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Abstract
We derive an nth order difference equation as a dual of a very simple periodic
equation, and construct !(n+1)/2" explicit integrals and integrating factors of
this equation in terms of multi-sums of products. We also present a generating
function for the degrees of its iterates, exhibiting polynomial growth. In
conclusion we demonstrate how the equation in question arises as a reduction
of a system of lattice equations related to an integrable equation of Levi and
Yamilov. These three facts combine to suggest the integrability of the nth order
difference equation.

PACS number: 02.30.Ik

1. Introduction

The notion of duality for difference equations was introduced in [1]. It was indicated there
that integrable nonlinear equations often have integrable dual equations4. Sometimes dual
equations have even more intricate structure than the primary equations. In this paper we
explore this possibility starting with a somewhat trivial integrable equation: the nth order
linear periodical equation: u(l + n) = u(l), where l is the discrete variable and n is a fixed
integer. For simplicity we re-write this equation employing subscripts:

ul+n − ul = 0. (1)

Obviously, any function I(ul, . . . , ul+n−1) invariant under cyclic permutations is an integral of
(1). In other words, for suitable functions I, the following relation is satisfied

!I = (S − 1)I = (ul+n − ul )"(ul, . . . , ul+n),

4 Recently we discovered integrable maps whose duals do not seem to be integrable [12].
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where S stands for the shift operator with respect to the independent variable: S(a(l)) =
a(l + 1). The function " is called an integrating factor, and the equation " = 0 can be
regarded as a dual to equation (1). Remarkably, as we will see below, a particular choice of
integral leads to a seemingly integrable dual equation for all orders n. Another interesting
aspect in this construction is the appearance of a combinatorial object known as a multi-sum
of products. The latter seems to have first appeared in [2] as an ingredient in the construction
of closed-form expressions for integrals of MKdV and sine-Gordon maps.

We take an integral of (1) in the form

I =




n−1∏

q=0

ul+q



 + ζ

(
n−1∑

s=0

ul+s

)−1

,

where ζ is an arbitrary constant. Let us find the dual equation for (1) corresponding to this
integral. Differencing the above expression, we get

!I = (ul+n − ul )








n−1∏

q=1

ul+q



 − ζ




n∑

s=1

ul+s

n−1∑

p=0

ul+p




−1



 .

Therefore, the dual equation for (1) can be written as
n∑

s=1

ul+s

n−1∑

p=0

ul+p

n−1∏

q=1

ul+q = ζ . (2)

A more symmetric dual equation is found by interchanging integral I and constant ζ . We set
I = α, from which we obtain

ζ =
n−1∑

s=0

ul+s



α −
n−1∏

q=0

ul+q



 . (3)

Note that the integrating factor corresponding to integral ζ is still ul+n − ul . Replacing ζ in
(2) by the above expression we derive the equation

n∑

s=0

ul+s

n−1∏

q=1

ul+q = α. (4)

The general construction of interchanging parameters and integrals introduced in [3] ensures
that (3) is an integral of (4). The remainder of this paper will be focused on studying
equation (4).

2. Integrals and multi-sums of products

Multi-sums of products were introduced in [2] in order to give closed-form expressions for
integrals of mKdV and sine-Gordon maps. Further research revealed the ubiquity of this object
[4, 5]. It was shown that integrals of travelling wave reductions of equations from the ABS list
[6] can be expressed in terms of similar objects. In particular, the integrals of reductions of
the lattice potential Korteweg–De Vries (pKdV) equation can be expressed in terms of certain
functions %.

In this section, the multi-sums of products, %, are used to construct !(n−1)/2" additional
integrals of (4). These functions are introduced in the following way. Suppose we have an
ordered sequence of N = b − a + 1 variables

ul+a, ul+a+1, . . . , ul+b−1, ul+b, (5)
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where a < b are some integers. Let us pick k different entries from the above sequence
avoiding taking neighbouring ones, and form the products

ul+i1 ul+i2 . . . ul+ik . (6)

Thus, choosing i1 < i2 < . . . < ik, the integers i j must satisfy the inequalities i j+1 − i j > 1.
Products (6) correspond to seating configurations with N seats and k persons who are not
allowed to occupy neighbouring seats. The multi-sum of products %a,b

k is defined as the sum of
all such products. It follows directly from this definition that %a,b

k is a homogeneous polynomial
of order k, and that

%a,b
k = 0, for k > (N + 1)/2.

It is also worth noting that in the particular cases when k = 0, k = 1, we have

%a,b
0 = 1, %a,b

1 =
b∑

i=a

ul+i, (7)

respectively. The following identities, involving multi-sums of products, %, will facilitate the
construction of integrals of (4):

%a,b
k = %a+1,b

k + ul+a%
a+2,b
k−1 , %a,b

k = %a,b−1
k + ul+b%

a,b−2
k−1 . (8)

Each of these identities is valid for arbitrary k. Indeed, if we collect the terms in %a,b
k which

do not contain ul+a, we obtain %a+1,b
k . The sum of all terms that contain ul+a can be written

as ul+aF , where F is a homogeneous polynomial of order k − 1. This polynomial F cannot
contain ul+1 as this would contradict the definition of %, therefore F = %a+2,b

k−1 . Collecting the
terms with and then without ul+b in %a,b

k , we see that the second identity in (8) is also satisfied.
We note that identities (8) are particular cases of more general recursive formulae

%a,b
k =

k∑

i=0

(
%a,c−1

k−i %c+1,b
i + %a,c−2

k−i−1%
c,c
1 %c+2,b

i

)

=
k∑

i=0

(
%a,c−1

k−i %c+1,c+1
1 %c+3,b

i−1 + %a,c
k−i%

c+2,b
i

)
,

where a−1 ! c ! b+1. For more detailed exposition on properties of multi-sum of products
%, see [5].

Another identity, which will be used below, reads

%0,n
1 !%1,n−2

k = !
(
%0,n−1

1 %1,n−2
k − %0,n−1

k+1

)
. (9)

The proof is by direct calculation. Let us find the difference between left- and right-hand sides
of (9):

%0,n
1 !%1,n−2

k − !
(
%0,n−1

1 %1,n−2
k − %0,n−1

k+1

)
= %0,n

1 !%1,n−2
k − %0,n−1

1 !%1,n−2
k

−S(%1,n−2
k )!%0,n−1

1 + !%0,n−1
k+1

= ul+n!%1,n−2
k − %2,n−1

k !%0,n−1
1 + !%0,n−1

k+1 . (10)

Here we used the formula !(ab) = !(a)b + S(a)!(b). Using the obvious identity

!%a,b
k = %a+1,b+1

k − %a,b
k ,

we can rewrite (10) as

ul%
2,n−1
k − ul+n%

1,n−2
k + %1,n

k+1 − %0,n−1
k+1 . (11)
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Finally, due to formulae
%0,n−1

k+1 = %1,n−1
k+1 + ul%

2,n−1
k , %1,n

k+1 = %1,n−1
k+1 + ul+n%

1,n−2
k ,

which follow directly from (8), expression (11) is zero.
The last identity involving % to be mentioned here is

!%1,n−2
k∏n−1

s=1 ul+s

= −!

(
%2,n−3

k−1∏n−2
s=1 ul+s

)

. (12)

We have

−rhs = !

(
%2,n−3

k−1∏n−2
s=1 ul+s

)

=
%3,n−2

k−1∏n−1
s=2 ul+s

−
%2,n−3

k−1∏n−2
s=1 ul+s

=
ul+1%

3,n−2
k−1 − ul+n−1%

2,n−3
k−1∏n−1

s=1 ul+s

.

Applying formulae (8) written in the reverse direction to the above expression, we obtain

−rhs =
%1,n−2

k − %2,n−2
k − (%2,n−1

k − %2,n−2
k )

∏n−1
s=1 ul+s

= −
!%1,n−2

k∏n−1
s=1 ul+s

= −lhs.

Combining formulae (9) and (12), we obtain(

%0,n
1

n−1∏

s=1

ul+s − α

)
!%1,n−2

k∏n−1
s=1 ul+s

= !

(

%0,n−1
1 %1,n−2

k − %0,n−1
k+1 + α

%2,n−3
k−1∏n−2

s=1 ul+s

)

.

We have, therefore, proved the following:

Theorem. In addition to integral (3), equation (4) admits the following integrals

Ik = %0,n−1
1 %1,n−2

k − %0,n−1
k+1 + α

%2,n−3
k−1∏n−2

s=1 ul+s

, k = 1, . . . , !(n − 1)/2". (13)

The corresponding integrating factors have the form

"k =
!%1,n−2

k∏n−1
s=1 ul+s

.

Example. Let us write explicitly the integrals for the case n = 3. Equation (4) takes the form

ul+3 = −ul − ul+1 − ul+2 + α

ul+1ul+2
.

For this equation we have the polynomial integral given by (3):
I0 = ζ = (ul + ul+1 + ul+2)(α − ulul+1ul+2),

and one rational integral given by (13):

I1 = (ul + ul+1 + ul+2)ul+1 − ulul+2 + α

ul+1
.

Remark 1. We have proved that the integrals given by formulae (3) and (13) are functionally
independent; please see the appendix for details.

Remark 2. When n is odd, integral (3) can be rewritten in terms of multi-sums of products,
%, in the following way:

ζ = GH,

where

G = %0,n−1
1 %1,n−2

(n−1)/2, H = α −
∏n−1

i=0 ul+i

%1,n−2
(n−1)/2

.

Both H and G are 2-integrals of equation (4), i.e. they satisfy S2(G) = G on solutions of (4).
Moreover, they are related as S(G) = H, S(H) = G. This implies that the function G + H is
an integral and G − H an anti-integral (i.e. S(G − H) = H − G) of (4). This, however, does
not provide us with a new integral as G + H = I(n−1)/2.
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3. Algebraic entropy

Another characteristic property of integrable difference equations is that they seem to have
vanishing algebraic entropy:

lim
k→∞

ln dk

k
= 0,

where dk is the sequence of degrees of iterates. The notion of algebraic entropy was introduced
in [7, 8]; see also [9] and [10]. In fact, it has been observed that for integrable systems the
degrees grow polynomially (of degree at most 2 or 3), implying zero entropy.

We have checked the behaviour of the sequences dk for the maps of orders n =
2, 3, 4, . . . , 10. In all these cases dk(n) grows as a second degree polynomial in k. It has
been previously observed that generating functions for many discrete equations are rational
functions with integer coefficients. For the maps we studied, we have found remarkably
simple generating functions for the sequences, which seem to have the same form for arbitrary
order n.

Taking initial conditions ul = t and ul+i (0 < i < n) randomly chosen integers, and
n ! 10, it is sufficient to perform 30 iterations or less to reveal a generating function. Note
that the value of constant α can be set to 1 by rescaling ul—this speeds up the calculation
of dk.

Sequences dk corresponding to a few different n are given by

n = 2, {dk} = 1, 2, 3, 6, 9, 12, 17, 22, 27, 34, 41, . . .

n = 3, {dk} = 1, 2, 3, 5, 8, 11, 14, 18, 23, 28, 33, . . .

. . .

n = 10, {dk} = 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22, 25, 28, 32, 36, 40, 44, 48, 52, 56, 60,

65, 70, 75, 81, 87, . . . .

One can check that the generating function corresponding to these sequences is

fn(x) = − x3 + 1

(x − 1)2(xn+1 − 1)
,

that is, the Taylor series of fn equals fn(x) =
∑

k dk(n)xk. This function has a third order
pole at x = 1 which confirms the quadratic growth of dk [11]. Another choice of the initial
conditions, for example ul+1 = t and the other ul+i randomly chosen, will result in a different
generating function still having a third order pole at x = 1.

A second approach is to consider the second differences of the above sequences. The
fact that the second differences are periodic shows the sequences have quadratic growth, and
averaging yields the asymptotic behaviour

dk(n) ∼ 1
n + 1

k2.

4. Concluding remarks

We have presented an equation which is characterized by vanishing algebraic entropy and the
presence of a normally sufficient number of integrals. However, the proof of integrability in
the sense of Liouville–Arnold also requires the presence of a Poisson structure. Unfortunately,
the general form of a Poisson structure remains unknown apart from a few lower-order
cases (n = 2, 3). Other important properties of this equation include: the corresponding
n-dimensional mapping is reversible and volume preserving but orientation-reversing in odd
dimensions.
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Many known integrable maps are obtained as reductions of partial difference equations
like the ABS equations (see e.g. [4, 5]). Here we show how equation (4) is related to a reduction
of a system of lattice equations, which in turn is related, by a Miura transformation, to equation
(31) in [13]. However, it remains unknown how the Lax pair from Levi–Yamilov’s paper can
be employed to derive integrals of (4).

If we define vl = ul + ul+1 + · · · + ul+n then

vl+1 − vl = ul+n+1 − ul . (14)

Similarly, defining wl = ul+1ul+2 · · · ul+n−1 gives
wl+1

wl
= ul+n

ul+1
.

Using equation (4), which is vlwl = α to eliminate w we get
vl

vl+1
= ul+n

ul+1
. (15)

The system of equations (14) and (15) is the (n,−1)-reduction [14] of the lattice system

vk+1,m − vk,m = uk+1,m+1 − uk,m,
vk,m

vk+1,m
= uk,m+1

uk+1,m
, (16)

which acquires the form of a quotient-difference system; however, it is qualitatively different
from the quotient-difference system [15]. Introducing a field w such that

vk,m = β(m)wk−1,mwk,m, uk,m = β(m)wk−1,mwk,m + wk,m

the system reduces to a single equation

wk,m(β(m)wk+1,m + 1) = wk+1,m+1(β(m + 1)wk,m+1 + 1),

which is equation (31) in [13].
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Appendix. Functional independence of integrals

Since the set of integrals given by (3) and (13) consists of polynomial and rational functions,
it is sufficient to prove that the corresponding Jacobian matrix has a full rank at the point
u = (ul+i) = (1, . . . , 1) = 1.

Lemma A1. Let a ! b and 0 ! 2r ! b − a + 2; then, we have

%a,b
r

∣∣
u=1 =

(
b − a + 2 − r

r

)
. (A.1)

We first prove the case where a = 1 using induction with respect to b. It is easy to see
that with b = 1, we have

%1,1
0

∣∣
u=1 = 1 =

(
1 − 1 + 2 − 0

0

)
, and %1,1

1

∣∣
u=1 =

(
1 − 1 + 2 − 1

1

)
.

With b = 2, we have

%1,2
0

∣∣
u=1 = 1 =

(
2 − 1 + 2 − 0

0

)
,

%1,2
1

∣∣
u=1 = (ul+1 + ul+2)

∣∣
u=1 = 2 =

(
2 − 1 + 2 − 1

1

)
.
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Suppose the formula (A.1) holds for b = n − 1 and n (n " 2). We prove that it holds for
b = n + 1. Using (2), we get

%1,n+1
r = %1,n

r + ul+n+2%
1,n−1
r−1 .

Therefore, with ui = 1 we have

%1,n+1
r

∣∣
u=1 =

(
n − (r − 1)

r − 1

)
+

(
n + 1 − r

r

)
=

(
n + 2 − r

r

)
=

(
n + 1 − 1 + 2 − r

r

)
.

This means formula (A.1) holds for b = n + 1. Using the above result, we obtain

%a,b
r

∣∣
u=1 = %1,b−a+1

r

∣∣
u=1 =

(
b − a + 2 − r

r

)
.

Note that lemma 1 still holds if we define
(

n
r

)
=






0 if r < 0 or r > n,

1 if n " 0 and r = 0,
n!

r!(n−r)! if n " k and r > 0
(A.2)

for the cases where 2r < 0 or 2r > b − a + 2.
Now we can calculate the gradient of % using the recurrence

%a,b
k =

k−1∑

i=0

%a,c−2
k−i−1%

c+2,b
i ul+c +

k∑

i=0

%a,c−1
k−i %c+1,b

i , (A.3)

where a ! c ! b and k " 0, and formula (A.1). We have

∂%a,b
k

∂ul+c
=

k−1∑

i=0

%a,c−2
k−i−1%

c+2,b
i . (A.4)

The above expression when evaluated at u = 1 is

∂%a,b
k

∂ul+c

∣∣∣∣∣
u=1

=
k−1∑

i=0

(
c − a − k + i + 1

k − i − 1

) (
b − c − i

i

)
(A.5)

=
(

b − a + 2 − k
k

)
−

k∑

i=0

(
c − a − k + i + 1

k − i

) (
b − c − i + 1

i

)
. (A.6)

Therefore, we obtain the following.

Corollary. Let 0 < k < ! n−1
2 " = d and 2 ! r ! n − 2. We have

∂I0

∂ul+i

∣∣∣∣∣
u=1

= α − n − 1, 0 ! i ! n − 1,

∂Ik

∂ul

∣∣∣∣∣
u=1

= 0,

∂Ik

∂ul+1

∣∣∣∣∣
u=1

= −(α − n − 1)

(
n − 2 − k

k − 1

)
,

∂Ik

∂ul+r

∣∣∣∣∣
u=1

= −(α − n − 1)

k−1∑

i=0

(
r − k + i
k − i − 1

) (
n − 2 − r − i

i

)
.
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Denote the entries of the Jacobian matrix as

Ji j := ∂Ii/∂ul+ j, i, j = 0, . . . , d. (A.7)

All expressions below are evaluated at the point u = 1, so we omit the symbol |u=1.

Theorem A1. Let n > 4, then the matrix J given by (A.7) can be factorized as

J = −(α − n − 1) LU,

where L and U are respectively lower and upper triangular matrices with the entries:

Li j =






0 if i < j,
0 if j = 1, i > 0(

n − 1 − i − j
i − j

)
otherwise,

and Ui j =
{

0 if i > j,
(−1)i otherwise.

In order to prove this theorem, we first prove

Lemma A2. Let r and k satisfy the inequalities 2 ! r ! !(n + 1)/2" and 0 ! k ! n, then the
following formula is valid

∂%1,n
k

∂ul+r
=

r+1∑

i=2

(−1)i
(

n + 2 − k − i
k + 1 − i

)
. (A.8)

The proof proceeds by induction on n where n " 3. We denote T (n, k, r) and S(n, k, r)
the left- and right-hand sides of (A.8), respectively. One can check that the identity (A.8)
holds for n = 3, n = 4 and n = 5. Suppose that this identity holds for n − 1 and n where
r ! !n/2", 0 ! k ! n − 1 and 2 ! r ! !(n + 1)/2", 0 ! k ! n − 1, respectively. We need
to prove that it holds for n + 1 with 2 ! r ! !(n + 2)/2" and 0 ! k ! n + 1.

Using the recurrence for % we obtain

∂%1,n+1
k

∂ul+r
=

∂%1,n
k

∂ul+r
+ ul+n+1

∂%1,n−1
k−1

∂ul+r
. (A.9)

Therefore, we have

T (n + 1, k, r) = T (n, k, r) + T (n − 1, k − 1, r). (A.10)

It is also easy to see that the right-hand side of (A.8) satisfies the same recurrence, i.e.

S(n + 1, k, r) = S(n, k, r) + S(n − 1, k − 1, r). (A.11)

Therefore, using induction on n we obtain T (n + 1, k, r) = S(n + 1, k, r) if r ! !n/2" and
k ! n.

Now we have to prove that T (n+1, k, r) = S(n+1, k, r) for k = n+1 or r = !(n+2)/2".
If k = n + 1, we have T (n + 1, k, r) = 0 as %1,n+1

k = 0 and also S(n + 1, k, r) = 0 as
(

n + 2 − k − i
k + 1 − i

)
= 0 for i " 2.

Thus, we get T (n + 1, k, r) = S(n + 1, k, r).
If r = !(n + 2)/2", then one can see that S(n + 1, k, r) = 0 and T (n + 1, k, r) = 0

whenever 2k > n + 2. In the case where 2k ! n + 2, i.e. k ! r, we have

%1,n+1
k = %2,n+1

k + ul+1%
3,n+1
k−1 .

Using the formula

∂%3,n+1
k−1

∂ul+r
=

∂%1,n−1
k−1

∂ul−2+r
and

∂%2,n+1
k

∂ul+r
=

∂%1,n
k

∂ul−1+r

8
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for r > 3 we obtain T (n + 1, k, r) = T (n, k, r − 1)+ T (n − 1, k − 1, r − 2). In the case where
r = 3, i.e. n = 4 or n = 5, one can verify that S(n + 1, k, r) = T (n + 1, k, r).

Employing induction by n for r > 3, we get

T (n + 1, k, r) =
r∑

i=2

(−1)i
(

n + 2 − k − i
k + 1 − i

)
+

r−1∑

i=2

(−1)i
(

n + 2 − k − i
k − i

)

=
r∑

i=2

(−1)i
(

n + 3 − k − i
k + 1 − i

)
− (−1)r

(
n + 2 − k − r

k − r

)
.

Hence, for k < r we have

T (n + 1, k, r) =
r∑

i=2

(−1)i
(

n + 3 − k − i
k + 1 − i

)
=

r+1∑

i=2

(−1)i
(

n + 3 − k − i
k + 1 − i

)
= S(n + 1, k, r),

and in the case when k = r, we get

T (n + 1, k, r) =
r∑

i=2

(−1)i
(

n + 3 − k − i
k + 1 − i

)
− (−1)r =

r+1∑

i=2

(−1)i
(

n + 3 − k − i
k + 1 − i

)

= S(n + 1, k, r).

This proves our statement
Using lemma 2, one can easily see that

k−1∑

i=0

(
r − k + i
k − i − 1

) (
n − r − i

i

)
=

r+1∑

i=2

(−1)i
(

n + 2 − k − i
k + 1 − i

)

=
min(r+1,k+1)∑

i=2

(−1)i
(

n + 2 − k − i
k + 1 − i

)
.

(A.12)

We are now ready to prove theorem 1. Denote M := −(α − n − 1) LU . One can show
that

Mi j =






α − n − 1, if 1 ! j ! d + 1, i = 1,

0, if 1 < i ! d + 1, j = 1,

−(α − n − 1)

(
n − i − 3

i − 2

)
, if 1 < i ! d + 1, j = 2,

−(α − n − 1)

(∑min(i, j)
r=2 (−1)r

(
n − 1 − r − i

i − r

))
, otherwise,

which equals to Ji j = ∂Ii−1/∂u j−1. This proves our statement.
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