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Abstract

We present a method to construct superintegrable n-component Lotka-Volterra systems
with 3n — 2 parameters. We apply the method to Lotka-Volterra systems with n components
for 1 < n < 6, and present several si=dimensionalisuperintegrable families. The Lotka-Volterra
systems are in one-to-one correspondence withntrees on n vertices.

1 Introduction
The original 2-dimensional Lotka-Volterra, (LV) system,
P=wasby), y=y(-c+dr), (1)

where & denotes the derivative with respect to time, was derived as a model to describe the
interaction betweenpredator and prey fish [18, 25, 10]. Sternberg [22, Chapter 11] gives a dynam-
ical systems perspectiverand an explanation why fishing decreases the number of predators. The
2-dimensional systemn(l) has been generalised to n-dimensional systems of the form

T, =T <bt + ZAi’jxj> s (2)

where b is a seal vector, and A is a real matrix, and these have been studied extensively. For
references on various aspects of LV systems, including integrability as well as their history, see
[1,243,4,6,748,10,12, 14, 16, 17, 19]. Prelle and Singer wrote a very influential paper [20] proving
that if.a polynomial ODE has an elementary integral, then it has a logarithmic integral. Note
that in thesmathematical physics literature the matrix A is often assumed to be skew symmetric.
This is not assumed here.

A vector field on an n-dimensional manifold is called superintegrable if it admits n — 1 func-
tionally independent constants of motion (i.e. first integrals), cf. [24]. In this paper we construct
superintegrable n-component Lotka-Volterra systems with 3n — 2 parameters.

Darboux polynomials (DPs) are building blocks of rational integrals and their generalizations
[11, 13]. Given an ordinary differential equation (ODE)

dx
=
dt (X)v
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where x(t) and f are n-dimensional vectors, a Darboux polynomial P(x) is defined by the existence
of a polynomial C(x) s.t.

) o) )
Note that (3) implies that if P(x(0)) = 0, then P(x(t)) = 0,Vt. For this reason Darboux polyno-
mials are also called second integrals.

In section 2, we provide a method to obtain m integrals for an n-dimensional homogeneous
quadratic ODE, from m + n Darboux polynomials. In section 3, we giveseonditions on b and A
which are equivalent to ~

Py, = ax; + Bxy,

being a DP for (2). In section 4, we look at the intersection of the,aboyedwo classes, i.e. at
homogeneous Lotka-Volterra systems, and use the described method andimentioned DPs to con-
struct some superintegrable systems in dimensions 2, 3, and 4. Insection/b, we explain how these
superintegrable n-dimensional LV systems are in one-to-one correspondénce with trees on n ver-
tices. Such a tree has n — 1 edges, and each of these edges correspends to an integral. If an edge
exists between vertices i and k, the corresponding integral can be written as a product of Py
and powers of the variables x;, j = 1...n. In section;iwe cover the superintegrable LV-systems
which relate to the 3 non-isomorphic trees on 5 vertices. We alse/describe the factorisation of the
exponents of the variables in terms of minors of the matrix A. In our final section we give some
details for the superintegrable n-dimensional LV systems,that relate to tall trees. In the appendix
we explain how the Euler top relates to a speecial case of our superintegrable 3-dimensional LV
system.

2 A rather general method

Let ap, AP
1 2
= —= =(CyP
dt dt 22
then

d
S RRLF) = (1Cy + aCo) P 5.

Hence cofactors C; form a linear space. Note that C; = Cs if and only if % is an integral. We
also have
P P32 is a first integral < a1C1 4+ aeCy = 0, (4)

and more generally
H P is a first integral < Z o,;C; = 0. (5)

It follows that integrals that arise in this way are factorisable.

If there-are more functionally independent DPs than the dimension of this linear space, then
there'must be one or more integrals. The method we introduce here, produces m integrals for an
n-dimensional homogeneous quadratic ODE, from n 4+ m Darboux polynomials.

e Find n independent DPs for the ODE:

Pi(x) = P,(x)Cy(x). (6)

The C; will be linear. Defining v to be the vector with components v; :=In(P;),i =1,...,n,
the equation (6) can be written as

v=Ax (7)

where A is some constant invertible matrix.
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e Find m additional DPs for the ODE (m < n—1 is a necessary condition for the intégrals to be
independent). Defining w to be the vector with components w; := In(P;), i'= n+1, ... w=ms
we get

w = Bx (8)

Eliminating x, we again get
w-BA'v=0—->w-BA 'v=1 (9)
For n-component Lotka-Volterra (LV) systems, n Darboux polynomials arésgiven by the com-

ponents of the vector x, and we set v = x. From (9), by exponentiation efthe logarithmic integrals
I, we obtain m integrals of the form

lefinjZi’j’ 1=1,...,m,
j=1
where
Z:= -BA Y A| (10)
and |A]| is the determinant of A. v

3 Additional Darboux polynemials for Lotka-Volterra sys-
tems

The complement of {i, k} is denoted {4,k}  ={152)...,n}\ {4, k}.

Lemma 1. Consider a systempwith

n n
Ty =x; | by 4 ZAq;,jxj , Ty =x | b + ZAk7jIj . (11)
j=1 j=1
N

The expression, with aff # 0,
Py = ax; + By, (12)

is a DP if and only if;\for some eonstant b and all j € {i, k}°,

Aij = Ak (13)
b = by — b (14)
a(Apr —Aix) = B(Ari— Aiy) (15)

and (Ak,k B Ai,k)(Ak,i — Ai,i) 75 0.

Proof. We first show that the conditions (13), (14) and (15) are sufficient, i.e. if they are satisfied,
then P; ;, defined by (12) is a DP for the ODE defined by (11). Equation (12) implies with (11)
that

at; + P = oy bi‘i’ZAiJIj + Bz | b +2Ak,jl”j
Jj=1 Jj=1
= az; (bi+ Aiixi + A g + X)) + By (b + A i + Ag gz + X))
= (am; + Brp)b + ad; i77 + (@A ) + BAg)wiz, + BAk k2t + (azi + Brg)Y
using (14)
= (a@; + Bap)(b+ Aixi + Ag pzy +X') using (15),
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and where (using (13))
E/ = Z Ai’jxj = Z Ak,jxj~ (16)
jefik}e jefikye
Next we show the conditions are necessary, i.e. if P; ; defined by (12) is a DP fofsthe ODE defined
by (11) then (13), (14) and (15) hold. Equation (12) implies with (11) that

n n
i+ Big = am; | b+ Aijag |+ B [ b+ Y Argtyp] - (17)

j=1 =1

First consider all terms that contain x; on the r.h.s., where j € {i,k}%

axiAi,chj + BﬂikAle‘j. (18)
This must vanish if we substitute o
Tp = ——T;. 19
3 (19)
We find «(A;; — Ay, j)ziz; = 0 and hence
- 4

for all j € {i,k}°.

Now consider all remaining terms that do nét,contain any xzj, with j € {i,k}°, i.e.

axi(bi + Am-.%‘i + Ai7kxk) -+ ,&Bk(bk + Ak}imi + Ak7k-’17k)- (21)
Once again (21) must vanish if we substitute (19). Hence
o et
zi(bi — by) + 27 | Ajp— (EAi,k + Ap,i) + BAk,k =0,

which implies that
b; = b = b, say,

and
T A — Ay

@
> B Aig— Arx

O

Of course severalbilow-dimensional instances of Lemma 1 have appeared in papers by various

authors over the years, ¢f; e.g. a 2D instance in equation (3.2) of [15], a 3D instance in Proposition
1#(3) of [5], and.& 4Drinstance in equation (12) of [10].

4 Superintegrable n-component Lotka-Volterra systems, n =
2,3,4

4.1 in=2
The 'system

{ i?l =T (alxl + bll‘g) (22)

:.UQ = X2 (clscl + CLQI’Q)
admits the Darboux polynomials x1, x2, with cofactors aix1 4+ by xa, asxs + c11, and the Darboux
polynemial (¢; — a1) 1 + (a2 — b1) x2, with cofactor ayx1 + asze. They give rise to matrices

ar b
A= ( ! ai) and B = (a1 a2), (23)

and hence to the integral

I=((c1 —ar) @y + (ag — by) wg) 271 gy ~a2(@r=er) gy —ar(az=by),
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4.2 n=3

The system
i’l =1 (alxl + bll'g -+ bgfﬂg)
5,272 = X2 (GQ.’EQ + 1)21’3 + clxl) (24)
T3 = T3 (a3$3 +cixy + 02$2)

relates to matrix

aq b1 b2
A= C1 a9 bQ . (25)
C1 Co asg ~

The following are 2 additional Darboux polynomials:
P1,2 = (01 - al)xl + (02 - bl)$27 P2,3 = (02 - a2) T + (a3 - bz) zs3,

with cofactors
Ci2 = a1®1 + a2x2 + baxs, Co3 = cfT1 Frasrs Fasrs.

ar a b
B— 1 2 2
C1 Q24 a3z,

In= ((Cl _ al) 1+ (a2 _ bl) ZQ)‘A‘ xl*(a2a3—b202)(a1401)‘%2—(a2*b1)(a1a3*b261)1,3172(!12*171)(@1*61),

I = ((ca — az) x5 + (a3 — bo) xg)‘A‘ xlq(assz)(az—62)x2f(a2762)(a1a3*b261)x3f(a37b2)(a1asz161)'

Thus we have

L
and we find 2 = n — 1 integrals

A special case of (24), where a1 = —éiyiea.= —as = by and ag = —bo, is linearly equivalent to the
Euler top, which has an extra integral, ¢f. Appendix A.

4.3 n=4
4.3.1

The matrix
N ar by by b3
w_|a @ by b3
c1 ¢ az bs
C1 Co C3 Qg

has the property that Ap; =,A;11; for all ¢ € {1,2,3} and j € {i,7 + 1}°. The associated
Lotka-Volterra system is

(26)

1 = z1(a121 + b1z2 + baxs + baxs

( )

S.CQ = IQ(Cl.CCl + a9X9 + ngg + b31‘4) (27)
.’tg = 1'3(611'1 + Coxg + a3x3 + b31’4)
)

Ty = w4(c171 + CoT2 + 373 + agy
The system (27)'has 7 Darboux polynomials. The obvious ones are P; = x;, i = 1,2,3,4, with
cofactors C; = Z;’:l A; jxj. The other three, obtained from Lemma 1, are:

Pio=(c1 —a1)x1 + (a2 — b1) xo,

P> 3 = (co —as) xo + (a3 — by) 3,

P34 = (c3 —az) x3 + (a4 — b3) 24,
with cofactors

Ci2 = a121 + asxa + baxs + b3y,

Co3 = c1T1 + 4272 + a3x3 + b3xy,

C34 = c1T1 + C2T2 + a3%3 + A4T4.



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-118902.R1

The coefficient matrix from these cofactors is

The rather general method, introduced in section 2, gives rise to the following' 3 = n—1functionally

ay az by b3
B = C1 G asg b3
Ci C2 as a4

independent integrals:

A v . . : .
I, = PJJJ_l;le“acQZ“ngZ“?’mZ““, 1 =1,2,3, ~

where I; is determined by

Z1,1 = — (a2a3a4 — agbscs — agbsca — asbacy + babgco + bacaea)(ar — 1),
Z12 = — (a2 — by1) (a1azas — arbzcs — agbzcy — aabacy Fbabséy + bscics),
Z1,3 = (a4b2 - b303) (az - bl) (a1 - 01) ,

Zy,.4 = b3 (a3 —b2) (az — b1) (a1 — 1),

15 is determined by S

Zz,l = (04 - b3) (as - bz) (az - 02) )
Zoo=—( ) (
Za3 = —(az —b) (

)

Z.4 = b3 (a3 — b2) (a2 —€Eah(as.— c1),

az — ¢3) (a1azaq — a1bgez =a3bzci = asbacy + babsey + b30103) ,

a1a2a4 — a1b362 - a2b3C1 — a4b101 + b1b361 + b30162) s

and I3 is determined by

4.3.2

Zs1 = c1 (aq — b3) (ag=c3) (a2 — c2),

Z3,9 = (a4 — b3) (ag™= c3)(€aa1 — c1b1),

Z33 = — (a3 — c3)(@razaq —@1bscy — agbscy — agbicy 4 bibser + bscico)
Z34 = — (a4 —b3) (@pasas < a1bscy — asbocy — azbicy + bibacy + bacico) .

Next we consider the matrix

It has the propertydhated; ; = Ay, for all (i,k) € {(1,2),(2,3),(2,4)} and j € {i,k}°. The

ap by by b3
c1 az by b3
cp ¢ az b3
c1 c3 by ay

corresponding Lotka-Volterra system reads

&1 = z1(a121 + bixe + baxs + bsza)
&g = xa(c121 + asxa + baxs + baxy)
&3 = x3(c121 + caa + asws + byxy)
5.84 = 1’4(61931 + C3T2 + bgfﬂg + a4l’4)

Thewadditional Darboux polynomials are

Pio=(c1 —a1)z1 + (a2 — b1) 2o,
Py 3 = (co — az) 2 + (az — by) w3,
Py = (c3 — az2) x2 + (a4 — b3) x4,

(28)
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1

2

3

4

5

? with cofactors

8 Ci2 = a121 + asxa + baws + b3y,

?O Ch3 = c121 + agxy + agxs + b3xy,

11 Cs.4 = c121 + a2z + baxg + aszy.

:g The coefficient matrix from these cofactors is

14 ay az by b3

15 B = C1 Qg as bd -

16 C1 Q2 b2 aq

17

18 We label the special pairs of indices of rows of A as follows,

19

20 €1 = (1,2), €y = (2,3), Cgn— (2,4) (29)
21

2 The same label can be used to enumerate the functionally independent integrals,

23 11 = PiAlxlzi'lZZ’QZi’21'3Zi’3£E4Zi’4, lin— 1, 2, 3,

24 i .

25 where

26

27 Z171 = — (a2a3a4 — agbobs — a3b3C3 = asbycy +bobsco + b2b363) (a1 — C1)

;g Zl)g = — (CLQ — bl) (a1a3a4 — a1b2b3 — a3b301 — (Z4b261 + 2b2b361)

30 Z1,3 = by (aq — b3) (a2 —Bidtar— c1)

31 Z1,4 = b3 (a3 — ba) (a2 — br) (@ — c1);

32

33 _

34 Za1 = c1 (aq — b3) (a3 =b2) (a2 — c2)

35 Zo2 = — (a2 — c2)arazar=a1babs — asbscr — asbacr + 2babzer)

36 Zy3 = — (a3 — ba)(@ra2a4 — a1bzcs — asbzcr — asbicq + bibger + bscics)

37 Za4 = bs (a3 & b2) (a2 =€3) (a1 — 1),

38

39 and

40

41 Zs1 = ¢1 (ag=b3) (az — ba) (a2 — c3)

42 Z&Q = — (a2 — 03) (a1a3a4 — a1b2b3 — a3b301 — a4b201 -+ 2b2b301)

ji Zgz = by (a4 —b3) (a2 — ¢3) (a1 — 1)

45 Za 4= =(aa= b3) (a1a2a3 — a1bacy — azbacy — agbicr + brbacy + bacica) .

46 The special pairs of indices of rows of A can be interpreted as edges of a tree, which we will do in
47 the nextrsection.

48

49

50 5. Connection to trees

51

52 To each‘of the above n-component Lotka-Volterra systems we associate a free (unrooted) tree T
53 on,n vertices as follows. The tree has an edge between vertex ¢ and vertex k if the condition that
54 A; j="Ay ; for all j € {i, k}° is satisfied. Thus, the systems (23), (25), (26) and (28) relate to the
55 trees depicted in Figure 1.

56 Vice versa, a tree T on n (ordered) vertices has n — 1 (ordered) edges. We associated to T a
57 matrix A as follows. We start with an n xn diagonal matrix A, with A4, ; = a;. Then for each edge
58 of T we fix two off-diagonal entries of A as follows. For the m-th edge of the graph T, e,,, = (i, k)
59 with i < k, we set A; = by, and Ay ; = ¢, In [23] we show that the remaining entries of the
60
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Figure 1: The trees connected to the Lotka-Volterra systems (23),(25); (26) and (28) (from left
to right).

matrix A are uniquely determined by the condition that A, ; :’Ak;,j when (7, k) is an edge of T
and j € {i,k}°. The matrix A has 3n — 2 free parameters and defines a Lotka-Volterra system

ii:xiZAi’jxja bh=1,2,...,n, (30)
j=1

with n — 1 integrals. In [23], we prove their funetional independence, Theorem 2.

Theorem 2. Fach tree on n vertices gives riseto a Lotka-Volterra system with 3n—2 parameters,
which admits n — 1 functionally independent integrals.

One can think of the parameters a;pb;, cr as weights in a complete digraph D (allowing
both loops and multiple edges)\which is associated to T. The matrix A is then nothing but
the adjacency matrix of D#Theeonnection between Lotka-Volterra systems and graphs, via the
adjacency matrix of the graph,das been made before [2, 9, 7, 12], but in the context of undirected
or directed graphs, and (mainly) anti-symmetric (and hence Hamiltonian) Lotka-Volterra systems.
The general setting of complete;digraphs seems to be new. Note that the number of trees is given
by the sequence [21;A000055].

6 Superintegrable 5-component Lotka-Volterra systems

There are/3 non-isomorphic trees on 5 vertices, see Figure 2. Following the procedure in the
previous subsection, the trees in Figure 2 give rise to matrices (A)

a; by by b3 by ap by by by by ap by by by by
ciias by b3 by c1 az by b3 by c1 az by by by
C1 C2 as bg b4 s C1 Co as b3 b4 , C1 Co as b3 b4 , (31)
e1 c2 c3 ag by c1 ¢ c3 ag by c1 c3 by ag by
1 2 C3 ¢4 as ¢4 2 cq by as 1 cg by by as

and hence to Lotka-Volterra systems, each with 13 free parameters,

L.Cl =1 (alxl + bl.’ﬂg + bQZL’g + b3$4 + b4l’5)
To = Io (CLQQL‘Q + baxs + baxy + baxs + 01$1)
T3 = T3 (a3$3 4+ b3xg + baxs + c1x1 + 62.1'2) (32)
&4 = x4 (agxq + baxs + 121 + C222 + c323)

i5 =I5 (a5:1:5 —|— C1T1 —|— CoX2 —|— C3T3 —|— 64564) 5

Page 8 of 14
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~
2 2 2 4 3
® ® :
1 1 1
O, O, ®
75 T6 7

Figure 2: These are the three non-isomorphic trges on b vertices.

1 (@121 +0yre o bows + bawy + byxs)

2 (agl‘g + boxsz + bgmy + byxs + C1JC1)

9.33 =3 (a31'3 + 173504 -+ b41’5 +cix1 + Cgl‘g) (33)

i 4 (agzy +bgws + ¢ 121 + cowa + c3x3)

&5 = x5 (525 b3y + €101 + c2x2 + c413)

and
&1 = (a1 + b1z + baxg + b3z + baxs)
To = To (CLQZEQ + boxs + by + byxs + C1.’L‘1)
I.3 = I3 (a3x3 & 63I4 + b4175 +c1ry + CQZCQ) (34)
Ly =24 (@44 + boxs + byxs + c121 + c32)

T5 = @5 (ap®s + baxs + by + c121 + c429) .

Using the methods explained in /sections 2 and 3, we can construct 4 functionally independent
integrals for each of theese systems:As in section 4, the exponents in the integrals exhibit interesting
factorisation properties. Below we provide the integrals for systems (32), (33) and (34), expressing
each exponent asfa product of differences of parameters and a minor of A. We let A’/ denote
the matrix A with rows i & I and columns j € J deleted. Its determinant |Ai/| is called a minor
of A.

The Lotka-Volterrassystem (32) admits the four functionally independent integrals

1;1 _ 2;2 _ _ 2,3;1,2
I = ((c; =ah) 21 + (ag — b1)$2)|A| x(lcl_al)lA ‘:Egbl az)|A |x:(;12 b1)(a1—c1)|A \
x(ag—b2)(a2—b1)(a1—c1)|A2’3’4;1’2’3| (as—b3)(az—bz)(az—b1)(a1—c1)ba
4 T
2;2 . 3;3
Iy = ((02 N a2) Ty + (a3 . b2) 1’3)|A| l_(las—b4)(a4—b3)(a3—b2)(a2—cQ)c1xéoz—ag)\A |xéb2 az)|A%]

(as=b2)(az—c2)(ar—c1)|[AT>H 23] (a4—bs)(ag—ba)(az—c2)(a1—c1)bs
Ty T

= ((¢5 — as) x5 + (ag — bs) a:4)|A| x(las—b4)(a4—b3)(a3—03)(a2—02)01xgas—fm)(azl—bs)(as—cs)\A2’4'5"3’4"5
xg03—03)|A3:3|x51b3—a4)\A4;4|xécu—bs)(03—03)(a2—02)(a1—01)b4
13,5:3,4,5

I = ((c4 — ag) x4 + (a5 — by) 1,5)|A| x(las—b4)(a4—04)(a3—03)(a2—02)01x(2a5—b4)(a4—04)(a3—03)|A2’

—b —c4)|A3545 . Adi4 ba— ABiB
Igas 4)(as—ca)| lef“ aq)] \Igzx as)| \
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The Lotka-Volterra system (33) admits the four functionally independent integrals

I, = ((Cl _ al) T+ (02 _ bl) xZ)‘A‘ xgcl—alﬂAl;l|x;b1—a2)\A2;2|x:())al—01)(ﬂ2—bl)\A2’3;1’2|

xi‘ll7C1)(a27b1)(0437b2)(a57b4)b3xéal7C1)(a27b1)(a37b2)(a47b3)b4

Iy = ((c2 — az) x2 + (a3 — ba) $3)‘A‘ l"garcg)(as7b2)(a47b3)(a57b4)clfécrm|A2;2|xéb2_a3)|A313|
x(al7c1)(a27C2)(a37b2)(a57b4)b3x(a1751)(a27C2)(a37b2)(a47b3)b4
4 5 )

Ig _ ((03 _ a3) T3+ (a4 - bS) .’L‘4)‘A‘ mgag762)(a3703)(a47b3)(a57b4)51xéag—cs)(a4-@(a5_b4)|A2,4,5;3‘4,5

(ca—as)|A%®|_(bs—as)|A%*| (a1—c1)(az—c2)(az—cs)(aa—bs)ba
ZC3 1'4 CU5 )

I4 _ ((C4 _ CLS) xg + (as _ b4) .TS)‘A‘ mgangQ)(ag704)(a47b3)(a5fb4)clx§a3—04)(a4—b3)(a5fb4)|A2

xz())c4*a3)‘AS;a|xi¢11*Cl)(az*52)(‘13*c4)(a5*b4)b3xéb4fa5)\A5;5| .

The Lotka-Volterra system (34) admits the four functionally independent integrals

I =((e1 —a1)x1 + (ag — b1) x2)|A| xgclfal)lAm‘xébl_aQ)lAm‘xgal761)(a27b1)(a47b3)(a57b4)b2

x(al701)(1127b1)(a37b2)(a57b4)b3x(a1701)(aszl)(agsz)(a‘;—babz;
4 5 )
I = ((e2 — 12) w2 + (a3 — bo) wg) M {20~ WRE I bi)er o) ATy e AT
(a1—c1)(az—c2)(az—bz2)(as—ba)bs _(a1—cr)laz=€2)(az—b2)(as—b3)bs
Ty Ts

)

I3 = ((cs — az) w3 + (aq — bg) zq) A wg‘”763)((1371)2)(“471’3)(‘154}4)61xécg*amﬁal

xgal701)(az703)(1147173)((157b4)b2x4(1b37a4)\A4;4|x§)a1701)(azfcg)(agfbg)(azlfbg)bzl’

Iy = ((cq — az) x2 + (a5 — by) x5)|A| xgaz704)(‘1371)2)(“471’3)(‘1571’4)61xécraz)‘Awl

J;gal701)(a2704)(a4*b3)(a5*b4)b2x‘(;11*61)(a2704)(a3*b2)(a5*b4)b3xéb4fa5)|A5;5|.

The factorisation for the generalicase will be described in more detail in [23].

7 A hierarchy ‘of/superintegrable Lotka-Volterra systems

Consider the tall tree on,n vertices depicted in Figure 3.

O—0OO—=—06—  —®

Figure 3: Tall tree on n vertices.

It gives rise torthe n x n matrix:

ar by by b3 - by
c1 az by bz - by
c1 c2 az bz bn—1
A= C1 C2 C3 ayq bn—l ’ (35)
Ci €2 C3 C4 - Qp,

of which matrices (23),(25),(26), and the left matrix in (31), are special cases taking n = 2,3, 4
and 5 respectively.

10
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For arbitrary n, the tall tree provides us with the Lotka-Volterra system:

1 =21 (a1x1 + bixa + boxg + -+ -+ bp_12y)
&y = o (121 + agwa + baxs + -+ bp_12y)

&3 = x3 (121 + cowo +agxs + - -+ bp_12y,)

(36)
Ep_1 = Tp_1 (121 + CoTo + - + Qp_1Tp_1 + by a@n)
Ty = Ty (€121 + C2T2 + -+ Cuo1Tp1 + @), TS
The n coordinates z;, i = 1,...,n, are Darboux polynomials. {Fhe system/(38) admits n — 1
additional Darboux polynomials of the form
Pi,i—i—l = (Ci — Cli) x; + (CLH_l — bl) Tit1, t=l,....n—1,
with cofactors
Ciir1r=c1wy + -+ o151 + ;% + Qi lipdt big1Tigo + - by 1%y,
Their coefficients can be organised into the following/n —1)% n matrix:
a; az bgnbs - bng bno1
1 az azg by - b2 by
€1 €2 a3 @ o bp_o by
B= , (37)
€1 CamC3z €40 s ap—1 by
1 € €gncCi - Apo1 Gp

Using the matrices A and B, and defining Z = —BA~!|A|, we obtain n — 1 integrals of the
form

n
Lep I[=7,  i=1..n-1
j=1
One can show, cf. [23], that the efponents factorise and that the integrals K; are functionally
independent (which impliesisuperintegrability). Introducing the notation
N} ={keN:j<k<n},
we find, for all i(€ N’f‘l,j e N7,
i—1 no " . .
a; — Ci) Hj<k<i(ak — Ck) Hi<k§n(ak — bk_1)|ANj ﬁNi+1aNj+1| j<i,
¢ A" j=1i
bi = a1 AT j=i+1,

i—1 i g1 . .
a; — ¢i) [Licpeilar — cx) [Lichej(ar — br—1)| AN N s 41

J

(
7=
(
(

This formula provides a more efficient way to calculate the exponents in the integrals I; than using
the definition of Z, which involves matrix multiplication, inversion and taking the determinant of
an n X 7N, matrix.

The special case a; =0 (i =1,...,n),b;=—c;y1 (i =1,...,n—1) was studied in [17].

Concluding remark. In this paper we have studied superintegrable Lotka-Volterra systems with-
out imposing any additional structure. We intend to investigate the role of measure-preservation
and symplectic structure on Lotka-Volterra equations in future work.

Acknowledgement GRWQ is grateful to Silvia Perez Cruz for alleviating the plague years and
to Sydney Mathematical Research Institute (SMRI) for travel support.
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A The Euler top

The Euler top, in the form
jil = a2x2x3

jf2 = ble.%'g (38)
i3 = w12y,
admits the 6 Darboux polynomials

cxry *+ ars, cxo £ brs, bxry, £ axs.

Hence, it is linearly equivalent to an LV system with 3 additional Darboux polynomials. In terms
of y = (cx1 + axs, cxa + bxs, bxy + axs)/2, we have

n —b ha c
Yi = Yi Z AiJ:Uj» i=1,2,3, A= by, —a ¢ |, <39)
j=1

b a —c

which is a special case of (24). We note that the corfesponding graph, see Figure 4, is not a tree.

Figure 4: Complete graph on 3 vertices.

The additional Darboux polynemials are ays — cys, by; —cys, and ays — by, and three integrals
(not functionally independent) are given by

y1(alfs — ya)s y3(byr — aya), Yo (by1 — cys3).

It is now easy to generalise/system (39) whilst keeping the same number of Darboux polynomials
(six). Indeed, we would take

d a ¢
A=1|b e c
b a f

The corresponding 'LV system has additional Darboux polynomials

Pi=(a—€yt(focys, P=0b-dy+(e—a)ys, P3=(0b-d)y+(f—c)ys,

cofactor coeflicient matrix

b e f
B=|d e c]|,
d a f

and three integrals
Py ALy ble=f)a=e)y, ~(be=df)(a=e), —(e=f)(ab—de)
PylAly, —(b=d)(ac=ef), —(be=df)(a=e),  c(b=d)(a—e)
Pyl ALy, ~(=d)(ac—ef), alc=f)(b=d), —(c=f)(ab—de)

of which two are functionally independent.
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