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Abstract

CrossMark

An auto-Bécklund transformation for the quad equation Q1 is considered as a discrete equation,
called H2“, which is a so called torqued version of H2. The equations H2“ and Q1; compose a
consistent cube, from which an auto-Bicklund transformation and a Lax pair for H2“ are
obtained. More generally it is shown that auto-Béicklund transformations admit auto-Bécklund
transformations. Using the auto-Bicklund transformation for H2“ we derive a seed solution and a
one-soliton solution. From this solution it is seen that H2? is a semi-autonomous lattice equation,
as the spacing parameter ¢ depends on m but it disappears from the plane wave factor.
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1. Introduction

The subtle concept of integrability touches on global exis-
tence and regularity of solutions, exact solvability, as well as
compatibility and consistency (see [1]). In the past two dec-
ades, the study of discrete integrable systems has achieved a
truly significant development, which mainly relies on the
effective use of the property of multidimensional consistency
(MDC). In the two-dimensional case, MDC means the
equation is consistent around the cube (CAC) and this implies
it can be embedded consistently into lattices of dimension 3
and higher [2—4]. In 2003, Adler, Bobenko and Suris (ABS)
classified scalar quadrilateral equations that are CAC (with
extra restrictions: affine linear, D4 symmetry and tetrahedron
property) [5]. The complete list contains 9 equations.

In this paper, our discussion will focus on two of them,
namely

~

Qls(u, it, i, iy p, q
=pu — )i — i) — qu — D)@ — i)

+ pq(p — q) = (1.1)

and
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H2(u, &, i, i p, q) = (u — )@@ — i)
+ (@ —pu+id+i+i)

+¢*>—p*=0. (1.2)

Here u = u(n, m) is a function on Z?, p and g are spacing
parameters in the n and m direction respectively, ¢ is an
arbitrary constant which we set equal to 1 in the sequel, and
conventionally, tilde and hat denote shifts, i.e.

u(n + 1, m,
un + 1, m+ 1).

u=umn,m)y, Ui =

u=uln,m+1), i =

(1.3)

H2 is a new equation due to the ABS classification, while Q1
extends the well known cross-ratio equation, or lattice
Schwarzian Korteweg—de Vries equation Qls;—o. Note that
spacing parameters p and ¢ can depend on n and m
respectively, which leads to nonautonomous equations.

For a quadrilateral equation that is CAC the equation
itself defines its own (natural) auto-Bicklund transformation
(auto-BT), see [5]. For example, the system

Qls(u, i, @, it; p,r) =0, Qls(u, @, i, it;q,r)=0,

where r acts as a wave number, composes an auto-BT between
Qls(u, @, &, ii;p,q) =0 and Qls@@, it, i, i p, q) = 0.
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Figure 1. Consistent cube with equations A, B and Q on its faces.

Such a property has been employed in solving CAC equations,
see e.g. [6-10].

Some CAC equations allow auto-BT's of other forms. For
example, in [11] it was shown that the coupled system

A: w—) —a)—pu+ad+ua+iu+p+2r)=0,

(1.4a)
B: u—i)it —1) —qu+ad+ua+id+qg+2r)=0
(1.4b)
provides an auto-BT between
0: QL(u, @i, i, i;p,q) =0 (15)

and Q: QL (@@, i, it, 7 p, q) = 0, and, that H2 acts as a
nonlinear superposition principle for the BT (1.4). One can
think of the auto-BT as equations posed on the side faces of a
consistent cube with Q and O respectively on the bottom
and the top face, as in figure 1. Here one interprets
= u(n, m [+ 1), and r serves as a spacing parameter for
the third direction /. The superposition principle can be
understood as consistency of a 4D cube, see [12, 13].

In [14] the auto-BT (1.4) and its superposition principle
have been derived from the natural auto-BT for H2,
employing a transformation of the variables and the para-
meters. The equation

H2%(u, i, i, i; p, q) = H2u, i, @, ii; p + ¢, q)
=(u—i)@ —a)—pu+a+ia+i+p+29=0
(1.6)

was identified as a torqued version of the equation H2. The
superscript “ refers to the additive transformation of the
spacing parameter. In [11], equation (1.6) appeared as part of
an auto-BT for Q1,. The corresponding consistent cube is a
special case of [15, equation (3.9)]. In [14], equation (1.6)
was shown to be an integrable equation in its own right,
with an asymmetric auto-BT given by A =H2“=0 and
B=H2=0. Here we provide an alternative auto-BT for
equation (1.6) to the one that was provided in [14].

In section 2, we establish a simple but quite general
result, namely that if a system of equations A=B=0
comprises an auto-BT, then both equations A =0 and B =0
admit an auto-BT themselves. In particular, the equation H2*
given by (1.6) is CAC, with H2* and Ql; providing
its an auto-BT. We construct a Lax pair for H2“, which is
asymmetric. In section 3, we employ the auto-BT for H2“ to
derive a seed-solution and the corresponding one-soliton
solution. In the seed-solution the spacing parameter
q depends explicitly on m, which makes H2“ inherent
semi-autonomous. Some conclusions are presented in
section 4.

2. Auto-BTs for auto-BTs and a Lax pair for H2?
To have a consistent cube with H2 and Q1 on the side faces,

providing an auto-BT for H2? we assign equations to six
faces as follows:

Q: H2%(u, @i, i, s p, q) = 0,

0: H2¥@, i, &, 1 p. q) = 0, (2.1a)
A: QL(u, &, @, i;p, r) =0,

A:QUL@, i, @, i p.r)=0, (2.1b)
B: H2%(u, @, @, ity r, q) =0,

B: W24, i, i, ;7 q) = O. (2.10)

Then, given initial values u, &, @, @, by direct calculation,
one can find that the value 7 is uniquely determined. Thus,
the cube in figure 1 with (2.1) is a consistent cube.

By means of such a consistency, the side equations A and
B, i.e.

A: plu— D)@ — i) — r(u — B)(@ — )
+pr(p —r) =0, (2.2a)
B: (u—m@@ —@)—rw+a+a+i+r+2=0,
(2.2b)

compose an auto-BT for the H2“ equation (1.6). Here r acts as
the Bécklund parameter.

We note that the order of the variables in the equations
(2.1) is quite particular. Since equation (1.6) is not D4 sym-
metric, i.e. we have

H2%(u, @@, i, it; r, q) = H2%u, @, &, it; q, r),

one has to be careful. The above result is explained by the
following general result, see [16, section 2.1] where the same
idea was used to reduce the number of triplets of equations to
consider for the classification of consistent cubes.

Lemma 2.1. Let

A, i, @, i;p,r)=0, BQu,i,i,i;qr)=0 (2.3)

be an auto-BT for

O, @, i, ii;p,q) =0. (2.4)



Commun. Theor. Phys. 73 (2021) 075005

X Wei et al

Then we have (i)

QW, ii,u,i;p,r)=0, Bu,a, i, i,rg=0 (2.5)

is an auto-BT for

A, i, @i, s p, q) = 0; (2.6)
and (ii)

O, u, i, ii;r,p) =0, A, @, id,i;r,q)=0 (2.7)

is an auto-BT for

Blu, ii, @, i p, q) = 0. 2.8)

Proof. If A =B =0 is an auto-BT of Q =0, then they
compose a consistent cube as in figure 1. We prove the result
by relabeling the fields at the vertices, see [13, lemma 2.1].
For (i) we interchange # «» # and ¢ < r, and for (ii)
we perform the cyclic shifts and
gq—p—r—q U

U—u—u—i

Applying (i) to the consistent cube with (1.4a) and (1.5)
we obtain (2.1a). Applying (ii) yields the same, as Q1; has
D4 symmetry.

3D consistency can be used to construct Lax pairs for
quadrilateral equations (see [3, 5, 17]). To achieve a Lax pair
for H2¢, we rewrite (2.2a) as

5 u(pu — rie) + (p — r)(pr — i)
(p—nu+ri —pu ’

Foorpa-utety

(2.9a)

(2.9b)
r—u-+iu

Then, introducing # = G/F and ¢ = (G, FT, from (2.9a) we
have

p=Lp, P=Mep, (2.10)
where
[— —ur — (p — r)u puii + (p — r)pr
=7 —p (p—nru+ri
M= 7,(u —r (=r+u)(r—u) —2r(q+u-+ u)),
1 r—u
. - 1 g 1 .
with v = o 7= The linear system

(2.10) is C(;mpatible for solutions of (1.6) in the sense that
H2% is a divisor of (LM)? — (M L)?, where the square can be
taken either as matrix multiplication, or as component-wise
multiplication.

3. Seed and one-soliton solution

In this section, we use the auto-BT (2.2a) to construct solu-
tions for (1.6). First, we need to have a simple solution as a

‘seed’. To find such a solution, we take 7 = u in the BT
(2.2a), i.e.

w— a2 =plp—r), u+ﬁ=—q—§. 3.1)

This so-called fixed point approach has proved to be effective
in finding seed solutions [6, 8].

Proposition 3.1. Parametrizing

(0% ac
p:—, o = —

3.2
a a? -1 (3:2)

C
. og= ("8 - <,
qg=(D 5

and setting the seed BT parameter equal to tr =c, the
equations (3.1) allow the solution

up = (=D)"(an + Bm + cp), (3.3)

where ¢y is a constant.

Proof. By direct calculation, with the given parameterizations
the equations (3.1) read

w—a?=c% u+i=(D"13
d
It can be verified directly that (3.3) also provides a

solution to (1.6). Next, we derive the one-soliton solution for
(1.6), from the auto-BT (2.2a) with u = ug as a seed solution.

Proposition 3.2. The equation (1.6), with lattice parameters
(3.2) admits the one-soliton solution

1 —
u = (—l)’"(an + Om + ¢y + ck ﬂ), (3.4)

1—k*1+0p,,
where
a+ k)” e
= _ 3.5
pn,m p0,0(a —k E) (_1)1 + k ( )

with constant p,, is the plane wave factor.
Proof. Let

w=uo + (=1)"(x + v), (3.6)

where x = kr. With (3.2) and parametrizing the first BT
parameter by
c

r = m, (37)

then substitution of u = ug and # = u; into the auto-BT
(2.2a) yields

VE.
D = +

1/+E,’

VE, (m)

v+ F(m)’ -8)

ﬁ:

~

where

E:=—r(a+k), F(m)=r{(—=)"F k). (3.9)
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The difference system (3.8) can be linearized using v = i and
® = (f, g)', which leads to

P(n+ 1, m) = MP(n, m), ®n,m+ 1) = Nm)d(n, m),

(3.10)
where

(3.11)

M:(E+ o), N(m):(a 0)'
1 E_ 1 F

By ‘integrating’ (3.10) we have
®(n, m) = Mm)®0, m), dn, m) = Nim)®(n, 0),

(3.12)
where
E} 0
M@m)=|E" — E! )
) t E"
2K
[ Fii) 0
N(m) =1 (=™ .
R RGO T RO
Thus, we get a solution to (3.12):
®(n, m) = M@N(m)®(0, 0), (3.13)
from which v = f/g is obtained as
E" (nfl F.(i) -
v = +H'=‘;” :(_’])F o (3.14)
Eil Hlm;loF_(l) + ( 7H,'=U (i) _2F+H,'=() (D)) 10.0
where vy = %. Introducing the plane wave factor
0,0
_ (E ) . A0
pn,m pO,O(E_ Hi =0 F_(l)
a+ kY a1 (=1 —k
= ) 3.15
p‘”’(a—k) e G13
with constant Po.0s the above v is written as
—2K
= _Pum (3.16)
1 + pn,m
where some constants are absorbed into py, = ——ot-.
0,0 2k + 190

Substituting (3.16) into (3.6) yields the one-soliton solution
(3.4), which solves (1.6) with (3.2) and (3.7). Note that in the
plane wave factor (3.15) n, m € Z, and when m < O the
product H;";OI (+) is considered as l_[l(-):,%1 ). O

It is interesting that the solution has an oscillatory factor
(— )™ in m-direction and in the plane wave factor p,,, the
spacing parameter g for m-direction does not appear. Con-
sidering the parameterization (3.2) where p is constant while g
depends on m, we can say that the H2” equation (1.6) is semi-
autonomous.

4. Conclusions

In this paper, we have shown that equations which constitute
an auto-BT for a quad equation admit auto-BTs themselves.
We have focussed on one such equation, the torqued H2
equation denoted H2 (1.6), which forms an auto-BT for Q1;.
This equation is not part of the ABS list of CAC quad
equations, as it is not symmetric with respect to (n, p) <
(m, q). The integrability of this equation is guaranteed as it is
part of a consistent cube, see [14]. The equations H2“ and Q1
comprise an auto-BT from which a Lax pair was obtained.
Using this auto-BT we have derived a seed solution and a
one-soliton solution. The parameterization of these solutions
show that H2“ is a semi-autonomous equation. We hope to be
able to construct higher order soliton solutions in a future

paper.
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