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Abstract

We present a method to construct superintegrable n-component Lotka-Volterra systems
with 3n− 2 parameters. We apply the method to Lotka-Volterra systems with n components
for 1 < n < 6, and present several n-dimensional superintegrable families. The Lotka-Volterra
systems are in one-to-one correspondence with trees on n vertices.

1 Introduction

The original 2-dimensional Lotka-Volterra (LV) system,

ẋ = x(a− by), ẏ = y(−c+ dx), (1)

where ẋ denotes the derivative with respect to time, was derived as a model to describe the
interaction between predator and prey fish [18, 25, 10]. Sternberg [22, Chapter 11] gives a dynam-
ical systems perspective and an explanation why fishing decreases the number of predators. The
2-dimensional system (1) has been generalised to n-dimensional systems of the form

ẋi = xi

(
bi +

∑
i

Ai,jxj

)
, (2)

where b is a real vector, and A is a real matrix, and these have been studied extensively. For
references on various aspects of LV systems, including integrability as well as their history, see
[1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 16, 17, 19]. Prelle and Singer wrote a very influential paper [20] proving
that if a polynomial ODE has an elementary integral, then it has a logarithmic integral. Note
that in the mathematical physics literature the matrix A is often assumed to be skew symmetric.
This is not assumed here.

A vector field on an n-dimensional manifold is called superintegrable if it admits n − 1 func-
tionally independent constants of motion (i.e. first integrals), cf. [24]. In this paper we construct
superintegrable n-component Lotka-Volterra systems with 3n− 2 parameters.

Darboux polynomials (DPs) are building blocks of rational integrals and their generalizations
[11, 13]. Given an ordinary differential equation (ODE)

dx

dt
= f(x),
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where x(t) and f are n-dimensional vectors, a Darboux polynomial P (x) is defined by the existence
of a polynomial C(x) s.t.

dP (x)

dt
= C(x)P (x) (3)

Note that (3) implies that if P (x(0)) = 0, then P (x(t)) = 0,∀t. For this reason Darboux polyno-
mials are also called second integrals.

In section 2, we provide a method to obtain m integrals for an n-dimensional homogeneous
quadratic ODE, from m + n Darboux polynomials. In section 3, we give conditions on b and A
which are equivalent to

Pi,k = αxi + βxk

being a DP for (2). In section 4, we look at the intersection of the above two classes, i.e. at
homogeneous Lotka-Volterra systems, and use the described method and mentioned DPs to con-
struct some superintegrable systems in dimensions 2, 3, and 4. In section 5, we explain how these
superintegrable n-dimensional LV systems are in one-to-one correspondence with trees on n ver-
tices. Such a tree has n− 1 edges, and each of these edges corresponds to an integral. If an edge
exists between vertices i and k, the corresponding integral can be written as a product of Pi,k
and powers of the variables xj , j = 1 . . . n. In section 6, we cover the superintegrable LV-systems
which relate to the 3 non-isomorphic trees on 5 vertices. We also describe the factorisation of the
exponents of the variables in terms of minors of the matrix A. In our final section we give some
details for the superintegrable n-dimensional LV systems that relate to tall trees. In the appendix
we explain how the Euler top relates to a special case of our superintegrable 3-dimensional LV
system.

2 A rather general method

Let
dP1

dt
= C1P1,

dP2

dt
= C2P2

then
d

dt
(Pα1

1 Pα2
2 ) = (α1C1 + α2C2)Pα1

1 Pα2
2 .

Hence cofactors Ci form a linear space. Note that C1 = C2 if and only if P1

P2
is an integral. We

also have
Pα1
1 Pα2

2 is a first integral ⇔ α1C1 + α2C2 = 0, (4)

and more generally ∏
i

Pαi
i is a first integral ⇔

∑
i

αiCi = 0. (5)

It follows that integrals that arise in this way are factorisable.

If there are more functionally independent DPs than the dimension of this linear space, then
there must be one or more integrals. The method we introduce here, produces m integrals for an
n-dimensional homogeneous quadratic ODE, from n+m Darboux polynomials.

• Find n independent DPs for the ODE:

Ṗi(x) = Pi(x)Ci(x). (6)

The Ci will be linear. Defining v to be the vector with components vi := ln(Pi), i = 1, . . . , n,
the equation (6) can be written as

v̇ = Ax (7)

where A is some constant invertible matrix.
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• Find m additional DPs for the ODE (m ≤ n−1 is a necessary condition for the integrals to be
independent). Defining w to be the vector with components wi := ln(Pi), i = n+1, . . . , n+m,
we get

ẇ = Bx (8)

Eliminating x, we again get

ẇ −BA−1v̇ = 0→ w −BA−1v = I. (9)

For n-component Lotka-Volterra (LV) systems, n Darboux polynomials are given by the com-
ponents of the vector x, and we set v = x. From (9), by exponentiation of the logarithmic integrals
I, we obtain m integrals of the form

P
|A|
n+i

n∏
j=1

x
Zi,j

j , i = 1, . . . ,m,

where
Z := −BA−1|A| (10)

and |A| is the determinant of A.

3 Additional Darboux polynomials for Lotka-Volterra sys-
tems

The complement of {i, k} is denoted {i, k}c := {1, 2, . . . , n} \ {i, k}.

Lemma 1. Consider a system with

ẋi = xi

bi +

n∑
j=1

Ai,jxj

 , ẋk = xk

bk +

n∑
j=1

Ak,jxj

 . (11)

The expression, with αβ 6= 0,
Pi,k = αxi + βxk, (12)

is a DP if and only if, for some constant b and all j ∈ {i, k}c,

Ai,j = Ak,j (13)

bi = bk = b (14)

α(Ak,k −Ai,k) = β(Ak,i −Ai,i) (15)

and (Ak,k −Ai,k)(Ak,i −Ai,i) 6= 0.

Proof. We first show that the conditions (13), (14) and (15) are sufficient, i.e. if they are satisfied,
then Pi,k defined by (12) is a DP for the ODE defined by (11). Equation (12) implies with (11)
that

αẋi + βẋk = αxi

bi +
n∑
j=1

Ai,jxj

+ βxk

bk +
n∑
j=1

Ak,jxj


= αxi (bi +Ai,ixi +Ai,kxk + Σ′) + βxk (bk +Ak,ixi +Ak,kxk + Σ′)

= (αxi + βxk)b+ αAi,ix
2
i + (αAi,k + βAk,i)xixk + βAk,kx

2
k + (αxi + βxk)Σ′

using (14)

= (αxi + βxk)(b+Ai,ixi +Ak,kxk + Σ′) using (15),
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and where (using (13))

Σ′ :=
∑

j∈{i,k}c
Ai,jxj =

∑
j∈{i,k}c

Ak,jxj . (16)

Next we show the conditions are necessary, i.e. if Pi,k defined by (12) is a DP for the ODE defined
by (11) then (13), (14) and (15) hold. Equation (12) implies with (11) that

αẋi + βẋk = αxi

bi +
n∑
j=1

Ai,jxj

+ βxk

bk +
n∑
j=1

Ak,jxj

 . (17)

First consider all terms that contain xj on the r.h.s., where j ∈ {i, k}c:

αxiAi,jxj + βxkAk,jxj . (18)

This must vanish if we substitute
xk = −α

β
xi. (19)

We find α(Ai,j −Ak,j)xixj = 0 and hence

Ai,j = Ak,j (20)

for all j ∈ {i, k}c.
Now consider all remaining terms that do not contain any xj , with j ∈ {i, k}c, i.e.

αxi(bi +Ai,ixi +Ai,kxk) + βxk(bk +Ak,ixi +Ak,kxk). (21)

Once again (21) must vanish if we substitute (19). Hence

xi(bi − bk) + x2i

[
Ai,i − (

α

β
Ai,k +Ak,i) +

α

β
Ak,k

]
= 0,

which implies that
bi = bk = b, say,

and
α

β
=

Ai,i −Ak,i
Ai,k −Ak,k

.

Of course several low-dimensional instances of Lemma 1 have appeared in papers by various
authors over the years, cf. e.g. a 2D instance in equation (3.2) of [15], a 3D instance in Proposition
1#(3) of [5], and a 4D instance in equation (12) of [10].

4 Superintegrable n-component Lotka-Volterra systems, n =
2, 3, 4

4.1 n = 2

The system {
ẋ1 = x1 (a1x1 + b1x2)
ẋ2 = x2 (c1x1 + a2x2)

(22)

admits the Darboux polynomials x1, x2, with cofactors a1x1 + b1x2, a2x2 + c1x1, and the Darboux
polynomial (c1 − a1)x1 + (a2 − b1)x2, with cofactor a1x1 + a2x2. They give rise to matrices

A =

(
a1 b1
c1 a2

)
and B =

(
a1 a2

)
, (23)

and hence to the integral

I = ((c1 − a1)x1 + (a2 − b1)x2)
a1a2−b1c1 x1

−a2(a1−c1)x2
−a1(a2−b1).
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4.2 n = 3

The system  ẋ1 = x1 (a1x1 + b1x2 + b2x3)
ẋ2 = x2 (a2x2 + b2x3 + c1x1)
ẋ3 = x3 (a3x3 + c1x1 + c2x2)

(24)

relates to matrix

A =

a1 b1 b2
c1 a2 b2
c1 c2 a3

 . (25)

The following are 2 additional Darboux polynomials:

P1,2 = (c1 − a1)x1 + (a2 − b1)x2, P2,3 = (c2 − a2)x2 + (a3 − b2)x3,

with cofactors
C1,2 = a1x1 + a2x2 + b2x3, C2,3 = c1x1 + a2x2 + a3x3.

Thus we have

B =

(
a1 a2 b2
c1 a2 a3,

)
and we find 2 = n− 1 integrals

I1 = ((c1 − a1)x1 + (a2 − b1)x2)
|A|

x1
−(a2a3−b2c2)(a1−c1)x2

−(a2−b1)(a1a3−b2c1)x3
b2(a2−b1)(a1−c1),

I2 = ((c2 − a2)x2 + (a3 − b2)x3)
|A|

x1
c1(a3−b2)(a2−c2)x2

−(a2−c2)(a1a3−b2c1)x3
−(a3−b2)(a1a2−b1c1).

A special case of (24), where a1 = −c1, c2 = −a2 = b1 and a3 = −b2, is linearly equivalent to the
Euler top, which has an extra integral, cf. Appendix A.

4.3 n = 4

4.3.1

The matrix

A =


a1 b1 b2 b3
c1 a2 b2 b3
c1 c2 a3 b3
c1 c2 c3 a4

 (26)

has the property that Ai,j = Ai+1,j for all i ∈ {1, 2, 3} and j ∈ {i, i + 1}c. The associated
Lotka-Volterra system is 

ẋ1 = x1(a1x1 + b1x2 + b2x3 + b3x4)
ẋ2 = x2(c1x1 + a2x2 + b2x3 + b3x4)
ẋ3 = x3(c1x1 + c2x2 + a3x3 + b3x4)
ẋ4 = x4(c1x1 + c2x2 + c3x3 + a4x4)

(27)

The system (27) has 7 Darboux polynomials. The obvious ones are Pi = xi, i = 1, 2, 3, 4, with
cofactors Ci =

∑n
j=1Ai,jxj . The other three, obtained from Lemma 1, are:

P1,2 = (c1 − a1)x1 + (a2 − b1)x2,

P2,3 = (c2 − a2)x2 + (a3 − b2)x3,

P3,4 = (c3 − a3)x3 + (a4 − b3)x4,

with cofactors

C1,2 = a1x1 + a2x2 + b2x3 + b3x4,

C2,3 = c1x1 + a2x2 + a3x3 + b3x4,

C3,4 = c1x1 + c2x2 + a3x3 + a4x4.
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The coefficient matrix from these cofactors is

B =

a1 a2 b2 b3
c1 a2 a3 b3
c1 c2 a3 a4

 .

The rather general method, introduced in section 2, gives rise to the following 3 = n−1 functionally
independent integrals:

Ii = P
|A|
i,i+1x1

Zi,1x2
Zi,2x3

Zi,3x4
Zi,4 , i = 1, 2, 3,

where I1 is determined by

Z1,1 = − (a2a3a4 − a2b3c3 − a3b3c2 − a4b2c2 + b2b3c2 + b3c2c3) (a1 − c1) ,

Z1,2 = − (a2 − b1) (a1a3a4 − a1b3c3 − a3b3c1 − a4b2c1 + b2b3c1 + b3c1c3) ,

Z1,3 = (a4b2 − b3c3) (a2 − b1) (a1 − c1) ,

Z1,4 = b3 (a3 − b2) (a2 − b1) (a1 − c1) ,

I2 is determined by

Z2,1 = c1 (a4 − b3) (a3 − b2) (a2 − c2) ,

Z2,2 = − (a2 − c2) (a1a3a4 − a1b3c3 − a3b3c1 − a4b2c1 + b2b3c1 + b3c1c3) ,

Z2,3 = − (a3 − b2) (a1a2a4 − a1b3c2 − a2b3c1 − a4b1c1 + b1b3c1 + b3c1c2) ,

Z2,4 = b3 (a3 − b2) (a2 − c2) (a1 − c1) ,

and I3 is determined by

Z3,1 = c1 (a4 − b3) (a3 − c3) (a2 − c2) ,

Z3,2 = (a4 − b3) (a3 − c3) (c2a1 − c1b1) ,

Z3,3 = − (a3 − c3) (a1a2a4 − a1b3c2 − a2b3c1 − a4b1c1 + b1b3c1 + b3c1c2) ,

Z3,4 = − (a4 − b3) (a1a2a3 − a1b2c2 − a2b2c1 − a3b1c1 + b1b2c1 + b2c1c2) .

4.3.2

Next we consider the matrix

A =


a1 b1 b2 b3
c1 a2 b2 b3
c1 c2 a3 b3
c1 c3 b2 a4

 .

It has the property that Ai,j = Ak,j for all (i, k) ∈ {(1, 2), (2, 3), (2, 4)} and j ∈ {i, k}c. The
corresponding Lotka-Volterra system reads

ẋ1 = x1(a1x1 + b1x2 + b2x3 + b3x4)
ẋ2 = x2(c1x1 + a2x2 + b2x3 + b3x4)
ẋ3 = x3(c1x1 + c2x2 + a3x3 + b3x4)
ẋ4 = x4(c1x1 + c3x2 + b2x3 + a4x4)

(28)

The additional Darboux polynomials are

P1,2 = (c1 − a1)x1 + (a2 − b1)x2,

P2,3 = (c2 − a2)x2 + (a3 − b2)x3,

P2,4 = (c3 − a2)x2 + (a4 − b3)x4,

6
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with cofactors

C1,2 = a1x1 + a2x2 + b2x3 + b3x4,

C2,3 = c1x1 + a2x2 + a3x3 + b3x4,

C3,4 = c1x1 + a2x2 + b2x3 + a4x4.

The coefficient matrix from these cofactors is

B =

a1 a2 b2 b3
c1 a2 a3 b3
c1 a2 b2 a4

 .

We label the special pairs of indices of rows of A as follows,

e1 = (1, 2), e2 = (2, 3), e3 = (2, 4). (29)

The same label can be used to enumerate the functionally independent integrals,

Ii = P |A|ei x1
Zi,1x2

Zi,2x3
Zi,3x4

Zi,4 , i = 1, 2, 3,

where

Z1,1 = − (a2a3a4 − a2b2b3 − a3b3c3 − a4b2c2 + b2b3c2 + b2b3c3) (a1 − c1)

Z1,2 = − (a2 − b1) (a1a3a4 − a1b2b3 − a3b3c1 − a4b2c1 + 2b2b3c1)

Z1,3 = b2 (a4 − b3) (a2 − b1) (a1 − c1)

Z1,4 = b3 (a3 − b2) (a2 − b1) (a1 − c1) ,

Z2,1 = c1 (a4 − b3) (a3 − b2) (a2 − c2)

Z2,2 = − (a2 − c2) (a1a3a4 − a1b2b3 − a3b3c1 − a4b2c1 + 2b2b3c1)

Z2,3 = − (a3 − b2) (a1a2a4 − a1b3c3 − a2b3c1 − a4b1c1 + b1b3c1 + b3c1c3)

Z2,4 = b3 (a3 − b2) (a2 − c2) (a1 − c1) ,

and

Z3,1 = c1 (a4 − b3) (a3 − b2) (a2 − c3)

Z3,2 = − (a2 − c3) (a1a3a4 − a1b2b3 − a3b3c1 − a4b2c1 + 2b2b3c1)

Z3,3 = b2 (a4 − b3) (a2 − c3) (a1 − c1)

Z3,4 = − (a4 − b3) (a1a2a3 − a1b2c2 − a2b2c1 − a3b1c1 + b1b2c1 + b2c1c2) .

The special pairs of indices of rows of A can be interpreted as edges of a tree, which we will do in
the next section.

5 Connection to trees

To each of the above n-component Lotka-Volterra systems we associate a free (unrooted) tree T
on n vertices as follows. The tree has an edge between vertex i and vertex k if the condition that
Ai,j = Ak,j for all j ∈ {i, k}c is satisfied. Thus, the systems (23), (25), (26) and (28) relate to the
trees depicted in Figure 1.

Vice versa, a tree T on n (ordered) vertices has n − 1 (ordered) edges. We associated to T a
matrix A as follows. We start with an n×n diagonal matrix A, with Ai,i = ai. Then for each edge
of T we fix two off-diagonal entries of A as follows. For the m-th edge of the graph T , em = (i, k)
with i < k, we set Ai,k = bm and Ak,i = cm. In [23] we show that the remaining entries of the

7
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Figure 1: The trees connected to the Lotka-Volterra systems (23), (25), (26) and (28) (from left
to right).

matrix A are uniquely determined by the condition that Ai,j = Ak,j when (i, k) is an edge of T
and j ∈ {i, k}c. The matrix A has 3n− 2 free parameters and defines a Lotka-Volterra system

ẋi = xi

n∑
j=1

Ai,jxj , i = 1, 2, . . . , n, (30)

with n− 1 integrals. In [23], we prove their functional independence, Theorem 2.

Theorem 2. Each tree on n vertices gives rise to a Lotka-Volterra system with 3n−2 parameters,
which admits n− 1 functionally independent integrals.

One can think of the parameters ai, bj , ck as weights in a complete digraph D (allowing
both loops and multiple edges) which is associated to T . The matrix A is then nothing but
the adjacency matrix of D. The connection between Lotka-Volterra systems and graphs, via the
adjacency matrix of the graph, has been made before [2, 9, 7, 12], but in the context of undirected
or directed graphs, and (mainly) anti-symmetric (and hence Hamiltonian) Lotka-Volterra systems.
The general setting of complete digraphs seems to be new. Note that the number of trees is given
by the sequence [21, A000055].

6 Superintegrable 5-component Lotka-Volterra systems

There are 3 non-isomorphic trees on 5 vertices, see Figure 2. Following the procedure in the
previous subsection, the trees in Figure 2 give rise to matrices (A)

a1 b1 b2 b3 b4
c1 a2 b2 b3 b4
c1 c2 a3 b3 b4
c1 c2 c3 a4 b4
c1 c2 c3 c4 a5

 ,


a1 b1 b2 b3 b4
c1 a2 b2 b3 b4
c1 c2 a3 b3 b4
c1 c2 c3 a4 b4
c1 c2 c4 b3 a5

 ,


a1 b1 b2 b3 b4
c1 a2 b2 b3 b4
c1 c2 a3 b3 b4
c1 c3 b2 a4 b4
c1 c4 b2 b3 a5

 , (31)

and hence to Lotka-Volterra systems, each with 13 free parameters,
ẋ1 = x1 (a1x1 + b1x2 + b2x3 + b3x4 + b4x5)
ẋ2 = x2 (a2x2 + b2x3 + b3x4 + b4x5 + c1x1)
ẋ3 = x3 (a3x3 + b3x4 + b4x5 + c1x1 + c2x2)
ẋ4 = x4 (a4x4 + b4x5 + c1x1 + c2x2 + c3x3)
ẋ5 = x5 (a5x5 + c1x1 + c2x2 + c3x3 + c4x4) ,

(32)
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1

2 34
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Figure 2: These are the three non-isomorphic trees on 5 vertices.


ẋ1 = x1 (a1x1 + b1x2 + b2x3 + b3x4 + b4x5)
ẋ2 = x2 (a2x2 + b2x3 + b3x4 + b4x5 + c1x1)
ẋ3 = x3 (a3x3 + b3x4 + b4x5 + c1x1 + c2x2)
ẋ4 = x4 (a4x4 + b4x5 + c1x1 + c2x2 + c3x3)
ẋ5 = x5 (a5x5 + b3x4 + c1x1 + c2x2 + c4x3)

(33)

and 
ẋ1 = x1 (a1x1 + b1x2 + b2x3 + b3x4 + b4x5)
ẋ2 = x2 (a2x2 + b2x3 + b3x4 + b4x5 + c1x1)
ẋ3 = x3 (a3x3 + b3x4 + b4x5 + c1x1 + c2x2)
ẋ4 = x4 (a4x4 + b2x3 + b4x5 + c1x1 + c3x2)
ẋ5 = x5 (a5x5 + b2x3 + b3x4 + c1x1 + c4x2) .

(34)

Using the methods explained in sections 2 and 3, we can construct 4 functionally independent
integrals for each of these systems. As in section 4, the exponents in the integrals exhibit interesting
factorisation properties. Below we provide the integrals for systems (32), (33) and (34), expressing
each exponent as a product of differences of parameters and a minor of A. We let AI;J denote
the matrix A with rows i ∈ I and columns j ∈ J deleted. Its determinant |AI;J | is called a minor
of A.

The Lotka-Volterra system (32) admits the four functionally independent integrals

I1 = ((c1 − a1)x1 + (a2 − b1)x2)
|A|

x
(c1−a1)|A1;1|
1 x

(b1−a2)|A2;2|
2 x

(a2−b1)(a1−c1)|A2,3;1,2|
3

x
(a3−b2)(a2−b1)(a1−c1)|A2,3,4;1,2,3|
4 x

(a4−b3)(a3−b2)(a2−b1)(a1−c1)b4
5

I2 = ((c2 − a2)x2 + (a3 − b2)x3)
|A|

x
(a5−b4)(a4−b3)(a3−b2)(a2−c2)c1
1 x

(c2−a2)|A2;2|
2 x

(b2−a3)|A3;3|
3

x
(a3−b2)(a2−c2)(a1−c1)|A1,3,4;1,2,3|
4 x

(a4−b3)(a3−b2)(a2−c2)(a1−c1)b4
5

I3 = ((c3 − a3)x3 + (a4 − b3)x4)
|A|

x
(a5−b4)(a4−b3)(a3−c3)(a2−c2)c1
1 x

(a5−b4)(a4−b3)(a3−c3)|A2,4,5;3,4,5|
2

x
(c3−a3)|A3;3|
3 x

(b3−a4)|A4;4|
4 x

(a4−b3)(a3−c3)(a2−c2)(a1−c1)b4
5

I4 = ((c4 − a4)x4 + (a5 − b4)x5)
|A|

x
(a5−b4)(a4−c4)(a3−c3)(a2−c2)c1
1 x

(a5−b4)(a4−c4)(a3−c3)|A2,3,5;3,4,5|
2

x
(a5−b4)(a4−c4)|A3,5;4,5|
3 x

(c4−a4)|A4;4|
4 x

(b4−a5)|A5;5|
5
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The Lotka-Volterra system (33) admits the four functionally independent integrals

I1 = ((c1 − a1)x1 + (a2 − b1)x2)
|A|

x
(c1−a1)|A1;1|
1 x

(b1−a2)|A2;2|
2 x

(a1−c1)(a2−b1)|A2,3;1,2|
3

x
(a1−c1)(a2−b1)(a3−b2)(a5−b4)b3
4 x

(a1−c1)(a2−b1)(a3−b2)(a4−b3)b4
5

I2 = ((c2 − a2)x2 + (a3 − b2)x3)
|A|

x
(a2−c2)(a3−b2)(a4−b3)(a5−b4)c1
1 x

(c2−a2)|A2;2|
2 x

(b2−a3)|A3,3|
3

x
(a1−c1)(a2−c2)(a3−b2)(a5−b4)b3
4 x

(a1−c1)(a2−c2)(a3−b2)(a4−b3)b4
5 ,

I3 = ((c3 − a3)x3 + (a4 − b3)x4)
|A|

x
(a2−c2)(a3−c3)(a4−b3)(a5−b4)c1
1 x

(a3−c3)(a4−b3)(a5−b4)|A2,4,5;3,4,5|
2

x
(c3−a3)|A3;3|
3 x

(b3−a4)|A4;4|
4 x

(a1−c1)(a2−c2)(a3−c3)(a4−b3)b4
5 ,

I4 = ((c4 − a3)x3 + (a5 − b4)x5)
|A|

x
(a2−c2)(a3−c4)(a4−b3)(a5−b4)c1
1 x

(a3−c4)(a4−b3)(a5−b4)|A2,4,5;3,4,5|
2

x
(c4−a3)|A3;3|
3 x

(a1−c1)(a2−c2)(a3−c4)(a5−b4)b3
4 x

(b4−a5)|A5;5|
5 .

The Lotka-Volterra system (34) admits the four functionally independent integrals

I1 = ((c1 − a1)x1 + (a2 − b1)x2)
|A|

x
(c1−a1)|A1;1|
1 x

(b1−a2)|A2;2|
2 x

(a1−c1)(a2−b1)(a4−b3)(a5−b4)b2
3

x
(a1−c1)(a2−b1)(a3−b2)(a5−b4)b3
4 x

(a1−c1)(a2−b1)(a3−b2)(a4−b3)b4
5 ,

I2 = ((c2 − a2)x2 + (a3 − b2)x3)
|A|

x
(a2−c2)(a3−b2)(a4−b3)(a5−b4)c1
1 x

(c2−a2)|A2;2|
2 x

(b2−a3)|A3;3|
3

x
(a1−c1)(a2−c2)(a3−b2)(a5−b4)b3
4 x

(a1−c1)(a2−c2)(a3−b2)(a4−b3)b4
5 ,

I3 = ((c3 − a2)x2 + (a4 − b3)x4)
|A|

x
(a2−c3)(a3−b2)(a4−b3)(a5−b4)c1
1 x

(c3−a2)|A2;2|
2

x
(a1−c1)(a2−c3)(a4−b3)(a5−b4)b2
3 x

(b3−a4)|A4;4|
4 x

(a1−c1)(a2−c3)(a3−b2)(a4−b3)b4
5 ,

I4 = ((c4 − a2)x2 + (a5 − b4)x5)
|A|

x
(a2−c4)(a3−b2)(a4−b3)(a5−b4)c1
1 x

(c4−a2)|A2;2|
2

x
(a1−c1)(a2−c4)(a4−b3)(a5−b4)b2
3 x

(a1−c1)(a2−c4)(a3−b2)(a5−b4)b3
4 x

(b4−a5)|A5;5|
5 .

The factorisation for the general case will be described in more detail in [23].

7 A hierarchy of superintegrable Lotka-Volterra systems

Consider the tall tree on n vertices depicted in Figure 3.

1 2 3 . . . n
1 2 n− 1

Figure 3: Tall tree on n vertices.

It gives rise to the n× n matrix:

A =



a1 b1 b2 b3 · · · bn−1
c1 a2 b2 b3 · · · bn−1
c1 c2 a3 b3 · · · bn−1
c1 c2 c3 a4 · · · bn−1
...

...
...

...
. . .

...
c1 c2 c3 c4 · · · an


, (35)

of which matrices (23),(25),(26), and the left matrix in (31), are special cases taking n = 2, 3, 4
and 5 respectively.
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For arbitrary n, the tall tree provides us with the Lotka-Volterra system:

ẋ1 = x1 (a1x1 + b1x2 + b2x3 + · · ·+ bn−1xn)

ẋ2 = x2 (c1x1 + a2x2 + b2x3 + · · ·+ bn−1xn)

ẋ3 = x3 (c1x1 + c2x2 + a3x3 + · · ·+ bn−1xn)

...

ẋn−1 = xn−1 (c1x1 + c2x2 + · · ·+ an−1xn−1 + bn−1xn)

ẋn = xn (c1x1 + c2x2 + · · ·+ cn−1xn−1 + anxn) ,

(36)

The n coordinates xi, i = 1, . . . , n, are Darboux polynomials. The system (38) admits n − 1
additional Darboux polynomials of the form

Pi,i+1 = (ci − ai)xi + (ai+1 − bi)xi+1, i = 1, . . . , n− 1,

with cofactors

Ci,i+1 = c1x1 + · · ·+ ci−1xi−1 + aixi + ai+1xi+1 + bi+1xi+2 + · · · bn−1xn.

Their coefficients can be organised into the following (n− 1)× n matrix:

B =



a1 a2 b2 b3 · · · bn−2 bn−1
c1 a2 a3 b3 · · · bn−2 bn−1
c1 c2 a3 a4 · · · bn−2 bn−1
...

...
...

...
. . .

...
...

c1 c2 c3 c4 · · · an−1 bn−1
c1 c2 c3 c4 · · · an−1 an


, (37)

Using the matrices A and B, and defining Z = −BA−1|A|, we obtain n − 1 integrals of the
form

Ii = P
|A|
i,i+1

n∏
j=1

x
Zi,j

j , i = 1, . . . , n− 1.

One can show, cf. [23], that the exponents factorise and that the integrals Ki are functionally
independent (which implies superintegrability). Introducing the notation

Nnj = {k ∈ N : j ≤ k ≤ n},

we find, for all i ∈ Nn−11 , j ∈ Nn1 ,

Zi,j =


(ai − ci)

∏
j<k<i(ak − ck)

∏
i<k≤n(ak − bk−1)|ANi−1

j ∩Nn
i+1;N

n
j+1 | j < i,

(ci − ai)|Ai;i| j = i,

(bi − ai+1)|Ai+1;i+1| j = i+ 1,

(ai − ci)
∏

1<k<i(ak − ck)
∏
i<k<j(ak − bk−1)|ANi−1

1 ∩Nj
i+1;N

j−1
1 | j > i+ 1.

This formula provides a more efficient way to calculate the exponents in the integrals Ii than using
the definition of Z, which involves matrix multiplication, inversion and taking the determinant of
an n× n matrix.

The special case ai = 0 (i = 1, . . . , n), bi = −ci+1 (i = 1, . . . , n− 1) was studied in [17].

Concluding remark. In this paper we have studied superintegrable Lotka-Volterra systems with-
out imposing any additional structure. We intend to investigate the role of measure-preservation
and symplectic structure on Lotka-Volterra equations in future work.

Acknowledgement GRWQ is grateful to Silvia Perez Cruz for alleviating the plague years and
to Sydney Mathematical Research Institute (SMRI) for travel support.
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A The Euler top

The Euler top, in the form 
ẋ1 = a2x2x3

ẋ2 = b2x1x3

ẋ3 = c2x1x2,

(38)

admits the 6 Darboux polynomials

cx1 ± ax3, cx2 ± bx3, bx1 ± ax2.

Hence, it is linearly equivalent to an LV system with 3 additional Darboux polynomials. In terms
of y = (cx1 + ax3, cx2 + bx3, bx1 + ax2)/2, we have

ẏi = yi

n∑
j=1

Ai,jyj , i = 1, 2, 3, A =

−b a c
b −a c
b a −c

 , (39)

which is a special case of (24). We note that the corresponding graph, see Figure 4, is not a tree.

1

2

3

Figure 4: Complete graph on 3 vertices.

The additional Darboux polynomials are ay2−cy3, by1−cy3, and ay2−by1, and three integrals
(not functionally independent) are given by

y1(ay2 − cy3), y3(by1 − ay2), y2(by1 − cy3).

It is now easy to generalise system (39) whilst keeping the same number of Darboux polynomials
(six). Indeed, we would take

A =

d a c
b e c
b a f

 .

The corresponding LV system has additional Darboux polynomials

P1 = (a− e) y2 + (f − c) y3, P2 = (b− d) y1 + (e− a) y2, P3 = (b− d) y1 + (f − c) y3,

cofactor coefficient matrix

B =

b e f
d e c
d a f

 ,

and three integrals

P1
|A|y1

b(c−f)(a−e)y2
−(bc−df)(a−e)y3

−(c−f)(ab−de),

P2
|A|y1

−(b−d)(ac−ef)y2
−(bc−df)(a−e)y3

c(b−d)(a−e),

P3
|A|y1

−(b−d)(ac−ef)y2
a(c−f)(b−d)y3

−(c−f)(ab−de),

of which two are functionally independent.
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