1 and b = 1,
the direction of our generating shift is (l, m) → (l, m + 1), which is equivalent to the shift
(x, t) → (x, qt). This gives us a Lax pair of the form

Y (q2x, t) = A(x, t)Y (x, t), (3.5a)

Y (x, qt) = B(x, t)Y (x, t), (3.5b)

where the matrix A(x, t) is given by the product

A(x, t) ← � Ll+1,m+2Ml+1,m+1Ll,m+1Ml,m, (3.6)

14
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A(x, t) =
⎛
⎝ 1 w1

n+1 − w0
n

a2x

w1
n+1 − w0

n

1

⎞
⎠

⎛
⎜⎝

1 w1
n − w1

n+1

txb2

w1
n − w1

n+1

1

⎞
⎟⎠

×
⎛
⎝ 1 w0

n+1 − w1
n

a1x

w0
n+1 − w1

n

1

⎞
⎠

⎛
⎜⎝

1 w0
n − w0

n+1

txb1

w0
n − w0

n+1

1

⎞
⎟⎠ . (3.7)

The deformation matrix, B(x, t), corresponds to the shift m → m + 1, hence, is given by

B(x, t) ← � Ml,m, (3.8)

B(x, t) =

⎛
⎜⎝

1 w0
n − w0

n+1

txb1

w0
n − w0

n+1

1

⎞
⎟⎠ . (3.9)

The compatibility condition, written as

A(x, qt)B(x, t) = B(q2x, t)A(x, t),

yields the evolution equation

w0
n+1 = a1w

0
n

(
w1

n−1 − w1
n

) + tb1
(
w0

n − w1
n−1

)
w1

n

a1
(
w1

n−1 − w1
n

) + tb1
(
w0

n − w1
n−1

) , b1 → b2

q
, (3.10a)

w1
n+1 = a2

(
w0

n−1 − w0
n

)
w1

n + tb2w
0
n

(
w1

n − w0
n−1

)
a2

(
w0

n−1 − w0
n

) + tb2
(
w1

n − w0
n−1

) , b2 → qb1. (3.10b)

Notice that the generating shift swaps the roles of b1 and b2, coupled with multiplicative
factors introduced to compensate for the dependence of βm on qm. We claim that the second
iterate of this mapping is q-P(A(1)

3 ). To make the full correspondence with (3.3), let us expand
out (3.7) to give a matrix of the form

A(x, t) = A0 + A1x + A2x2,

where A0 = I and the eigenvalues of A2 are θ1t and θ2t, where

θ1t = − tb1b2
(
w0

n+1 − w1
n

)(
w0

n − w1
n+1

)
(
w0

n − w0
n+1

)(
w1

n − w1
n+1

) ,

θ2t = −a1a2
(
w0

n − w0
n+1

)(
w1

n − w1
n+1

)
t
(
w0

n+1 − w1
n

)(
w0

n − w1
n+1

) ,

where θi = θi(n) satisfies

θ1(n + 1)θ1(n) = a1a2b1b2

q
,

θ2(n + 1)θ2(n) = qa1a2b1b2,

hence, θi(n + 2) = θi(n). That is to say that θ1 and θ2 are 2-integrals of the generating shift
[12], with the additional constraint

θ1θ2 = a1a2b1b2.

Secondly, from the product form, we have that

det A(x, t) = (a1x − 1) (a2x − 1) (b1tx − 1) (b2tx − 1).

15



J. Phys. A: Math. Theor. 46 (2013) 095204 C M Ormerod et al

In accordance with the motivation given in the previous section, we choose to parameterize
the spectral matrix, A(x, t), in terms of the x-root of (2, 1)-element of A(x, t), and the diagonal
entries at that root. This provides us with a spectral matrix in the curious form

A(x, t) =
⎛
⎝tx (x − yn + ζn) θ1 + 1 txδnωnθ2

tx(x − yn)θ1

ωn
tx (x − yn + ηn) θ2 + 1

⎞
⎠ , (3.11)

where

ζn = (yna1 − 1)(yna2 − 1)

zn
, ηn = (b1tyn − 1)(b2tyn − 1)zn.

Fixing the determinant requires that

δn = 1

a1
+ 1

a2
+ 1

b1t
+ 1

b2t
− 2y + ζn + ηn.

Under this identification, the yn and zn are specified by the lattice variables

yn = −[(
w1

n − w1
n+1

)((
w0

n+1 − w1
n

)(
a2

(
w0

n+1 − w0
n

) + b1t
(
w0

n − w1
n+1

))
+a1

(
w0

n − w0
n+1

)(
w0

n − w1
n+1

)) + b2t
(
w0

n − w0
n+1

)(
w0

n+1 − w1
n

)(
w0

n − w1
n+1

)]
÷[

b1t
(
w0

n+1 − w1
n

)(
a2

(
w0

n+1 − w1
n+1

)(
w1

n+1 − w1
n

) + b2t
(
w0

n+1 − w1
n

)
×(

w0
n − w1

n+1

)) − a1a2
(
w0

n − w0
n+1

)(
w1

n − w1
n+1

)2]
(3.12a)

zn = [(
w0

n − w1
n+1

)(
w1

n − w1
n+1

)(
a1

(
w0

n+1 − w0
n

)(
w1

n − w1
n+1

)
−tb2

(
w0

n − w0
n+1

)(
w0

n+1 − w1
n

) − b1t
(
w0

n+1 − w1
n+1

)(
w0

n+1 − w1
n

))]
÷[(

w0
n − w0

n+1

)(
w0

n+1 − w1
n

)((
w1

n − w1
n+1

)(
a1w

0
n − a2w

0
n+1

+(a2 − a1)w
1
n+1

) + b2t
(
w0

n+1 − w1
n

)(
w0

n − w1
n+1

))]
. (3.12b)

We may now make the correspondence with (3.3) via the identification that y = yn,
y′ = yn+2, z = zn and z′ = zn+2. One may verify (3.3), remarkably using the evolution (3.10)
alone. We also have the gauge factor, given by

ωn = −[
b1b2t2 (

w0
n+1 − w1

n

) 2 (
w0

n − w1
n+1

)2 ] ÷ [
b1t

(
w0

n+1 − w1
n

)
× (

a2
(
w0

n+1 − w1
n+1

) (
w1

n+1 − w1
n

) + b2t
(
w0

n+1 − w1
n

) (
w0

n − w1
n+1

))
−a1a2

(
w0

n − w0
n+1

) (
w1

n − w1
n+1

)
2
]
,

which satisfies the equation
ωn+2

ωn
= (zn − 1)(θ1(zn(a2yn − 1) + 1) − a2tb1b2yn)

yn(θ1zn − tb1b2)
(
a2

2ynzn + θ1tyn − a2(t(b1 + b2)yn + zn − 1)
) .

We may now parameterize the deformation matrix for the double shift in terms of yn, zn and
wn as

B(x, t) = I

+

⎛
⎜⎜⎝

x (θ1 − tb1b2)

b1 + b2 + (ζn − yn) θ1

δnωnθ2

b1 + b2 + (ζn − yn) θ1

x
(
(tb1 (yn − ζn) − 1) θ1 − tb2

1

) (
(tb2 (y − ζn) − 1) θ1 − tb2

2

)
δnωn (θ1 − tb1b2) θ2

xb1b2 (b1 + b2 + (ζn − yn) θ1) t2

θ1 − tb1b2

⎞
⎟⎟⎠

Curiously, the coefficient of x is lower triangular and the constant coefficient is upper-triangular.
This rather simplified Lax pair comes at the expense of the requirement that the variables yn

and zn explicitly lie on the biquadratic
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Figure 5. The reduction and the labelling of variables.

V (y, z, t) = θ1(z − 1)2 − θ1y(z − 1) ((a1 + a2) z − t (b1 + b2))

+y2 (a1a2z − θ1t) (θ1z − tb1b2) = 0,

which makes the computation of the compatibility condition,

A(x, q2t)B(x, t) = B(q2x, t)A(x, t),

slightly more difficult. One can verify directly that V (y, z, t) = 0 implies that V (y′, q2z, q2t) =
0 and V (y′, z′, q2t) = 0 under the evolution defined by (3.3). This forms an explicit
parameterization of the member of the pencil of biquadratics for each t. The existence of
such a parameterization is not without precedent, and has appeared in the work of Yamada
[47] and Noumi et al [27]. We do remark that it is interesting that this explicit dependence on
the bi-quadratic curve essentially came from a condition on the Lax matrices.

3.2. q-P
(
A(1)

2

)
as a reduction of dSKdV

While a reduction to q-P(A(1)

3 ) has been provided by one of the authors previously [28], we
know of no reduction from an integrable lattice equation to any member of the hierarchy above
q-P(A(1)

3 ). We wish to extend this further and consider reductions of a Painlevé equation that
is higher up in the classification scheme; namely the q-Painlevé equation with E (1)

6 symmetry,
which is associated with a surface with A(1)

2 symmetry, (or q-P(A(1)

2 )), given by (0.3). We
will find that this equation appears as a reduction of (3.1), or Q1δ=0

m , or the non-autonomous
discrete Schwarzian Korteweg–de Vries equation [23].

We impose (0.2) on (3.1) with s1 = 4 and s2 = 2, hence, our constraint, (1.13b),
becomes

αl+4

αl
= βm+2

βm
:= q4,

which we solve in a similar manner as before;

αl =

⎧⎪⎪⎨
⎪⎪⎩

a1ql if l = 0 mod 4
a2ql if l = 1 mod 4
a3ql if l = 2 mod 4
a4ql if l = 3 mod 4

, βm =
{

b1q2m if m = 0 mod 2
b2q2m if m = 1 mod 2

. (3.13)

We use the same Lax pair for (3.1) as the previous section, namely (1.4) where Ll,m and Ml,m

are specified by (3.2) with a labelling of initial conditions shown in figure 5. The t-direction is
also chosen to be constant in the direction of the reduction. We choose our spectral parameter,

17



J. Phys. A: Math. Theor. 46 (2013) 095204 C M Ormerod et al

x, and independent variable, t, in a manner in which correspondence with q-P(A(1)

2 ) comes
more naturally, that is

t = q2m−l = qn, x = qk

γ
= ql

γ
.

We note that the generating shift is no longer just a shift in m alone, but a simultaneous shift
in l and m , i.e. (l, m) → (l + 1, m + 1), hence we present a Lax pair that represents the
shift (l, m) → (l + 4, m + 2), which is now equivalent to (x, t) → (q4x, t), and the shift
(l, m) → (l + 1, m + 1), which is equivalent to the shift (x, t) → (qx, qt). Hence, our Lax
pair is a linear system satisfying

Y (q4x, t) = A(x, t)Y (x, t), (3.14a)

Y (qx, qt) = B(x, t)Y (x, t), (3.14b)

where we compose A and B in terms of L and M in the following way:

A(x, t) ← � Ll+3,m+2Ll+2,m+2Ml+2,m+1Ll+1,m+1Ll,m+1Ml,m, (3.15a)

A(x, t) =
⎛
⎝ 1 w0

n+1 − w1
n

xa4

w0
n+1 − w1

n

1

⎞
⎠

⎛
⎝ 1 w1

n+2 − w0
n+1

xa3

w1
n+2 − w0

n+1

1

⎞
⎠

×

⎛
⎜⎝

1 w0
n − w1

n+2

txb2

w0
n − w1

n+2

1

⎞
⎟⎠

⎛
⎝ 1 w1

n+1 − w0
n

xa2

w1
n+1 − w0

n

1

⎞
⎠

×
⎛
⎝ 1 w0

n+2 − w1
n+1

xa1

w0
n+2 − w1

n+1

1

⎞
⎠

⎛
⎜⎝

1 w1
n − w0

n+2

txb1

w1
n − w0

n+2

1

⎞
⎟⎠ . (3.15b)

The deformation matrix may be written as

B(x, t) ← � Ll,m+1Ml,m, (3.15c)

B(x, t) =
⎛
⎝ 1 w0

n+2 − w1
n+1

xa1

w0
n+2 − w1

n+1

1

⎞
⎠

⎛
⎜⎝

1 w1
n − w0

n+2

txb1

w1
n − w0

n+2

1

⎞
⎟⎠ , (3.15d)

where we have written these as functions of x and t. The compatibility of the system defined
by (3.14) is given by

A (qx, qt) B(x, t) = B(q4x, t)A(x, t). (3.16)

One may use (3.16) to derive the required evolution equations; the equations defining the
evolution may be written as

w0
n+1 = a4

(
w0

n−2 − w1
n

)
w1

n−1 + b2tw1
n

(
w1

n−1 − w0
n−2

)
a4

(
w0

n−2 − w1
n

) + b2t
(
w1

n−1 − w0
n−2

) , (3.17a)

w1
n+1 = a2w

0
n−1

(
w1

n−2 − w0
n

) + b1t
(
w0

n−1 − w1
n−2

)
w0

n

w1
n−2 (a2 − b1t) − a2w0

n + b1tw0
n−1

, (3.17b)

a1 → a2

q
, a2 → a3

q
, a3 → a4

q
, a4 → a1q3, (3.17c)
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b1 → b2

q2
, b2 → q2b1. (3.17d)

The difficult step is to extract a second order system from this seemingly sixth order
system via some special parameterization. To do this, we observe the properties of (3.14) as
an associated linear problem. Firstly, expanding out (3.15b) in the spectral parameter, we find

A(x, t) = A0 + A1x + A2x2 + A3x3,

where A0 is the identity matrix and A3 is a lower triangular matrix with diagonal entries θ1t
and θ2t, where

θ1 = a2a3b1
(
w1

n − w0
n+1

)(
w0

n+2 − w1
n+1

)(
w0

n − w1
n+2

)
(
w0

n − w1
n+1

)(
w0

n+2 − w1
n

)(
w0

n+1 − w1
n+2

) ,

θ2 = a1a4b2
(
w0

n − w1
n+1

)(
w1

n − w0
n+2

)(
w0

n+1 − w1
n+2

)
(
w0

n+1 − w1
n

)(
w0

n+2 − w1
n+1

)(
w0

n − w1
n+2

) ,

where θ1 and θ2 are invariants in accordance with the evolution equations, given by (3.17).
The simplicity of the individual factors of A(x, t) from (3.15b) give us that the determinant is

det A(x, t) = (xa1 − 1)(xa2 − 1)(xa3 − 1)(xa4 − 1)(txb1 − 1)(txb2 − 1). (3.18)

These properties should remind us of the properties of a special case of the spectral matrix in
the Lax pair of Sakai [41]. We may simply use a transformation of the formY (x, t) → SY (x, t),
where S is a lower triangular matrix that is constant in x such that the transformation
A → SAS−1 diagonalizes A3. While this matrix, S, is not particularly nice to write down,
the resulting matrix is in the general form

A(x, t) = x

⎛
⎝θ1t ((x − yn)(x − εn) + ζn) θ2tωn(x − yn)

θ1t(xγn + δn)

ωn
θ2t ((x − yn)(x − χn) + ηn)

⎞
⎠ + I.

The terms εn, χn, γn and δn may be determined from (3.18) in terms of yn and ζn, ηn, the ais
and the bis. The relation between this form of A(x, t) and the known Lax pairs of Sakai [41]
and Yamada [47] has recently been found by one of the authors [46]. Following the motivation
from the previous section, this parameterization defines yn to be the root of the (1, 2)-entry,
leaving a choice of ζn and ηn such that

(θ1tζnyn + 1)(θ2tηnyn + 1) = det A(yn, t),

where the right-hand side is defined by (3.18). With this in mind the defining equations for ζn

and ηn are

θ1tζnyn + 1 = (1 − ynzn) (b1tyn − 1) (b2tyn − 1) ,

θ2tηnyn + 1 = (a1yn − 1) (a2yn − 1) (a3yn − 1) (a4yn − 1)

(1 − ynzn)
.

This specifies yn and zn in terms of the lattice variables:

yn = [(
w0

n+2 − w1
n+1

)((
w0

n − w1
n+1

)(
w1

n − w1
n+2

)(
b2t

(
w0

n − w1
n

)(
w0

n+1 − w1
n+2

)
−a3

(
w0

n+1 − w1
n

)(
w0

n − w1
n+2

)) + a2
(
w0

n − w1
n

)(
w1

n − w1
n+1

)(
w0

n − w1
n+2

)
×(

w1
n+2 − w0

n+1

)) + a1
(
w0

n − w1
n+1

)(
w1

n − w1
n+1

)(
w0

n+2 − w1
n

)(
w0

n − w1
n+2

)
×(

w0
n+1 − w1

n+2

)] ÷ [
a1

(
w0

n − w1
n+1

)(
w0

n+2 − w1
n

)(
a3

(
w0

n+1 − w1
n

)
×(

w0
n − w1

n+2

)(
w1

n+2 − w1
n+1

) + b2t
(
w0

n − w1
n+1

)(
w1

n − w1
n+2

)
×(

w0
n+1 − w1

n+2

)) − a2a3
(
w0

n+1 − w1
n

)(
w1

n − w1
n+1

)(
w0

n+2 − w1
n+1

)
×(

w0
n − w1

n+2

)2]
, (3.19)
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zn = [
a1

(
w0

n − w1
n+1

)((
w0

n+2 − w1
n+2

)(
a3

(
w0

n+1 − w1
n

)(
w0

n − w1
n+2

)(
w1

n+2 − w1
n+1

)
+b2t

(
w0

n − w1
n+1

)(
w1

n − w1
n+2

)(
w0

n+1 − w1
n+2

)) − a2
(
w0

n+2 − w1
n+1

)
×(

w0
n − w1

n+2

)(
w1

n+2 − w1
n

)(
w1

n+2 − w0
n+1

)) + a2a3
(
w0

n+1 − w1
n

)
×(

w0
n+2 − w1

n+1

)(
w1

n+1 − w1
n+2

)(
w0

n − w1
n+2

)2] ÷ [(
w0

n − w1
n+2

)
×(

w1
n+2 − w0

n+1

)((
w0

n − w1
n+1

)(
a1

(
w0

n+2 − w1
n

)(
w1

n+1 − w1
n+2

)
−b2t

(
w0

n+2 − w1
n+1

)(
w1

n − w1
n+2

)) + a2
(
w1

n − w1
n+1

)(
w0

n+2 − w1
n+1

)
×(

w0
n − w1

n+2

))]
, (3.20)

which satisfy (0.3a) and (0.3b) under the identification of y = yn, z = zn, y′ = yn+4 and
z′ = zn+4. While these expressions may fail to be succinct, they do succeed in being very
explicit. Furthermore, using this identification, it is possible to directly verify (0.3a) and
(0.3b) from (3.17) alone.

4. Conclusion

Given a nonautonomous partial difference equation which admits an additive or multiplicative
form, (1.11) or (1.12), we have outlined a direct method for finding a Lax representation for
any periodic (travelling wave) reduction of the form (0.2). The method outlines how the Lax
matrices may be expressed in terms of products of the Lax matrices of the partial difference
equation from which it was derived.

We have shown that the method applies to deautonomized versions of the equations in the
ABS list, with the exception of Q3 and Q4. We have concentrated on two cases, the discrete
Korteweg–de Vries equation and the discrete Schwarzian Korteweg–de Vries equation. We
have also found the relation between the derived reductions and discrete Painlevé equations d-PI

and d-PIV, respectively reductions from the discrete Schwarzian Korteweg–de Vries equation
and q-PVI and q-P(A(1)

2 ). The latter is, to our best knowledge, the highest full parameter
member of the Sakai classification derived as a reduction so far.
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