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Almost integrable evolution equations
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Abstract. We present a 2-component equation with exactly two nontrivial generalized symme-
tries, a counterexample to Fokas’ conjecture that equations with as many symmetries as compo-
nents are integrable. Furthermore we prove the existence of infinitely many evolution equations
with finitely many symmetries. We introduce the concept of almost integrability to describe the
situation where one has a finite number of symmetries. The symbolic calculus of Gel’fand–Dikĭı
and p-adic analysis are used to prove our results.
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1. Introduction

The use of symmetries in the study of differential equations was initiated by S.
Lie. The idea is to consider a differential equation, ordinary or partial, and study
the transformation group in the independent and dependent variables that leaves
the equation invariant. In practice one studies the infinitesimal problem and one
determines the generators of a near-identity transformation. A Lie point symme-
try transforms the dependent and independent variables such that the solution set
remains invariant. This idea was generalized by E. Noether, who allowed the infini-
tesimal symmetry to depend on derivatives of the dependent variables, and proved a
one-to-one correspondence between these generalized symmetries and conservation
laws in the presence of a nondegenerate Lagrangian [14].

The nonlinear evolution equation ut = u3 + uu1 (where we use the abbrevi-
ation un for the nth derivative of u with respect to x) was derived to describe
water waves in shallow canals by Korteweg and de Vries [12]. The equation was
rediscovered by Kruskal and Zabusky and numerical computations verified the ex-
istence of local and stable waves. A bit of analytical understanding came with
the discovery of conservation laws other than the ones governing energy and mo-
mentum; infinitely many were found in [13]. Inspired by the result of Noether,
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infinitely many commuting symmetries of the KdV equation were constructed as
well; see [9] and [15]. The existence of infinitely many conservation laws was
viewed as integrability, a generalization of this concept for Hamiltonian systems
in finite-dimensional manifolds. Since then, several notions of integrability have
been introduced, and one cannot even begin to describe the literature of this still
expanding field. The relations among these different kinds of integrability are
strongly supported by computational evidence and sometimes by theorems. In this
paper we say that a system is integrable if it has infinitely many generalized sym-
metries. A good introduction to this subject and the general reference is [16]. The
background for some of the techniques we are using in this paper can be found
in [18], [3].

In 1980 an observation was made at least twice by different authors. In [7] it is
stated:

Another interesting fact regarding the symmetry structure of evolu-
tion equations is that in all known cases the existence of one general-
ized symmetry implies the existence of infinitely many.

And in [11] the same statement is made together with the footnote

This is not true for systems of equations. For example, the system
ut = u2 + (v2/2), vt = 2v2 has a nontrivial group, but this group is
exhausted by the one-parameter (with parameter τ) group of trans-
formations: uτ = u3 + 3vv1, vτ = 4v3.

However, although the remark in the footnote is true, the “counterexample” given
there is an integrable system, cf. [1]. In spite of this fact Fokas [8] adapted the
remark and formulated the following conjecture in 1987.

Conjecture 1 (Fokas). If a scalar equation possesses at least one time-indepen-
dent non-Lie point symmetry, then it possesses infinitely many. Similarly for n-
component equations, one needs n symmetries.

Four years later Bakirov [1] published the first example of a non-integrable
equation in the possession of a generalized symmetry. This was a fourth order 2-
component equation with a sixth order symmetry and it was shown (with extensive
computer algebra computations) that there are no other symmetries up to order
53. The authors of [3] proved in 1998 that the system of Bakirov does not possess
another symmetry at any higher order, thereby proving that indeed one symmetry
does not imply integrability.

For n = 1 the conjecture of Fokas is proven to be true for a large class of
equations in [18]. In Section 2 an outline of this proof is given, together with
references to the development of the symbolic calculus.
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In [20] it is stated that the Bakirov equation seems very exceptional. This is
not the case, as we show in Section 3 that there are infinitely many families of
non-integrable 2-component equations in the possession of nontrivial generalized
symmetries. Therefore these kind of equations are as common (or as rare) as in-
tegrable equations. We propose to call them almost integrable. This terminology
somehow reflects the idea of the conjecture.

Definition 1. An equation is called (symmetry-)integrable if it possesses infin-
itely many generalized symmetries and almost integrable of depth (at least,
at most) n if there are exactly (at least, at most) n generalized symmetries.
When an equation is almost integrable but not integrable we say that it is almost
integrable of finite depth.

In Section 4 we show the Fokas conjecture to be false for n = 2 by constructing
three 9-parameter families of 2-component equations which is almost integrable of
depth 2.

These results are of importance both to the somewhat philosophical question
“What is integrability” and to the more practical question of how to algorithmi-
cally check integrability, since some authors take the conjecture as their definition
of integrability (cf. [17]). It is our point of view that this last choice does not
suffice, and that it is necessary to produce an explicit proof for the existence of
infinitely many symmetries. An important object of research is the recognition
and classification of integrable (and almost integrable) equations. Some further
developments on this subject are included in Section 5.

We felt it appropriate to give detailed proofs (Appendix A). To convince the
reader that the approach is largely constructive we have included our counterex-
ample and both symmetries explicitly. Appendix B contains Maple [6] code that
produces them.

2. A classification of scalar equations

The class of homogeneous scalar equations with nonnegative scaling parameter of
the form

ut = um + f(u, u1, . . . , um−1)

is classified with respect to symmetries in [18]. To find equations with symmetries
one usually derives obstructions by requiring that the Lie bracket vanishes. We
indicate how Sanders and Wang were able to:

1. deduce an obstruction for the general equation to possess a symmetry on
an arbitrary order;

2. reduce the number of obstructions to be solved.
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The first is done in the symbolic calculus as developed by Gel’fand and Dikĭı
in [10]. See also [24] where the calculus was used in connection with symmetries.
There is a one-to-one correspondence between functions like f and symmetric poly-
nomials in the symbol ξ = (ξ1, ξ2), i.e.,

ûiuj =
ξi
1ξ

j
2 + ξj

1ξ
i
2

2
u2.

In the symbolic calculus the obstructions become divisibility conditions, which can
be solved for infinitely many orders at once.

For the second aim, an implicit function theorem was formulated and proved.
This theorem states that under certain technical conditions the existence of one
symmetry ensures us that the number of obstructions to be solved for proving the
existence of the other symmetries is finite and independent of the order of the
symmetries.

Relative primeness of certain elementary polynomials (so called G-functions)
was proved using Diophantine approximation theory [2]. This ultimately provided
the proof of Fokas’ conjecture for n = 1.

3. B-equations

The class B consists of all equations Bn
a (K) having the form(

ut

vt

)
=

(
aun + K(v, v1, . . . , vn−1)

vn

)
, a ∈ C,

where K is a quadratic polynomial with complex coefficients and the order of the
equation (n) exceeds the number of derivatives for each term of K. We refer to
the parameter a as the eigenvalue of the problem. In general one would have two
eigenvalues to deal with, but we assume one of them to be nonzero and scale it to
one. The class B contains many integrable equations as well as almost integrable
equations of finite depth. The property which makes B nice is that all symmetries
of almost all Bn

a (K) are in B. The exceptions are a = 1 or n = 1, cf. [1], [22].
We use the symbol η to translate v and its derivatives. In the symbolic calculus

the condition for Bm
b (S) to be symmetry of the Bn

a (K) is (cf. [3], [23])

Gn[a] Ŝ = Gm[b] K̂, (1)

where the G-functions are defined as follows:

Gn[a](η) def= a(η1 + η2)n − ηn
1 − ηn

2 .
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Consequently, if we find some b and m such that Ga[n] divides the product Gm[b]K̂,
then Ŝ is a polynomial in η and we have found a symmetry explicitly. Notice that
we do not need the implicit function theorem here.

Because the G-functions are symmetric in η, we use

X
def= η1 + η2 and Y

def= η1η2

and remark that all symmetric functions can be written in terms of X and Y . For
example every G2[a] is written Y − cX2 for some c ∈ C. It follows from Lemma
4 that we can always find some polynomial Bm(c) such that Y − cX2 divides
Gm[Bm(c)](X,Y ). Therefore any B2

a(K) is integrable with symmetries on every
order.

Consider B4
a(K). This system has a symmetry if G4[a] divides Gm[b]K̂. It is

possible that some second degree factor F̂ of G4[a] divides K̂. But then G4[a]/F̂
can be written as cG2[d] for some c, d. We see that in this case B4

a(K) is a symmetry
of B2

d(K̂/cF̂ ),

G2[d] K̂ = G4[a]
K̂

cF̂
.

In the following, since we want to produce equations that are almost integrable
of finite depth, we are going to search for all a for which there exist some b such
that G4[a] divides Gm[b] at some order m. Observe that for such pairs (a, 4) and
(b,m), the result is valid for any (not necessarily homogeneous) K and thus the
number of parameters in the family of almost integrable B4

a equals six (the number
of symmetric polynomials in two variables of degree less than four).

We write G4[a] as a function of X,Y and factorize

G4[a](X,Y ) = (a− 1)X4 + 4X2Y − 2Y 2

= −2(Y − (1 + α)X2)(Y − (1− α)X2)

with

α
def=

√
a + 1

2
.

We see that G4[a] divides Gm[Bm(1±α)] only if Bm(1+α) equals Bm(1−α). This
condition is trivially satisfied when α = 0. We call the point where this happens
(a = −1) the trivial root. It will be removed by division,

Qm(α) def=
Bm(1 + α)−Bm(1− α)

α
. (2)

By the results of Appendix A the roots of Qm(α) give the eigenvalues a of all
almost integrable B4

a(K).



710 P.H. van der Kamp and J.A. Sanders Sel. math., New ser.

Lemma 1. Qm(α) has a nontrivial root if 5 < m 6= 1 mod 3.

Proof. Lemma 5 proves that Qm(α) is a polynomial in a of degree bm/4 − 1/2c,
where bxc denotes the largest z ∈ Z such that z ≤ x. This means that Qm(α)
has a root for all m > 5. Lemma 6 proves that α = −1 is a root only if m = 1
mod 3. This is not surprising, the family B4

−1 is integrable and has symmetries at
all orders 1 mod 3, cf. [4]. ¤
Theorem 1. There are infinitely many systems which are almost integrable of
finite depth.

Proof. By Lemma 1 we have infinitely many candidates, given by B4
a(K) with a the

nontrivial roots of Qm(α). In principle all but a finite number of these roots could
equal an eigenvalue of an integrable equation. This is not the case. By Corollary 7
and the results of [4] we know all integrable B4

a. Their eigenvalues are a = 0,−1,−3
and their symmetries appear at orders m = 4 mod 8, 1 mod 3, 0 mod 4, respectively.
Now take for example roots of Qm(a) for m = 6 mod 12. The corresponding
equations have at least one symmetry and they are not integrable. ¤

To end the section we remark that the Bakirov equation mentioned in the
introduction is B4

5(v
2) (its symmetry is B6

11(5v2v0 + 4v2
1)) and that finding all

almost integrable B5
a(K) can be done with the same method.

4. The counterexample to Fokas’ conjecture

Theorem 2. The 2-component equation

ut = au7 + 2vv2 + cv2
1

vt = v7

where a = −6−14ρ+14ρ2, c = 3−ρ2 and ρ3 = ρ+1, is almost integrable of depth
two.

Proof. We first prove the existence of an 7-th order equation that possesses sym-
metries at order 11 and 29. Second, we show how to calculate its coefficients and
the symmetries. Third, we prove that the equation does not possess another higher
order symmetry.

Lemma 2. Let
An(r) def=

1 + rn

(1 + r)n
.

We have

• (η1 + η2) divides Gn[a](η) for all odd n ∈ N

• (η1−rη2)(rη1−η2) divides Gn[An(r)](η) for all 1 < n ∈ N and −1 6= r ∈ C.
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Proof. By substitution of η1 = −η2 in Gn[a](η) and substitution of η1 = rη2,
η2 = rη1 in Gn[An(r)](η). ¤

This Lemma implies that every G-function of the form G7[A7(r)] is divisible by
some third degree polynomial. The quotient is a fourth degree symmetric polyno-
mial for which we can determine whether it divides the higher G-functions by using
the method described in Section 3,

G7[A7(r)](η1, η2)
(η1 − rη2)(rη1 − η2)(η1 + η2)

= −7(1 + r)4(Y − fX2)(Y − hX2)

with f(r), h(r) the solutions of

(1 + r)4x2 − (1 + r)2(2r2 + 3r + 2)x + (r2 + r + 1)2 = 0.

As in Section 3 there exists a symmetry at order m if Bm(f) equals Bm(h). The
fact that (B11(f)−B11(h)) and (B29(f)−B29(h)) share the common (nontrivial)
factor

P(r) def= (1 + r)6 + r(1 + r)4 − r3

proves the existence claim.
Take P(β) = 0. Then we have (1+β)2ρ−β = 0 with ρ3−ρ−1 = 0. The equation

and its symmetries can be expressed in terms of ρ. To obtain the eigenvalue a of
the equation we compute A7(β). Since the orders of the symmetries are odd, X
is not necessarily a divisor of the quadratic part. To obtain the coefficient c we
translate

K̂ = (η1 − βη2)(η1 − 1
β

η2)v2

back to differential language. We now observe that A7(ρ) = a, i.e., ρ is a root
of G7[a]. Therefore, to obtain the eigenvalues of the symmetries we can compute
A11(ρ) and A29(ρ). Finally the quadratic parts are given by

Ŝi =
Gi[Ai(ρ)] K̂

G7[a]
, i = 11, 29.

The symmetries are

ut = (67 + 66ρ− 88ρ2)u11 +
11
7

(−1 + ρ)
(
4vv6 + (24− 6ρ− 6ρ2)v1v5

+(66− 16ρ− 22ρ2)v2v4 + (45− 11ρ− 16ρ2)v2
3

)
vt = v11
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and

ut = (114841 + 139200ρ− 170520ρ2)u29 +
29
7

(−15 + 10ρ + ρ2) (240vv24

+ (5008− 1682ρ− 1392ρ2)v1v23 + (59262− 20344ρ− 18180ρ2)v2v22

+ (449892− 149154ρ− 143536ρ2)v3v21 + (2438248− 778062ρ

− 801660ρ2)v4v20 + (10030734− 3088458ρ− 3383928ρ2)v5v19

+ (32544982− 9700890ρ− 11221688ρ2)v6v18 + (85419408− 24747138ρ

− 29993464ρ2)v7v17 + (184573840− 52205892ρ− 65767368ρ2)v8v16

+ (332407424− 92241166ρ− 119786848ρ2)v9v15 + (503230226

− 137718440ρ− 182798468ρ2)v10v14 + (644020664− 174769884ρ

−235057120ρ2)v11v13 + (349486397− 94573740ρ− 127758838ρ2)v2
12

)
vt = v29

Now we prove that the equation is almost integrable of depth at most 2. Let δ
be a root of G7[a] not equal to −1, β, 1/β, ρ, 1/ρ. If the equation has a symmetry
on order k, we have

Ak(δ) = Ak(ρ) (3)

which can be written in the form

Uk
def= ak + bk − ck − dk = 0.

with
a = 1 + ρ, b = (1 + ρ)δ, c = 1 + δ, d = (1 + δ)ρ.

Now the problem is to find all k for which Uk = 0. The following lemma was proved
in [3] and used to prove that the Bakirov equation is almost integrable of depth 1.

Lemma 3 (Skolem). Suppose p is an odd prime. Let a, b, c, d ∈ Zp and suppose
they are not zero modulo p. By the little theorem of Fermat we can find unique
ã, b̃, c̃, d̃ ∈ Zp such that

ap−1 = 1 + pã, bp−1 = 1 + pb̃, cp−1 = 1 + pc̃, dp−1 = 1 + pd̃.

Define
Vk

def= ãak + b̃bk − c̃ck − d̃dk.

The following holds:

• If Uk 6≡ 0 mod p then Uk+r(p−1) 6= 0 for all r ∈ Z.
• If Uk = 0 and Vk 6≡ 0 mod p then Uk+r(p−1) = 0 implies r = 0.
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From now on everything can be done p-adically. Due to the lemma of Skolem
we only have to check a finite number (p− 1) of orders if all the involved roots are
in Zp. Moreover all the calculations can be done modulo p2. For our purpose the
prime p = 101 suffices.

We choose ρ ≡ 20+76p, a particular root of x3−x−1 and calculate a ≡ 62+37p.
We take δ = 52+76p, another root of G7[a] that is neither a root of P(r) nor equal
to 1/ρ. This gives

a ≡ 21 + 76p, b ≡ 82 + 3p, c ≡ 53 + 76p, d ≡ 50 + 3p,

ã ≡ 54, b̃ ≡ 97, c̃ ≡ 99, d̃ ≡ 16.

For 0 ≤ k < p−1 we have Uk ≡ 0 mod p only if k = 0, 1, 7, 11, 29. Moreover for k =
0, 1, 7, 11, 29 we have Vk 6≡ 0 mod p. Lemma 3 then states that k = 0, 1, 7, 11, 29
are the only values for which condition (3) can be satisfied. ¤

Corollary 1. There is still some freedom in the choice of K̂. One can multiply
(η1−βη2)(η1−η2/β)v2 with any symmetric polynomial in η of degree less than 5 not
divisible by Y − fX2 or Y − hX2. Although the symmetries evidently change, the
proof does not. Also the root ρ can have three different values. Therefore, instead
of an example of an equation with 2 symmetries, we have found three 9-parameter
families.

5. Conclusions and further developments

We have presented a counterexample to the conjecture of Fokas. This result puts a
burden of proof on anyone claiming (almost) integrability (with respect to gener-
alized symmetries): it is necessary to produce an explicit proof for the existence of
finitely or infinitely many symmetries. The symbolic method in combination with
number theory is very well suited to this purpose.

With the method employed in Section 3 and 4 we can determine all B-equations
at order 4, 5, 6 and 7 that possesses a symmetry at some fixed order. Another
method, using resultants, that covers also the cases where the order of the equations
is higher than 7 is introduced in [23].

The method of Skolem depends on the existence of a suitable prime. It is not
always easy to find such a prime (try n = 5,m = 19). Some refinements were made
to make more primes suitable, cf. [23]. Extensive computer calculations, presented
in [23], have shown the following.

Theorem 3. Take 3 < n < 11, n < m < n + 151 and m 6= 11, 29 when n = 7.
Then, all n-th order non-integrable B-equations with a symmetry of order m are
almost integrable of depth 1.
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Thus, the depth of any non-integrable B-equation might be at most 1, except
of course for the counterexamples we presented, whose depth is 2. In this respect
one could conjecture the following.

Conjecture 2. Let r, s ∈ C and be given such that both r, s are neither roots of
unity nor zero and r 6= s, s−1. Moreover, assume that they are not both zeros of

(x3 − x− 1)(x3 + x2 − 1)(x6 + 3x5 + 5x4 + 5x3 + 5x2 + 3x + 1).

Then the Diophantine equation

(1 + rn)(1 + s)n − (1 + sn)(1 + r)n = 0

has at most two solutions n > 1.

The p-adic method of Skolem is used to calculate the depth of almost integrable
equations. For recognition and classification of integrable equations we use another
method from number theory. This method is based on the Theorem of Lech–Mahler
and was, as the p-adic method, introduced first in connection with generalized
symmetries in [3].

Theorem 4 (Lech-Mahler). Let a1, a2, . . . , an, A1, A2, . . . , An be nonzero complex
numbers. Suppose that none of the ratios Ai/Aj with i 6= j is a root of unity. Then
the equation

a1A
k
1 + a2A

k
2 + . . . + anAk

n = 0

in the unknown integer k has finitely many solutions.

In [3] equations of the form Bn
a (v2) with a 6= 1, n > 1 where considered. Using

the Lech–Mahler Theorem it was proven that such an equation is not integrable
when n ≥ 6 or when n = 4, 5 under some condition on the zeros of Gn[a] [3,
Theorem 2.2]. Moreover it was conjectured that this condition was violated in
a finite number of cases [3, Conjecture 2.3]. Using an algorithm of C.J. Smyth
[5], that solves polynomial equations for roots of unity, this conjecture became
a theorem [4, theorem 2.1] and the following list was proven to be exhaustive
(a ∈ C, a 6= 0):{

ut = au2 + v2

vt = v2

,

{
ut = au3 + v2

vt = v3

,{
ut = −u4 + v2

vt = v4

,

{
ut = −3u4 + v2

vt = v4

,{
ut = − 1

4u5 + v2

vt = v5

,

{
ut = −13±5

√
5

2 u5 + v2

vt = v5

,{
ut = u5 + v2

vt = v5

,

{
ut = u7 + v2

vt = v7

.



Vol. 8 (2002) Almost integrable evolution equations 715

A corollary, cf. [4, corollary 2.1], says that each of the above equations with
arbitrary quadratic part (in derivatives of v) is integrable as well. It was remarked
that the list is not necessarily complete in this more general class B.

The complete classification of integrable B-equations is presented in [21]. In that
article a more direct method than the one in [4] is presented by which the eigen-
values of all integrable B-systems at order 4 and 5 can be obtained. This method
makes it possible to classify integrable B-systems of higher order, a task that has
been carried out till order 23. It was noticed that more structure was to be found
in the collection of roots of the G-functions than in the collection of eigenvalues of
the integrable B-equations. Unraveling this structure seemed an impracticable task
until the day the roots were plotted in the complex plane. A beautiful perfectly
regular pattern did arise! To describe this pattern it is convenient to use so called
bi-unit coordinates. If r ∈ C \ R is the intersection of the lines ψR and φR − 1
where |ψ| = |φ| = 1, ψ, φ 6= ±1 the bi-unit coordinate expression for r is

r(ψ, φ) = ψ2 (φ + 1)(φ− 1)
(ψ + φ)(ψ − φ)

.

Moreover, roots of unity play a special role. The set of all n-th roots of unity ζ
where ζ 6= ±1 will be denoted by Φn. The following Theorem is proven in [21].

Theorem 5. Let n > 3. The eigenvalues of all integrable n-th order B-equations,
that are not in a hierarchy of order smaller than 4, are An(r) with

1. r ∈ r(Φ2n,Φ2n) such that |r| 6= 1, or

2. r ∈ Φn−1, or

3. r ∈ Φ2n such that rn = −1.

In [21] the recognition problem is solved as well. An effective method, using re-
sultants is given to determine whether a given B-equation is integrable and whether
the equation is contained in a lower hierarchy.

Although B-equations seems quite special, the implication for the general equa-
tion is immediate. Whenever a equation has a part that is a non integrable B-
equation, the equation is not integrable. Furthermore B-equations can have quite
complicated appearance. An equation in the classification list of second order
2-component equations presented in [19] appeared to be a B-equation after a non-
linear transformation [25]. Also the techniques that are employed and developed
for the classification and recognition of both integrable and almost integrable B-
equations play a role in other classification programs, cf. [19], [22].
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Appendix A.

Some technical results

Lemma 4. For all c ∈ C and 1 < m ∈ N there exist a unique b ∈ C such that
Y − cX2 divides Gm[b](X,Y ).

Proof. The polynomials Rm(η) def= ηm
1 + ηm

2 satisfy the recurrence relation

R0 = 2, R1 = X,Rm+2 = XRm+1 − Y Rm.

We substitute Y = cX2 and obtain Rm(X,Y ) = Bm(c)Xm with

Bn(c) =
(

1 +
√

1− 4c

2

)n

+
(

1−√
1− 4c

2

)n

.

We see that Gm[b](X,Y ) = bXm − Rm(X,Y ) is in the ideal of Y − cX2 if b =
Bm(c). ¤

Lemma 5. Qm(α(a)) is a polynomial in a of degree bm−2
4 c.

Proof. Using the binomial formula one can see that

(1 + α)n − (1− α)n

α
.

has degree bn−1
2 c. By Lemma 4 the highest power of the polynomial Bm(x) is bm

2 c.
It follows that Qm(α(a)) is polynomial in a and has degree b bm

2 c−1

2 c. ¤

Lemma 6. a = −1 is a root of Qm(α(a)) only if m = 1 mod 3.

Proof. Look at the multiplicity of α in Pm(α) def= αQm(α) in the point where
a = −1. One sees that P

′
m(0) = 0 only if m = 1 mod 3. ¤

We look at the subclass of B where the eigenvalue is zero.

Lemma 7. For all n the family Bn
0 is integrable. There exists symmetries of order

n mod 2n.

Proof. There exists a symmetry Bm
0 (S) if Gn[0] divides Gn[0]. We have ηn

1 +ηn
2 = 0

implies ηm
1 + ηm

2 = 0 when m = (2k + 1)n. ¤
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Appendix B.

MAPLE code to compute the counterexample and its symmetries

G:=unapply(a*(x+y)^n-x^n-y^n,a,n):
A:=unapply(factor((1+r^n)/(1+r)^n),r,n):
alias(rho=RootOf(X^3-X-1,X)):
beta:=RootOf((X+1)^2*rho-X):
K:=x^2+y^2-factor(beta+1/beta)*x*y:
for i in [7,11,29] do
a||i:=factor(A(rho,i)):
K||i:=[a||i*u[i]+factor(TRANS(factor(G(a||i,i)/G(a7,7)*K))),v[i]]
od;

We used the program TRANS that translates polynomials in x,y to quadratic
polynomials in derivatives of the function v.

TRANS:=proc(P)
local R,e,i,Q:
R:=0:Q:=expand(P):
if type(Q,‘+‘) then
Q:=convert(Q,list) else
Q:=[Q] fi:
for e in Q do
e:=e*v[degree(e,x)]/x^degree(e,x)*v[degree(e,y)]/y^degree(e,y):
R:=R+e od:
RETURN(R) end:
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