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Abstract

We classify integrable equations which have the form ut ¼ a1un þ Kðv0; v1;yÞ; vt ¼ a2vn;
where a1; a2AC; nAN and K a quadratic polynomial in derivatives of v: This is done using the

symbolic calculus, biunit coordinates and the Lech–Mahler theorem. Furthermore we present

a method, based on resultants, to determine whether an equation is in a hierarchy of lower

order.
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1. Introduction

Bakirov devoted article [1] to the description of local symmetries of the following
evolution equations with parameter a:

ut ¼ un þ v2;

vt ¼ avn

�
ð1Þ

for nX2: This class of equations is interesting since it contains both integrable and
almost integrable equations. These notions have the following strict meaning: an
equation is called (symmetry-)integrable if it possesses infinitely many generalized
symmetries and almost integrable of depth (at least, at most) n if there are exactly (at
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least, at most) n generalized symmetries. This terminology somehow reflects the idea
of the conjecture of Fokas [6] that an equation is integrable if its depth equals the
number of components. For a more thorough discussion of these matters and
counterexamples to the conjecture of Fokas we refer to [14].

Bakirov presented the first example of an equation that is almost integrable of

depth at least 1: Eq. (1) with n ¼ 4 and a ¼ 1
5

possesses a symmetry at order 6. By

means of computer algebra it was shown, that the equation does not possess other
symmetries of order np53: However, for a long time it was not known whether for
this example the depth is higher than 1.

Paper [3], which was also devoted to equations of type (1), changed this situation.
In this article, the symbolic calculus of Gel’fand and Dikiı̆ [7] was used. In [3], to our
knowledge, both the Lech–Mahler theorem and p-adic analysis first appeared in the
literature in connection with symmetries of evolution equations. It was proven, by
using p-adic analysis, that the equation of Bakirov does not have generalized
symmetries at any order but at order 6, i.e., it was shown beyond doubt that ‘one
symmetry does not imply integrability’. An efficient way to find more almost
integrable evolution equations together with some improvements of the p-adic
method can be found in [13].

In this article, we will concentrate on the classification of integrable equations. It it
important to realize that this simplifies the problem. For example, the classification
of scalar equations (with respect to almost integrability) [10] relied on diophantine
approximation theory [2], however, the classification of integrable equations can be
performed without these elaborate techniques, as was shown in [12].

Using the Lech–Mahler theorem [8] it was conjectured [3, Conjecture 2.3] there are
only finitely many integrable equations of form (1). This conjecture became a
theorem in [4, Theorem 2.1], where the following list was proven to be exhaustive:

ut ¼ au2 þ v2;

vt ¼ v2;

�
ut ¼ au3 þ v2;

vt ¼ v3;

�
ut ¼ �3u4 þ v2;

vt ¼ v4;

�

ut ¼ �u4 þ v2;

vt ¼ v4;

�
ut ¼ u5 þ v2;

vt ¼ v5;

�
ut ¼ �1

4
u5 þ v2;

vt ¼ v5;

(

ut ¼ �1375
ffiffi
5

p

2
u5 þ v2;

vt ¼ v5;

(
ut ¼ �u7 þ v2;

vt ¼ v7;

�
ð2Þ

where aAC; aa0: A corollary [4, Corollary 2.1] says that each of the equations in
(2) with arbitrary quadratic part (in derivatives of v) is integrable as well. Also it was
remarked that the list is not necessarily complete in this more general class of
equations that is the object of classification in this article.

Definition 1. A B-equation, after Bakirov, is an equation of the form

Bn½a1; a2
ðKÞ:
ut ¼ a1un þ Kðv0; v1;yÞ;
vt ¼ a2vn;

�
ð3Þ
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where a1; a2AC; nAN and K a quadratic polynomial in derivatives of v: A symmetry
of such an equation of the form

b1um þ Sðv; v1;yÞ
b2vm

� �
;

where b1; b2AC; mAN and S a quadratic polynomial in derivatives of v; is called a
B-symmetry.

This class of equations has the following nice property: any symmetry of a B-
equation with nonequal and nonzero eigenvalues, is a linear combination of B-
symmetries; if the eigenvalues are equal and the order of the B-equation is higher
than 1, any symmetry is a linear combination of B-symmetries and the linear
symmetry ðvm; 0Þ: This almost follows from the nonlinear injectiveness of the linear
part of B-equations [12].

In this article, we will solve the classification and recognition problems for B-
equations. We prove the existence of a certain finite number of integrable B-
equations at every order. Special attention has been given to proving that the
hierarchies of symmetries are exhaustive. Furthermore, we are able to decide whether
a B-equation is in the hierarchy of an other equation and we give formulas for the
number of new integrable equations at arbitrary order. Also we prove that all
integrable B-equations are real, up to complex scalings.

Although B-equations seem quite special, the implication for the general equation
is immediate. First of all whenever an equation has a part that is a nonintegrable B-
equation, the equation is not integrable. Furthermore an equation might be related
by an invertible transformation to a B-equation. Also the techniques that are
employed and developed for this classification of B-equations play a role in other
classification programs [11,12].

Integrability has been related to several other notions among which solvability and
solitonic behaviour [15]. B-equations are triangular and therefore solvable in a
certain sense. The equation for v is a homogeneous linear evolution equation. Once
this has been solved, the equation for u reduces to an inhomogeneous version of the
same equation. From my point of view it is an intriguing challenge to understand the
analytic meaning of symmetry-integrability.

2. The symbolic calculus

The symmetry condition is obtained by requiring the vanishing of the Lie bracket
of Bn½a1; a2
ðKÞ and Bm½b1; b2
ðSÞ: This Lie bracket is computed using Fréchet
derivatives, see [9]. We solve the symmetry condition using the symbolic calculus as
developed by Gel’fand and Dikiı̆ [7]. The symbolic calculus enables us to treat
infinitely many orders at once. Moreover, the necessary and sufficient equations for
the rate of eigenvalues are obtained directly without having to specify the nonlinear
part explicitly.
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The Gel’fand–Dikiı̆ transformation is a one-to-one mapping between differential
expressions and polynomials. A quadratic differential monomial is transformed into
a symmetric polynomial in two symbols as follows:

vivj ¼
Zi

1Z
j
2 þ Z j

1Z
i
2

2
:

The expression is symmetrized and divided by the number of symbol-permutations
in order to ensure that

vivj ¼ vjvi:

This procedure turns the operation of differentiation as well as the action of the
Fréchet derivative on a linear term into ordinary multiplication. Thus the symmetry
condition is equivalent to the following equation, cf. [13]:

Gn½a1; a2
S ¼ Gm½b1; b2
K ;

where K ;SAC½Z1; Z2
 and the so-called G-functions are defined as follows:

Gn½a1; a2
ðZ1; Z2Þ ¼ a2ðZ1 þ Zn
2Þ � a1ðZ1 þ Z2Þ

n:

If Gm½b1; b2
K is divisible by Gn½a1; a2
 we have a symmetric polynomial expression
for S which can be transformed back. An equation Bn½a1; a2
ðKÞ is trivially
integrable if the function Gn½a1; a2
 divides K : This kind of equation has symmetries
on every order and is in the hierarchy of some zeroth order equation. In the rest of
this paper, we suppose that the order of the B-equation n is positive and Gn½a1; a2

does not divide K : Then Gn½a1; a2
 should have a common factor with Gm½b1; b2
 for
there being a symmetry. Suppose we can find a1; a2; b1; b2AC such that

Gn½a1; a2
 ¼ FL; Gm½b1; b2
 ¼ FT ;

with F ;L;TAC½Z1; Z2
: Then the Lie bracket of Bn½a1; a2
ðKÞ and Bm½b1; b2
ðSÞ
vanishes if one takes K ¼ LM and S ¼ MT : One is free to choose MAC½Z1; Z2
:

Thus the problem that needs to be solved for the classification of integrable B-
equations (3) can be stated as follows:

Determine all divisors H of Gn½a1; a2
 such that there are infinitely many mAN

and b1; b2AC for which H divides Gm½b1; b2
:

We will perform the classification in full generality. All exceptional cases will
explicitly be given and results will be illustrated with examples. We start at low order,
so that the reader can become conversant with the symbolic calculus.
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3. B-equations of order 1, 2 or 3 and their symmetries

We prove that all B-equations of order 1, 2 or 3 are integrable and we show how to
efficiently calculate their symmetries.

Proposition 2. All 1st order B-equations are integrable.

This proposition is easy to prove and an explicit formula for all the symmetries of

B1½a1; a2
ða3v2Þ can be given.

Proof of Proposition 2. To find all symmetries of B1½a1; a2
ðKÞ we have to find for
arbitrary m all ðb1; b2Þ such that G1½a1; a2
 divides Gm½b1; b2
: This can be done by
substitution. Take a1aa2: The G-function

G1½a1; a2
 ¼ ða2 � a1ÞðZ1 þ Z2Þ

has a common factor with Gm½b1; b2
 if

b2ðZm
1 þ ð�Z1Þ

mÞ � b1ðZ1 � Z1Þ
m ¼ 0:

The infinitely many solutions are b2 ¼ 0 or m is odd.
Exceptional case: Take a1 ¼ a2: For any S the symmetry condition becomes

Gm½b1; b2
K ¼ 0:

Equality holds when b1 ¼ b2 ¼ 0: The symmetries (at any order) have arbitrary
nonlinear part but no linear part. &

Example 3. We explicitly write down the symmetries of

ut ¼ a1u1 þ a3v2;

vt ¼ a2v1:

�

Its quadratic part is calculated as follows:

S ¼ Gm½b1; b2

G1½a1; a2


K ¼ a3

a2 � a1
b2

1

Z1 þ Z2

ðZm
1 þ Zm

2 Þ � b1ðZ1 þ Z2Þ
m�1

� �
:

By applying the inverse Gel’fand and Dikiı̆ transformation, at even order m we
obtain the symmetry

b1um þ a3b1

a1 � a2
Dm�1

x v2

0

0
@

1
A
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and at odd order m we obtain the symmetry

b1um þ a3b1

a1 � a2
Dm�1

x v2 þ a3b2

a1 � a2
D�1

x vvm

b2vm

0
@

1
A:

It is only here that we can describe the whole hierarchy in differential language.
For higher-order B-equations we have to do the computation of a particular
symmetry symbolically and translate the result to obtain its differential expression.

Proposition 4. All 2-nd order B-equations are integrable.

Proof. They have symmetries at all orders. The ratio of eigenvalues (and quadratic
part) of the symmetries are fixed. Take a1aa2 again and a2a0; i.e., ra0;�1: The G-
function

G2½a1; a2
 ¼
a2 � a1

r
ðZ1 � rZ2ÞðrZ1 � Z2Þ with r2 þ 2a1

a1 � a2
r þ 1 ¼ 0

has a factor ðZ1 � rZ2Þ in common with Gm½b1; b2
 when

Gm½b1; b2
jZ1¼rZ2
¼ 0 ) b1

b2
¼ 1 þ rm

ð1 þ rÞm:

For this ratio ðrZ1 � Z2Þ is a factor as well because the fraction

1 þ rm

ð1 þ rÞm

is invariant under r-1=r; i.e., the G-function is symmetric in Z1; Z2:
Exceptional cases:

* When a1 ¼ a2 the equation is integrable; we have G2½a1; a1
 ¼ �2a1Z1Z2 divides
Gm½b1; b2
 for arbitrary m42 if b1 ¼ b2:

* When a2 ¼ 0 the equation is integrable; we have G2½a1; 0
 ¼ �a1ðZ1 þ Z2Þ
2 divides

Gm½b1; b2
 for arbitrary m42 if b2 ¼ 0: &

We demonstrate the method by calculating a symmetry of some inhomogeneous
2nd-order equation.

Example 5. We calculate the 3rd order symmetry Bm½b1; b2
ðSÞ of

ut ¼ a1u2 þ a3v2 þ a4vv1 þ a5v2
1;

vt ¼ a2v2:

�
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The ratio of eigenvalues of the symmetry is

1 þ r3

ð1 þ rÞ3
¼ 3a1 � a2

2a2
:

We take b1 ¼ 3a1 � a2 and b2 ¼ 2a2: The G-function of the symmetry is

G3½3a1 � a2; 2a2
 ¼ 3ðZ1 þ Z2ÞG2½a1; a2
:

The quadratic part S is obtained by multiplying

K ¼ a3 þ a4
Z1 þ Z2

2
þ a5Z1Z2

with the ratio of G-functions 3ðZ1 þ Z2Þ:

S ¼ 6a3
Z1 þ Z2

2
þ 3a4

Z2
1 þ Z2

2

2
þ Z1Z2

� �
þ 6a5

Z1Z
2
2 þ Z2

1Z2

2
:

By applying the inverse Gel’fand and Dikiı̆ transformation we obtain the 3rd order
symmetry of the above equation

ð3a1 � a2Þu3 þ 6a3vv1 þ 3a4ðvv2 þ v2
1Þ þ 6a5v1v2

2a2v3

� �
:

The procedure works for symmetries of any order.

Proposition 6. All 3rd order B-equations are integrable.

Proof. All 3rd order equations have infinitely many symmetries but unlike the 2nd
order equations not all of them have symmetries at even order. The reason is that
ðZ1 þ Z2Þ is a divisor of Gm½b1; b2
 only when m is odd or when b2 ¼ 0: Therefore,
unless the 3rd order equation is in a lower hierarchy, its first symmetry appears at
order 5. Take a2a0; a2 � a1 again. The 3rd order G-function factorizes like

G3½a1; a2
 ¼
a1 � a2

r
ðZ1 þ Z2ÞðZ1 � rZ2ÞðrZ1 � Z2Þ;

with

r2 þ 2a1 þ a2

a1 � a2
r þ 1 ¼ 0:

This can be used to calculate all higher-order G-functions in the same way we did for
2nd-order equations.

Exceptional cases:

* When a1 ¼ a2 the equation is integrable, G2½a1; a1
 ¼ �3a1Z1Z2ðZ1 þ Z2Þ divides
Gm½b1; b2
 for arbitrary odd m43 if b1 ¼ b2:
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* When a2 ¼ 0 the equation is integrable, G2½a1; 0
 ¼ �a1ðZ1 þ Z2Þ
3 divides

Gm½b1; b2
 for arbitrary m43 if b2 ¼ 0: &

We have now proven that all B-equations of order smaller than 4 are integrable.

4. B-equations in a hierarchy of order 1, 2 or 3

In this section, we turn from the classification problem to the recognition problem.
Using resultants we present an efficient way to determine whether a B-equation is in
a hierarchy of order 1, 2 or 3.

Theorem 7. Bm½b1; b2
ðSÞ is in a hierarchy of order n; where n is 1, 2 or 3, if the degree

of the greatest common divisor of Gm½b1; b2
 and S equals m � n:

Proof. Since every symmetric factor of degree n; where n is 1, 2 or 3, is a multiple of
Gn½a1; a2
 for some (calculable) a1; a2; the quadratic part can be written

S ¼ Gm½b1; b2

Gn½a1; a2


K

such that gcdðK ;Gn½a1; a2
Þ ¼ 1: &

The use of resultants is very effective here, as we will show in the following two
examples. Recall that if the greatest common divisor of two polynomials has positive
degree, then their resultant vanishes.

Example 8. The equation

ut ¼ b1u3 þ b3v2v þ b4v2
1;

ut ¼ b2v3

�

can be in a hierarchy of order 1 or 2. The Z1-resultant of G3½b1; b2
 and S is:

Z6
2

4
ðb3 � b4Þð2b3b1 þ b3b2 � 2b4b1 þ 2b4b2Þ2:

There are two special cases.

* When b3 ¼ b4 the quadratic part is

S ¼ b3

2
ðZ1 þ Z2Þ

2:

The greatest common divisor of S and G3½b1; b2
 has degree 1, so the order of the
hierarchy is 2. The ratio of eigenvalues can be calculated using the above
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factorising of the G3-function and the map

r-
1 þ r2

ð1 þ rÞ2
:

The equation commutes with

ut ¼ ð2b1 þ b2Þu2 þ 2b3vv1;

vt ¼ 3b2v2:

�

* When b3 ¼ 2ðb1 � b2Þa1; b4 ¼ ð2b1 þ b2Þa1 the equation is in the hierarchy of

ut ¼ b1u1 þ a1ðb1 � b2Þv2;

vt ¼ b2v1:

�

All other cases are not in an other hierarchy.

The method works for any order in principle. However, it depends on the order
and the number of parameters in the equation whether we can actually solve the
resultant, cf. [12].

5. Integrable B-equations of order higher than 3 and their symmetries

As we are now interested in equations that are not in a 1st, 2nd or 3rd order
hierarchy, we need to consider common factors of G-functions of degree at least 4, cf.
the proof of Theorem 7. The case where a2 ¼ 0 is easy; the equation is integrable

since Gn½a1; 0
 ¼ a1ðZ1 þ Z2Þ
n divides Gm½b1; b2
 for arbitrary m4n if b2 ¼ 0: In the

following we assume a2a0:

Lemma 9. The function Gn½1 þ rn; ð1 þ rÞn
ðZ1; Z2Þ has a factor of the form

ðZ1 � rZ2ÞðrZ1 � Z2ÞðZ1 � sZ2ÞðsZ1 � Z2Þ; sar; r�1;

whenever

Unðr; sÞ ¼Gn½1 þ rn; ð1 þ rÞn
ðs; 1Þ

¼ ð1 þ rÞn þ ðsð1 þ rÞÞn � ð1 þ sÞn � ðrð1 þ sÞÞn ¼ 0:

Proof. The condition Unðr; sÞ ¼ 0 expresses the fact that the ratio of eigenvalues of
the G-function containing zero r equals the ratio of eigenvalues of the G-function
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containing zero s

a1

a2
¼ ð1 þ rÞn

1 þ rn
¼ ð1 þ sÞn

1 þ sn
: &

Using the Lech–Mahler theorem, see Theorem 19, it was proven in [3] that the
only factors of G-functions (with nonzero eigenvalue) which appear on infinitely
many orders have zeros forming a subset of a set of the form

0;�1; r;
1

r
; %r;

1

%r

� 

: ð4Þ

Therefore, to find all hierarchies of B-equations is to find all points r such that
Umðr; %rÞ ¼ 0 for infinitely many integers m; the zeros 0;�1 can be treated separately.
At fixed order Lemma 10, which improves the method given in [4], can be used

Lemma 10. The following method can be used to find all integrable B-equations at

fixed order n: Substitute

r ¼ xð1 � yÞ
y � x

; %r ¼
1 � y

y � x

in Unðr; %rÞ ¼ 0 and apply an algorithm of Smyth, cf. [5], to solve the equation in roots of

unity x; y:

Proof. By Corollary 21, of the Lech–Mahler theorem, one of the pairs

x ¼ r

%r
; y ¼ 1 þ r

1 þ %r

or r%r; 1þr
1þ%r

are roots of unity. By the invariancy of Unðr; %rÞ under r-1=r we may

choose the first pair. Thus the method gives all points r such that Umðr; %rÞ ¼ 0 for
infinitely many m; including m ¼ n: &

In [4] the algorithm of Smyth was used to obtain the eigenvalues of all 4th- and
5th-order B-equations in the list 2. Lemma 10 makes it possible to treat higher
orders. By means of computer algebra, we raised the order up to 23. We did observe
quite some structure in the minimal polynomials of all the points we calculated.
However, a clear picture did not arose until we plotted the points in the complex
plane. We have included the plot for order 23, cf. Fig. 1. Note that the upper half
unit disc may be taken as a fundamental domain.

The inspection of the patterns formed by the values r obtained in this way, can be
described as a form of experimental mathematics. At every fixed order n the
calculated points formed a similar pattern, which inspired to use biunit coordinates
Pðc;fÞ; cf. Definition 17 and Eq. (6). Since roots of unity play a special role in the
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analysis of integrable equations and the points 71 often are exceptional cases, we
will denote the set of all nth roots of unity z where za71 by Fn:

The following theorem asserts the existence of a certain finite set of integrable
equations at any order n43: These correspond to the zeros r of Gn such that
Umðr; %rÞ ¼ 0 for infinitely many m; including m ¼ n: There are basically two kinds of
zeros, those on the unit circle and those of the unit circle.

Theorem 11. Let n43: To any point r in one of the sets

(1) rAPðF2n;F2nÞ such that jrja1;
(2) rAFn�1;
(3) rAF2n such that rn ¼ �1

corresponds an integrable nth order B-equation, which is not in a hierarchy of order

smaller than 4.

Proof.

(1) For rAPðF2n;F2nÞ the proof consists of showing that Umðr; %rÞ has infinitely
many solutions m including m ¼ n: By substitution of

r ¼ ac ¼ bf� 1;

ARTICLE IN PRESS
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Fig. 1. The special zeros of G-functions of integrable equations with order 23, in the complex plane and

inside the upper half unit disc, form a nice pattern.
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with c;fAF2n; in Umðr; %rÞ we get

Umðc;fÞ ¼ ðb %fÞm þ ðabc %fÞm � ðbfÞm � ðab %cfÞm:

This vanishes when m � 0 mod n: Note that when n is odd and Z1 þ Z2 does not
divide the quadratic part of the equation, no symmetries appear at even order.
When r is real or on the unit circle the set fr; 1=r; %r; 1=%rg does not contain 4
elements.

(2) The ðn � 1Þth roots of unity are all double zeros of Gn: They appear in
conjugated pairs and are double zeros at order m � 1 mod n � 1 as well, cf. [3,
Lemma 3.1]. A real zero and its conjugate do not form a pair.

(3) All odd powers of a primitive ð2nÞth root of unity are mapped to zero for all
m � n mod 2n: &

The following theorem asserts that there are no ‘new’ integrable B-equations, i.e.,
equations that do not commute with an integrable B-equation known by now.

Theorem 12. Any integrable B-symmetry is a symmetry of

* a B-equation described in Theorem 11, or
* a 1st, 2nd or 3rd order B-equation, or
* a 5th or 7th order B-equation with equal eigenvalues.

Proof. Suppose the eigenvalues are nonzero. Let H be a divisor of infinitely many
Gm: Any set of zeros Z of H is a subset of a set of form (4). If 0AZ; the eigenvalues of
the equation are equal. This problem was solved for the classification of scalar
equations. It follows from [12, Theorem 5.8] or [10, Proposition 4.1] that the
equation is a symmetry of a B-equation of order 2,3,5 or 7. If

ZC �1; r;
1

r

� 


and the multiplicity of r is 1, the equation is a symmetry of a B-equation of order 1, 2
or 3, cf. Theorem 7. If

ZC �1; r;
1

r

� 


and the multiplicity of r is 2, r is a root of unity. If

ZC �1; r;
1

r
; %r;

1

%r

� 
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the biunit coordinates of r are roots of unity because otherwise none of the pairs

r

%r
;
1 þ r

1 þ %r
or r%r;

1 þ r

1 þ 1
%r

are roots of unity. &

The following theorem asserts that any integrable B-equation described in
Theorem 11 has no other B-symmetries than the symmetries proven to exist.

Theorem 13. If the integrable B-equation

ut ¼ ð1 þ rnÞun þ K ;

vt ¼ ð1 þ rÞn
vn

�

is not in a lower hierarchy it has no B-symmetries other than the symmetries on order

m; with:

(1) m � 0 mod n if rAPðF2n;F2nÞ; and 2jn or 2[n; Z1 þ Z2jK ;
(2) m � n mod 2n if rAPðF2n;F2nÞ; and 2[n; Z1 þ Z2[K ;
(3) m � 1 mod n � 1 if rAFn�1;
(4) m � n mod 2n if rAF2n:

Proof. From the proof of Theorem 11, we know that symmetries exist at these
orders. We now prove that the equations do not have any other symmetries.

(1) We write Umðr; %rÞ in terms of c and f using Eqs. (A.1) and (A.2). Furthermore,
we perform the transformations

c2-mn; f2-n:

Thus, we obtain the Diophantine equation

1 � m
1 � n

� �m

¼ 1 � mm

1 � nm
ð5Þ

for roots of unity m; n: By Theorem 22, under the conditions

m; na71; man; %n; mm; nma1:

Eq. (5) has no solution unless m ¼ 1: We check the conditions. When m ¼ �1 we
find that f ¼ 7ic; we have

jr þ 1
2
j ¼ 1

2
:
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In this case Eq. (5) reduces to

nm ¼ 1 when m even;

ð1 � nÞm ¼ 2m�1ð1 � nmÞ when m odd;

with na71 a root of unity. The same equation, in m instead of n is obtained
when n ¼ �1; i.e., when f ¼ 7i or

r þ %r ¼ �2:

By Proposition 24 the equation for odd order has no solutions m41: For the
even solutions, note that we are in the case where n is even. The equation is not
in a lower hierarchy if c is a primitive ð2nÞth root of unity. This implies that n is a
primitive nth root of unity and the even solutions are given by m � 0 mod n:

(2) When n is odd and Z1 þ Z2 does not divide K there is no symmetry at any odd
order since Z1 þ Z2 does not divide G2mþ1:

(3) When mc1 mod n � 1 the point rAFn�1 is not a double zero of Gm:
(4) Two ð2nÞth roots of unity r ¼ c; s ¼ f are both zeros of Gm if Umðc;fÞ ¼ 0: By

applying the transformation

c-� m; f-� n

we obtain

1 � m
1 � n

� �m

¼ 1 þ ð�mÞm

1 þ ð�nÞm

for ð2nÞth roots of unity m; n: Suppose that

m; na� 1; man; %n:

Then, by Theorem 22, the equation has no odd solutions m41 such that
mm; nma1: For even m we use Theorem 25, which states that

1 � m
1 � n

� �m

¼ 1 þ mm

1 þ nm

has no solutions m41 such that mm; nma� 1: &

5.1. Quadratic part of the integrable B-equations

We describe the quadratic part of the integrable B-equations and we show that the
equations are real (up to a complex scaling).

If a1 ¼ 0 then K can be anything because the G-function of the equation divides
the G-functions of all the symmetries. Take a1a0: Let Q be the greatest common
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divisor of

Gn½1 þ rn; ð1 þ rÞn


and

Z1Z2ðZ1 þ Z2ÞðZ1 � rZ2ÞðrZ1 � Z2ÞðZ1 � %rZ2Þð%rZ1 � Z2Þ:

Q is the common factor of all G-functions of the symmetries. The quadratic part of
the equation can be written as

K ¼ Gn

Q
P;

with P an arbitrary symmetric polynomial that does not have Q as a divisor.
Although in the analysis complex roots of unity play an important role, in the end

the equations turn out to be real.

Proposition 14. All integrable B-equations with nonzero eigenvalues are real, up to a

complex scaling.

Proof. Since

a1

a2
¼ 1 þ rn

ð1 þ rÞn ¼ 1 þ %rn

ð1 þ %rÞn ¼ %a1

%a2

all ratios of eigenvalues of integrable B-equations are real valued. What about the
quadratic part? We have

ðZ1 � rZ2ÞðrZ1 � Z2ÞðZ1 � %rZ2Þð%rZ1 � Z2Þ

¼ r%rðZ4
1 þ Z4

2Þ þ ðr%r þ 1Þðr þ %rÞZ1Z2ðZ2
1 þ Z2

2Þ:

Hence Q is real. Therefore, the quadratic part is real if the eigenvalues and P are
chosen to be real. &

We demonstrate our method by calculating an integrable equation together with
its first higher-order symmetry.

Example 15. Take n ¼ 6: The line

Re
1
3 pi � 1

intersects the imaginary axis in the point

r ¼
ffiffiffi
3

p
i:
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This is a zero of the G-function G6½�13; 32
; since

1 þ r6

ð1 þ rÞ6
¼ �13

32
:

The polynomial dividing all G-functions of the symmetries is

Q ¼ ð3Z2
1 þ Z2

2ÞðZ2
1 þ 3Z2

1Þ:

The quadratic part of the equation is, with P ¼ 1
2
;

K ¼ G6½�13; 32

2Q

¼ 15

2
ðZ2

1 þ Z2
2Þ þ 13Z1Z2:

Therefore the equation

ut ¼ �13u6 þ 15vv2 þ 13v2
1;

vt ¼ 32v6

�

is integrable. Let us calculate the symmetry B12½b1; b2
ðSÞ: To obtain the eigenvalues
we compute

b1

b2
¼ 1 þ r12

ð1 þ rÞ12
¼ 365

2048
:

The symbolic quadratic part is given by

S ¼ G12½365; 2048

G6½�13; 32
 K :

By applying the inverse Gel’fand and Dikiı̆ transformation we obtain the symmetry
at order 12:

365u12 þ 561vv8 � 1460v1v7 � 9900v2v6 � 21 900v3v5 � 13 893v2
4

2048v12

� �
:

6. B-equations in a lower hierarchy

We describe all B-equations that belong to a lower hierarchy. This solves the
recognition problem. Let K be the quadratic part of an integrable B-equation. Let k

be the degree of

Q ¼ Gn

gcdðGn;KÞ:
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If the equation is nondegenerate we have 0oko8: If ko4 or k=7 the equation is in
a kth order hierarchy. It never happens that k ¼ 6 because whenever G6 has
zeros 0 and r it does not have %r as zero. The remaining cases are enumerated as in
Theorem 11.

(1) Let ra� 1 be a zero of the polynomial Q: It has biunit coordinates ðza; zbÞ where
z is a primitive ð2nÞth root of unity. The equation is in a hierarchy of order d;
with d ð43Þ a divisor of n; if a=n and b=n are integer multiples of 1=d:

(2) The equation is in a hierarchy of order d þ 1; with dð42Þ a divisor of n � 1; if
the double zero r is a dth root of unity.

(3) When n ¼ lm with l odd and m43 the equation can be in a mth order hierarchy.
This is the case if Gn=Gm divides K :

7. The number of integrable B-equations

We present formulas for the number of nth order integrable equations and for the
number of nth order integrable equations that are not in a lower-order hierarchy of
order higher than 3.

(1) The number of points rAPðF2n;F2nÞ leading to different eigenvalues of
integrable equations is

f ðnÞ ¼
ðn � 2Þ2

4
if n is even;

ðn � 1Þðn � 3Þ
4

if n is odd:

8>><
>>:

We count the number of points in the upper half plane (because conjugation

leaves the set invariant) excluding the points on the unit circle where %r ¼ r�1: Put

z ¼ e
1
n
pi: The imaginary part of Pðza; zbÞ is positive only when 0oboa: There are

exactly

Xn�2

a¼1

a

such points. A point is on the unit circle when the angle of the line through 0 is
twice the angle of the line through �1: The set Fn�1 contains

n � 1

2

� �

points on the upper half unit circle. Subtracting these two numbers and dividing
by 2 (because inversion leaves the set invariant) gives the desired number. If gðnÞ
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is the number of these integrable equations not in the hierarchy of an other
equation we have

f ðnÞ ¼
X
djn

gðdÞ

and by Möbius’ inversion

gðnÞ ¼
X
djn

mðdÞf n

d

� �
;

with the Möbius function defined as follows: ( pi are prime)

m
Yj

i¼1

pai

i

 !
¼

1 if ai ¼ 0 for all i;

0 if ai41 for some i;

ð�1Þ j if ai ¼ 1 for all i:

8><
>:

(2) The number of complex ðn � 1Þth roots of unity giving different eigenvalues at
fixed n is

f ðnÞ ¼

n � 2

2
if n is even;

n � 3

2
if n is odd:

8><
>:

We counted the zeros that are above the real line. If gðnÞ is the number of these
integrable equations not in the hierarchy of an other we have

f ðnÞ ¼
X

djn�1

gðd þ 1Þ

and by Möbius’ inversion

gðnÞ ¼
X

djn�1

mðdÞf n � 1

d
þ 1

� �
:

(3) This case is concerned with vanishing first eigenvalue. When n is prime, twice a
prime or a power of 2 , the equation is not in a lower hierarchy.

At order 5 there is the extra equation with eigenvalue 1. Its G-function has the set of

zeros f0;�1; z3; z
2
3g: Adding this all together we have the following.

Proposition 16. Let 3onAN: There are exactly

nðn � 2Þ
4

when n even;
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ðn þ 1Þðn � 3Þ
4

when n odd; na5

ðn � 1Þ2

4
when n ¼ 5

nondegenerate nth order integrable B-equations.

Finally, the number of nth order integrable equations that are not in a lower
hierarchy with 3ono24 is given in Table 1.
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Appendix A. Biunit coordinates

We introduce an uncommon way to describe complex numbers which will be
especially convenient when describing the solutions to G-functions that correspond
to the integrable equations.

The most familiar way to describe a point r in the complex plane is probably

r ¼ RðrÞ þ IðrÞi;

where RðrÞAR is the real part of r; IðrÞAR is the imaginary part of r and i2 ¼ �1: A
second way to describe rAC is

r ¼ jrjeargðrÞi;

where jrj40 is the absolute value of r and 0pargðrÞo2p the argument of r: Yet, we
would like to give a third description.

Definition 17. We call ðc;fÞ; where jcj ¼ jfj ¼ 1; c;fa71; biunit coordinates of
the point rAC\R; which is the intersection of the lines cR and fR� 1; cf. Fig. 2.
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Table 1

Numbers of integrable equations

n 4 5 6 7 8 9 10 11 12 13

# 3 5 7 8 12 15 18 23 26 33

n 14 15 16 17 18 19 20 21 22 23

# 37 44 45 61 57 76 74 89 87 116
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Lemma 18. If ðc;fÞ are biunit coordinates of r, then we have

r ¼ Pðc;fÞ ¼ c2 ðfþ 1Þðf� 1Þ
ðcþ fÞðc� fÞ: ðA:1Þ

Proof. We solve the system of linear equations in jrj and jr þ 1j

jrj sinðargðrÞÞ ¼ jr þ 1j sinðargðr þ 1ÞÞ;

jr þ 1j cosðargðr þ 1ÞÞ ¼ jrj cosðargðrÞÞ þ 1:

This gives

jrj ¼ sinðargðr þ 1ÞÞ
cosðargðr þ 1ÞÞ sinðargðrÞÞ � sinðargðr þ 1ÞÞ cosðargðrÞÞ:

Using the identities

sinðargðrÞÞ ¼ c� c�1

2i
; cosðargðrÞÞ ¼ cþ c�1

2
;

sinðargðr þ 1ÞÞ ¼ f� f�1

2i
; cosðargðr þ 1ÞÞ ¼ fþ f�1

2
;

we express jrj in terms of c;f: Multiplying jrjðc;fÞ by c gives expression (A.1). &

From Definition 17 and from expression (A.1) it is clear that if ðc;fÞ are biunit
coordinates of r; then ð�c;fÞ and ðc;�fÞ are biunit coordinates of r as well. Note
that we have ca7f; i.e., there is no point rAC with biunit coordinates ðc;7cÞ:
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Fig. 2. The point r in biunit coordinates ðc;fÞ:
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The set of points

fPða; bÞjaAA; bABg

is denoted with PðA;BÞ:
Conjugation is a simple operation in biunit coordinates. If the biunit coordinates

of r are given by ðc;fÞ we have ðc�1;f�1Þ as biunit coordinates of %r; i.e.,

%r ¼ Pðc�1;f�1Þ ¼ ðcþ 1Þðf� 1Þ
ðc� fÞðcþ fÞ; ðA:2Þ

since %c ¼ c�1 whenever jcj ¼ 1:

Appendix B. Corollaries of the Lech–Mahler theorem

The following theorem is formulated and proven in [8].

Theorem 19 (Lech–Mahler). Let a1; a2;y; an;A1;A2;y;An be nonzero complex

numbers. Suppose that none of the ratios Ai=Aj with iaj is a root of unity. Then the

equation

a1Ak
1 þ a2Ak

2 þ?þ anAk
n ¼ 0

in the unknown integer k has finitely many solutions.

Using this theorem the following corollaries can be proven, cf. [3,12].

Corollary 20. Let a; b; c; d;A;B;C;D be nonzero complex numbers. Suppose that the

equation

aAk þ bBk þ cCk þ dDk ¼ 0

has infinitely many integers k as solution. Then at least one of the pairs A=B;C=D or

A=C;B=D or A=D;B=C consists of roots of unity.

Corollary 21. Let a; b; c; d;A;B;C;D be nonzero complex numbers. Suppose that

aAk þ bBka0 for all k and that the equation

aAk þ bBk þ cCk þ dDk ¼ 0

has infinitely many integers k as solution. Then at least one of the pairs A=C;B=D or

A=D;B=C consists of roots of unity.
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Appendix C. Diophantine equations

The material presented here is adapted from work done by Beukers.

Theorem 22 (Beukers). Let m; n be roots of unity. Suppose that m; na71; mn; nna1

and man; n�1: Then the Diophantine equation

1 � m
1 � n

� �n

¼ 1 � mn

1 � nn
ðC:1Þ

in the unknown positive integer n has no solution unless n ¼ 1:

Proof. The case n ¼ 2 is excluded with the following argument. Suppose

1 � m
1 � n

� �2

¼ 1 � m2

1 � n2
:

Then

1 � m
1 � n

¼ 1 þ m
1 þ n

:

Hence

1 þ n� m� mn ¼ 1 � nþ m� mn:

So, m ¼ n; a contradiction.
When n42 we use Lemma 23. Choose m; a; b positive integers such that

m ¼ za
m; n ¼ zb

m;

where zm ¼ e2pi=m and gcdða; b;mÞ ¼ 1: We distinguish two cases.

(1) gcdða;mÞ ¼ 1 or gcdðb;mÞ ¼ 1: Suppose the first case happens. Let a� be the
inverse of a modulo m: Then we see that

n ¼ ma�b:

We apply Lemma 23 with l � a�b ðmod mÞ and conclude that l ¼ 71: In other

words, a � 7b ðmod mÞ and we see that m ¼ n or m ¼ n�1:
(2) gcdða;mÞ41 and gcdðb;mÞ41: In this case the idea is to choose an integer l with

gcdðl;mÞ ¼ 1 such that

nl ¼ n; mla1; m; m�1:

Now replace m; n in the original equation by ml ; nl ¼ n: Divide the newly obtained
equation by the old one and we obtain an equation of form (C.2). Now apply

Lemma 23 to conclude that ml ¼ 1; m or m�1: Thus we get a contradiction, i.e.,
the original equation has no solution once we have found a suitable l:
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Now let us choose l: Since gcdða; b;mÞ ¼ 1; we can assume that not both
gcdða;mÞ and gcdðb;mÞ are even. Hence there is an odd prime p which divides
one of them, say gcdðb;mÞ: Because p is odd we can choose an integer

l ¼ 1 þ km

p
;

with k ¼ 72 and gcdðl;mÞ ¼ 1: Clearly, we have nl ¼ n: Moreover,

ml ¼ zaþakm=p
m ¼ mzakm=p

m ¼ me74pia=p:

Since a is not divisible by p we see that ml=m is a nontrivial pth root of unity.

Therefore mlam: Suppose that ml ¼ m�1: This implies that

me74pia=p ¼ m�1;

i.e., m is a pth root of unity. So if m is not a pth root of unity, l is found.
Now assume that m is a pth root of unity. So p divides m exactly once. Suppose

that n is an Nth root of unity. Since p divides b we get that N is not divisible by p:
In particular, gcdð p;NÞ ¼ 1: Suppose that p43: Then we choose, using the
Chinese remainder theorem, the number l such that

l � 1 mod N; l � 2 mod p:

Note that nl ¼ l and ml ¼ m2 which is different from m; m�1 since p43: We are left
with the case p ¼ 3: Now suppose that Na3; 4; 6: Then there is an integer c;
relatively prime with N such that cc71 mod N: Choose l such that l � 1 mod 3
and l � c mod N: Then

ml ¼ m; nl ¼ ncan; n�1:

We apply our argument with n and m interchanged to conclude that we get a
contradiction once more. Since N ¼ 3; 6 are not possible because 3 does not
divide N; we are left with the case p ¼ 3; N ¼ 4: Hence, we can assume that
m ¼ o; with o a primitive 3rd root of unity, and n ¼ i: Taking absolute values
squared on both sides of

1 � o
1 � i

� �n

¼ 1 � on

1 � in

yields

3

2

� �n

¼ 3

2e
;

where e ¼ 1 or 2 depending on whether n is odd or even. This is clearly
impossible when n41: &
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Lemma 23 (Beukers). Let m be a root of unity and l an integer. Suppose that ma71
and that for some n42 we have

1 � ml

1 � m

� �n

¼ 1 � mln

1 � mn
: ðC:2Þ

Then ml is either 1; m or m�1:

Proof. Suppose that m is a primitive mth root of unity for some mX3: By Galois

theory Eq. (C.2) still holds if we replace m by mh for any integer h with gcdðh;mÞ ¼ 1:
So we can assume that

m ¼ e2pi=m:

We can also assume that jljpm=2 by shifting l over multiples of m if necessary. For
any xA½�p; p
 we have the straightforward inequalities

2

p
jxjpj1 � eixjpjxj:

From this it follows that:

1 � ml

1 � m

����
����Xð2=pÞð2pjlj=mÞ

2p=m
¼ 2jlj

p
:

On the other hand,

1 � mln

1 � mn

����
���� ¼ j1 þ mn þ m2n þ?þ mðjlj�1Þnjpjlj:

Hence, we find that

2jlj
p

� �n

pjlj:

From this it follows that

ð2jlj=pÞn�1pp=2:

Using n42 we get

jljpðp=2Þ1:5o2:

Hence jljp1 and we have ml ¼ 1; m or m�1; as asserted. &

Proposition 24. Let m be a root of unity. Suppose that ma71: Then the diophantine

equation

ð1 � mÞn ¼ 2n�1ð1 � mnÞ

in the unknown positive integer n has no solution unless n ¼ 1:
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Proof. Division by 1 � m gives

ð1 � mÞn�1 ¼ 2n�1ð1 þ mþ?þ mn�1Þ:

Therefore

1 � m
2

should be an algebraic integer, i.e., in Z½m
; which is clearly not the case. &

Theorem 25 (Beukers). Let m; n be roots of unity. Suppose that

m; na71; mn; nna� 1; man; n�1; n41:

Then the Diophantine equation

1 � m
1 � n

� �n

¼ 17mn

1 þ nn

in the unknown positive integer n has no solutions.

Proof. The proof is similar to the proof of Theorem 22. The only differences are

* The case n ¼ 2 is excluded with the following argument. Suppose

1 � m
1 � n

� �2

¼ 1 þ m2

1 þ n2
:

Then

ð1 � mÞ2ð1 þ n2Þ � ð1 � nÞ2ð1 þ m2Þ ¼ 2ðm� nÞðmn� 1Þ ¼ 0:

So, m ¼ n or m ¼ 1=n; a contradiction. Suppose

1 � m
1 � n

� �2

¼ 1 � m2

1 þ n2
:

Then

ð1 � mÞ2ð1 þ n2Þ � ð1 � nÞ2ð1 � m2Þ ¼ 2ðm� 1Þðmðn2 � nþ 1Þ � nÞ ¼ 0:

Since ma1 we have

m ¼ n=ðn2 � nþ 1Þ:
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Substituting this into m %m ¼ 1 and using that %n ¼ 1=n we obtain that n2 ¼ �1 or
n ¼ 1; contradicting the assumptions.

* In the case gcdða;mÞ ¼ 1 or gcdðb;mÞ ¼ 1 we use Lemma 26 instead of Lemma 23

to conclude that mlAfm; 1; m�1g:
* The absolute value squared of ð1 þ onÞ=ð1 þ inÞ yields

1
4

when n � 4; 8 mod 12;

1
2

when n � 1; 5; 7; 11 mod 12;

1 when n � 0 mod 12;

2 when n � 3 mod 6:

The absolute value squared of ð1 � onÞ=ð1 þ inÞ yields

3
4

when n � 4; 8 mod 12;

3
2

when n � 1; 5; 7; 11 mod 12;

0 when n � 0; 3; 9 mod 12: &

Lemma 26. Let ma71 be a root of unity and l an integer. Suppose that for some nX2
we have

1 � ml

1 � m

� �n

¼ 1 þ amln

1 þ mn
; a ¼ 71; mna� 1: ðC:3Þ

Then, if a ¼ 1 we have ml ¼ m or ml ¼ m�1 and if a ¼ �1 we have ml ¼ 1:

Proof. Suppose that m is a primitive mth root of unity for some mX3: By Galois

theory Eq. (C.3) still holds if we replace m by mh for any integer h with gcdðh;mÞ ¼ 1:

So we can assume that m ¼ e2pi=m: We can also assume that jljpm=2 by shifting l

over multiples of m if necessary.
We have the estimate

2jlj
p

� �n

p
1 � ml

1 � m

����
����
n

:

On the other hand, we can give an upper bound for right-hand side by using the

bound j17mlnjp2 to obtain

2jlj
p

� �n

p
2

j1 þ mnj
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and hence

cos p
n

m

� ���� ���p p
2jlj

� �n

:

Then, using the estimate

jcos pxjXj2x � kj;

where k is the nearest odd integer to 2x; and jljX2 we get

n

m
� k

2

����
����p1

2

p
4

� �n

:

From these estimates it follows that n=mX0:19: Using this and the lower bound
n=m � k=2j jX1=ð2mÞ we get

1

m
p

p
4

� �0:19m

:

Hence mp100: But then,

1

100
p

1

m
p

p
2jlj

� �n

;

which in its turn implies that

2jlj
p

� �n

p100:

So we are left with a finite number of triples l;m; n: A small computer search yields
no solutions with a ¼ 71; 2pjljpm=2: When a ¼ 1 there are the solutions l ¼ 71

and hence ml ¼ m or m�1: When a ¼ 0 we have ml ¼ 1: &
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