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Abstract

We demonstrate, using the symbolic method together with p-adic and resultant
methods, the existence of systems with exactly one or two generalized symmetries.
Since the existence of one or two symmetries is often taken as a sure sign (or as the
definition) of integrability, that is, the existence of symmetries on infinitely many
orders, this shows that such practice is devoid of any mathematical foundation. Ex-
tensive computations show that systems with one symmetry are rather common, and
with two symmetries are fairly rare, at least within the class we have been considering
in this paper.

1 Introduction

In 1980 an observation was made at least twice by different authors. In [5] it is written

Another interesting fact regarding the symmetry structure of evolution equa-
tions is that in all known cases the existence of one generalized symmetry
implies the existence of infinitely many.

and in [10] the same statement is made together with the footnote

This is not true for systems of equations. For example, the system ut = u2 +
v2/2, vt = 2v2 has a nontrivial group, but this group is exhausted by the one-
parameter (with parameter τ) group of transformations: uτ = u3 + 3vv1, vτ =
4v3.

Here v2 stands for ∂2v
∂x2 ; we use the same notation in this paper. However, the ’counter-

example’ given there is an integrable system, cf [1], section 3. In spite of this fact Fokas
adapted the remark and formulated the following conjecture in 1987, [6].

Conjecture 1 (Fokas). If a scalar equation possesses at least one time-independent non-
Lie point symmetry, then it possesses infinitely many. Similarly for n-component equations
one needs n symmetries.
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Besides their mathematical interest, the observation and conjecture are of some prac-
tical importance since they are used to argue that it is enough to find only one or two
symmetries of a system in order to declare it integrable, cf [13] and the discussion in [7].
This would be reasonable practice if it was simply not possible to prove integrability, but
the methods employed in [15, 2, 16, 14, 17] show how one can effectively obtain inte-
grability proofs. Moreover, four years later Bakirov [1] published the first example of a
non-integrable equation in the possession of a generalized symmetry. The system

ut = 5u4 + v2
0

vt = v4

has a sixth order symmetry

ut = 11u6 + 5v0v2 + 4v2
1

vt = v6

as one can easily check. It was shown (with extensive computer algebra computations)
that there are no other symmetries up to order 53. The authors of [2] proved in 1998 that
the system of Bakirov does not possess another symmetry at any higher order, thereby
proving that indeed one symmetry does not imply integrability. In [18] it is proved that
there are in fact infinitely many fourth order systems with finitely many symmetries. The
method used there could be used for seventh order systems as well and a system with two
symmetries was found, a counterexample to Fokas’ conjecture. However for systems whose
order is more than seven the approach can no longer be used. The method introduced here
(using resultants) makes it possible to explore the symmetries of higher order systems.

2 The symmetry condition

We study symmetries of

ut = a1un + K(v, v1, . . . , vn−1)
vt = a2vn

where a1, a2 ∈ C and K is polynomial in v(x, t) and its derivatives vk. We call these
B–systems, where n is the order of the system.

The right hand side of the equation can be interpreted as an element in a Lie algebra,
the Lie bracket is computed using Fréchet derivatives as follows, see [12], [11]

[(
a1un + K

a2vn

)
,

(
b1um + S

b2vm

)]
=

=
(

b1D
m DS

0 b2D
m

)(
a1un + K

a2vn

)
−

(
a1D

n DK

0 a2D
n

)(
b1um + S

b2vm

)
=

=
(

a1D
nS − a2DSvn − b1D

mK + b2DKvm

0

)
.

We call S a symmetry of K if [K, S] vanishes. K is called integrable when there exist
symmetries on infinitely many orders and almost integrable when there exist symmetries
on finitely many orders, cf. [18].
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How to solve the equation [K,S] = 0, given the order of K and S? First of all, we see
that if K is polynomial, S has to be polynomial too, cf. [1]. This enables us to use the
symbolic calculus as developed in [8]. With the symbolic calculus the equation becomes
polynomial and leads to divisibility conditions of certain elementary polynomials. These
can be solved for infinitely many orders at once. The necessary and sufficient equations
for the ratio of eigenvalues are obtained directly without having to specify the nonlinear
part explicitly.

Assume that K and S are quadratic. A quadratic differential monomial is transformed
into a symmetric polynomial in two symbols as follows

vivj =
ξi
1ξ

j
2 + ξj

1ξ
i
2

2

The expression is symmetrized and divided by the number of symbol-permutations in
order to ensure that

vivj = vjvi

This procedure turns the operation of differentiation into ordinary multiplication

Dvivj = vi+1vj + vivj+1

= ξi+1
1 ξj

2+ξj
1ξi+1

2 +ξi
1ξj+1

2 +ξj+1
1 ξi

2
2

= (ξ1 + ξ2)(
ξi
1ξj

2+ξj
1ξi

2
2 ),

like the action of the Fréchet derivative on a linear term

Dvivjvk = vi+kvj + vivj+k

= ξi+k
1 ξj

2+ξj
1ξi+k

2 +ξi
1ξj+k

2 +ξj+k
1 ξi

2
2

= (ξk
1 + ξk

2 )( ξi
1ξj

2+ξj
1ξi

2
2 ).

The symmetry condition for quadratic polynomials (K, S ∈ C[ξ1, ξ2]) reads

Gn[a1, a2]S = Gm[b1, b2]K

with the G–functions

Gn[a1, a2](ξ1, ξ2)
def= a1(ξ1 + ξ2)n − a2(ξn

1 + ξn
2 )

If Gm[b1, b2]K is divisible by Gn[a1, a2] we have a symmetric polynomial expression for
S which can be transformed back. Because the ξ1-degree of K (the maximal number of
x-derivatives of u in the terms of K) is smaller than n, the function Gn[a1, a2] cannot
divide K. Therefore Gn[a1, a2] should have a common factor with Gm[b1, b2] for there
being a symmetry. Suppose we can find a1, a2, b1, b2 ∈ C such that (F, L, T ∈ C[ξ1, ξ2])

Gn[a1, a2] = FL
Gm[b1, b2] = FT.

Then the Lie bracket (2) vanishes if one takes K = LM and S = MT . One is free to
choose M ∈ C[ξ1, ξ2] as long as the ξ1-degree of K remains smaller than n. If this sounds
a bit too easy, the reader should note that this determines the system and its symmetry
at the same time, and does not say anything about hierarchies of symmetries.
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3 The use of resultants

If the resultant of two polynomials vanishes, then their greatest common divisor has pos-
itive degree.

Lemma 1. Second order B–systems have symmetries at all orders. The ratio of eigenval-
ues (and quadratic part) of the symmetries are fixed.

Proof. Take a1 6= a2 again and r 6= −1. The G–function is

G2[a1, a2] =
a1 − a2

r
(ξ1 − rξ2)(rξ1 − ξ2) with (a2 − a1)r2 − 2a1r − (a2 − a1) = 0,

and the resultant of (ξ1 − rξ2) with Gm[b1, b2] vanishes when

b1

b2
=

1 + rm

(1 + r)m
.

With this ratio (rξ1 − ξ2) is a factor as well because the G–function is symmetric in ξ1, ξ2

(the fraction 1+rm

(1+r)m is invariant under r → 1
r ). ¥

This implies that to cover systems with finitely many symmetries the degree of the common
factor of the G-functions should be higher than 2. Degree 3 is not enough because a third
degree symmetric polynomial always contains the factor ξ1 + ξ2. Their corresponding
systems are always in a hierarchy of first, second or third order.

We look at factors of degree 4.

Lemma 2. The function Gn[1 + rn, (1 + r)n](ξ1, ξ2) has a factor of the form

(ξ1 − rξ2)(rξ1 − ξ2)(ξ1 − sξ2)(sξ1 − ξ2)

whenever Un
def= Gn[1 + rn, (1 + r)n](1, s) = 0.

Proof. The condition Un = 0 is expressing the fact that the ratio of eigenvalues of the
G-function containing root r equals the ratio of eigenvalues of the G-function containing
root s. ¥

In the following we disregard the trivial factors of Un which are (r − s)(rs− 1) for all m
and (r + 1)(s + 1) when m is odd.

Lemma 3. Take n > 3. To obtain all eigenvalues of nth order B-systems with a symmetry
on order m one calculates the resultant of Un and Um with respect to s and applies the
map r → 1+rm

(1+r)m to its roots.

Proof. If the resultant of Un and Um vanishes for some r ∈ C then by the previous Lemma
Gn[1 + rn, (1 + r)n](ξ1, ξ2) and Gm[1 + rm, (1 + r)m](ξ1, ξ2) have a common fourth order
factor. This implies that the nth order B–system with eigenvalues a1 = 1+rn, a2 = (1+r)n

and quadratic part Gn[a1, a2] divided by this fourth order factor has a symmetry on order
m. ¥
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Example of Bakirov: The resultant of U4 and U6 with respect to s contains the factor

f(r) = 2r4 + 10r3 + 15r2 + 10r + 2.

We have that

1 + r4 mod f(r) ≡ 5
r(2r2 + 2 + 3r)

−2

and

(1 + r)4 mod f(r) ≡ r(2r2 + 2 + 3r)
−2

.

Their ratio is 5, the ratio of the eigenvalues of the Bakirov system. As expected G4[5, 1](1, r)
is proportional to f(r).

4 The use of p-adic numbers

The use of p-adic methods in integrability theory was initiated in [2]. For an introduction
in p-adic number theory, see [9]. In this section we give a more expanded proof of the fact
that the Bakirov system contains exactly one symmetry.

The p-adic field is notated by Zp where p is some prime number. Its elements are
represented by series of the form

∑
n≥0 anpn with coefficients an ∈ Z/p. The p-adic

expansion of an positive integer is just its base p representation. For rational numbers we
can get an infinite sequence. Examples: in Z5 we have

57 = 2 · 50 + 1 · 51 + 2 · 52

3
4 = 1 + 1

1−5 = 2 · 50 +
∑

i=1 1 · 5i.

An element is invertible (in Z×p ) if it is nonzero modulo p, that is: a0 6= 0.

4.1 Hensels Lemma

The following lemma gives a method to check whether a polynomial has a root in Z×p .

Lemma 4 (Hensel). A polynomial

f(r) =
m∑

i=0

cir
i with ci ∈ Zp

has a root in Z×p if there exists an α1 ∈ Z/p such that

• f(α1) ≡ 0 mod p

• df
dr (α1) 6≡ 0 mod p.
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Proof. It is possible to construct a sequence {αn} with

αn mod pn−1αn−1

f(αn) ≡ 0 mod pn

Calculate β ∈ Z/p such that

0 = f(αn+1) = f(αn + βpn) ≡ f(αn) +
df

dr
(α1)βpn mod pn+1.

By the induction hypotheses there exists a γ ∈ Z/p such that

f(αn) ≡ γpn mod pn+1

Substituting this and dividing by pn gives an equation that can be solved in Z/p:

β ≡ −γ(
df

dr
(α1))−1 mod p.

Since the first step of the induction is part of the hypotheses, this concludes the proof. ¥

For example the square roots of 2 are in Z7. Take

f(r) = r2 − 2

Then

f(3) ≡ 0 mod 7, f(4) ≡ 0 mod 7
df
dr (3) ≡ 6 mod 7, df

dr (4) ≡ 1 mod 7

So Hensels Lemma can be applied. The number 3 is lifted as follows. Modulo 72 we have

f(3) = 1 · 7
so γ = 1. The inverse of 6 in Z7 is 6. Then β ≡ −1 · 6 ≡ 1. Indeed

f(3 + 1 · 7) = 2 · 72

One step further gives

f(3 + 1 · 7 + 2 · 72) = 6 · 73 + 4 · 74

This shows that the method of Hensel is constructive.

4.2 The method of Skolem

Skolems method allows us to conclude that there exist only a finite number of symmetries.
At first sight it looks a bit technical, but it is extremely powerful in our context. The
method is based on the fact that if some equation does not have a solution in some p-adic
field then it can not have a solution in C. Moreover the method reduces the number of
orders that need to be checked to a finite number.

If xi ∈ Z×p then by Fermats little theorem there exists a yi ∈ Zp such that xp−1
i = 1+yip.

Let

um
n

def=
j∑

i=1

ciy
m
i xn

i

For instance, Un, as defined in lemma 2, has the form of u0
n with ci = (−1)i and j = 4.
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Lemma 5 (Skolem). If u0
k 6≡ 0 mod p then ∀r, u0

k+r(p−1) 6= 0.

Proof.

u0
k+r(p−1) =

j∑

i=1

cix
k
i (1 + yip)r ≡ u0

k mod p 6= 0.

Therefore u0
k+r(p−1) itself is 6= 0. ¥

Lemma 6 (Skolem). If u0
k = 0 and u1

k 6≡ 0 mod p then ∀r > 0 we have u0
k+r(p−1) 6= 0.

Proof. Assume u0
k+r(p−1) = 0

0 =
j∑

i=1

cix
k
i (1 + yip)r =

r∑

t=1

(
r
t

)
ptut

k

use

1
r

(
r
t

)
=

1
t

(
r − 1
t− 1

)

and divide by pr to get

u1
k +

r∑

t=2

(
r − 1
t− 1

)
pt−1

t
ut

k = 0

This contradicts the second assumption since pt−1

t always contains a factor p. To see this
write t = pαs with p 6 | s. Then s is invertible and

pt−1

t
=

1
s
ppαs−α−1

The power of p is bigger than 1 for when α = 0 we know s ≥ 2 and when α 6= 0 we have
s ≥ 1 and pα ≥ α + 2 (because p > 2). Hence we conclude u0

k+r(p−1) 6= 0. ¥

With the lemmas of Skolem one has to search a prime number p such that the xi are in
the field Z×p , and check the conditions for finitely many orders (p-2). The computations
one has to do are all modulo p or p2.

5 The Bakirov system

Here is how to use these lemmas for the Bakirov system. We let p increase and look for
p-adic roots of the resultant 2r4 + 10r3 + 15r2 + 10r + 2. The first prime such that all
conditions are satisfied is 181. In Z/181 we find f(66) = f(139) = 0. These numbers can
be lifted to elements of Z×181. Modulo p2 they are

r ≡ 66 + 13p, s ≡ 139 + 29p
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The function Um(r, s) is has the form u0
m with ci = (−1)i, j = 4 and

x1 = 1 + s ≡ 140 + 29p mod p2

x2 = 1 + r ≡ 67 + 13p mod p2

x3 = r(1 + s) ≡ 9 + 165p mod p2

x4 = s(1 + r) ≡ 82 mod p2

For 0 ≤ m < 180 we have u0
m(r, s) ≡ 0 mod p only when m ∈ {0, 1, 4, 6}. Applying

xi → xp−1
i −1

p gives

y1 ≡ 40 mod p
y2 ≡ 33 mod p
y3 ≡ 140 mod p
y4 ≡ 46 mod p

For m ∈ {0, 1, 4, 6} the function u1
m

33 · 66m + 46 · 82m − 40 · 140m − 140 · 9m

is nonzero modulo p. Both Skolems lemmas can be applied and it is shown that there is
no non-trivial symmetry but at order 6.

6 The counter example to Fokas’ conjecture

Theorem 1. There exists a 2-component equation with exactly two non-trivial symmetries.

Proof. The resultant of U7 and U11 has the following factor in common with the resultant
of U7 and U29

(r3 − r − 1)(r3 + r2 − 1)(r6 + 3r5 + 5r4 + 5r3 + 5r2 + 3r + 1)

In Z/101 the first factor has solution 20 and the third solution 52. These can be lifted
and both Skolems lemmas can be applied. In this way it is proven that the set {r, 1

r , s, 1
s}

that corresponds to the modulo 101 set S = {20, 96, 52, 68} is no solution set of a Gm-
function when m 6∈ {0, 1, 7, 11, 29}. If one of the other sets corresponding to {40, 48, 42, 89}
or {32, 60, 63, 93} is a solution set of the function Gm for some m then their minimum
polynomials divides the resultant of U7 with Um. That means that S is a solution set of
Gm as well, hence m equals 0, 1, 7, 11 or 29. ¥

We will compute the three equations and their symmetries explicitly. Each root of r3+r2−1
is mapped to a different eigenvalue. We take C[r]/(r3 + r2 − 1) as our coefficient field.
The eigenvalues of the systems will be

1 + r7 = 2r2 and (1 + r)7 = 16r2 + 28r + 21

Their quadratic part will be

G7[2r2, 16r2 + 28r + 21](ξ1, ξ2)
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divided by

2(ξ1 − rξ2)(ξ1 − (r + r2)ξ2)(ξ2
1 + (1− r − r2)ξ1ξ2 + ξ2

2)

i.e.
7
2
(2r2 + 4r + 3)(ξ1 + ξ2)(ξ2

1 + (2− r)ξ1ξ2 + ξ2
2)

Our examples, written more compactly than in [18], look like

ut = 2r2u7 + 7(2r2 + 4r + 3)(v3v0 + (3− r)v2v1)
vt = (16r2 + 28r + 21)v7

∣∣∣∣ r3 + r2 − 1 = 0.

The symmetries can be calculated in the same way, leading to

ut = (−3r2 + r + 2)u11

+11
(
(14r2 + 24r + 18)v7v0 + (35r2 + 57r + 42)v6v1

+ (48r2 + 70r + 49)v5v2 + (51r2 + 65r + 42)v4v3

)
vt = (151r2 + 265r + 200)v11

and

ut = (−40r2 + 9r + 17)u29

+29
(
30(1081r2 + 1897r + 1432)v25v0

+(311920r2 + 547311r + 413143)v24v1

+(706832r + 533441 + 403277r2)v23v2

+(449543r2 + 782050r + 589257)v22v3

+(537572r + 402545 + 317304r2)/2v21v4

+(1026233r2 + 1635821r + 1205570)v20v5

+(1101516r + 779787 + 787277r2)/2v19v6

+(2656229r + 1710194 + 2393075r2)v18v7

+(3831912r2 + 3208669r + 1731205)v17v8

+(6105788r2 + 4007995r + 1678107)v16v9

+(4807604r + 1421555 + 8899703r2)v15v10

+(5263833r + 11440843r2 + 915604)v14v11

+ 3(1793035r + 155000 + 4312473r2)v13v12

)
vt = (3761840r2 + 6601569r + 4983377)v29

7 More symmetries

We present the results of large computer calculations we did in MAPLE [4]. We calculated
the resultant of Un and Um for 4 ≤ n ≤ 10 and n + 1 ≤ m ≤ n + 150. To obtain the
systems with finitely many symmetries only, one has to filter out the integrable systems.
How to find all integrable nth order systems for fixed n if the quadratic part is v2

0 is
described in [3]. This method we have extended to cover the case of an arbitrary quadratic
part. This will be the subject of another paper. One finds common factors on orders
m = k(n− 1), kn, (2k + 1)n for all k ∈ N.

To give an indication of the size of the expressions. The resultant of U10 and U160 has
degree 556. The coefficients of rn with 244 < n < 312 have 207 (decimal) digets. The
number of nth order systems we have been calculating is
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n 4 5 6 7 8 9 10 4–10

# 2745 2701 5679 5644 8740 8839 11952 46300

In the pictures on the next pages the positions of the roots of these resultants in the
complex plane are plotted. As a fundamental domain the upper half unit circle is chosen.
The full pictures are invariant under r → 1

r and r → r̄.
All these systems have at least one nontrivial symmetry. To answer the question how

many symmetries there exactly are we implemented the method of Skolem. We made the
following refinements.

• Most of the resultants we have calculated are irreducible. By the argument in the
proof of theorem 1 it suffices to prove the statement for one particular set of roots.

• Sometimes it is much more efficient to use two pairs of roots. The argument goes as
follows. The resultant of U5 and U19 contains the factor

f(r) = r12 + 4r11 + 10r10 + 19r9 + 28r8 + 34r7

+37r6 + 34r5 + 28r4 + 19r3 + 10r2 + 4r + 1

which is irreducible over Q and splits into linear factors over Z×509. The numbers
(264, 407) are a solution for Um(r, s) when m ∈ {0, 1, 5, 19, 256, 414}. The numbers
(267, 300) are a solution for Um(r, s) when m ∈ {0, 1, 5, 19, 162, 254}. By using both
pairs we can apply lemma 5 for all 0 ≤ m < 508 but {0, 1, 5, 19}, for which we can
use the lemma 6. The computer could not find any prime such that the normal
procedure works, it has been busy for days to check all primes p < 8147.

With these improvements we have been able to prove that all these system have exactly one
non trivial symmetry, with the exeption of the seventh order systems with two symmetries
at order 11 and 29.

The following MAPLE output can be used to verify the above statement for n = 7, 29 ≤
m ≤ 37.

prf29:=[101, {20, 52}],[97, {4, 32}]:
prf30:=[2531, {75, 871}]:
prf31:=[1021, {16, 42}]:
prf32:=[877, {226, 214}]:
prf33:=[601, {23, 409}]:
prf34:=[2857, {2457, 716}, {742, 391}]:
prf35:=[661, {401, 330}, {122, 245}]:
prf36:=[179, {17, 76}]:
prf37:=[233, {30, 56}, {20, 84}]:

The sequence prf.m contains the proofs for different factors of the resultant of U7 and
Um. Each proof consists of a prime number p and one or two sets of modulo p solutions
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Figure 1. Numerical approximations of the roots of the G–functions corresponding to almost
integrable systems for order 4, 5 and 6
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Figure 2. Numerical approximations of the roots of the G–functions corresponding to almost
integrable systems for order 7, 8 and 9
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Figure 3. Numerical approximations of the roots of the G–functions corresponding to almost
integrable systems for order 10

such that all conditions of Skolem are satisfied. The exceptions, where the resultant has
two factors, are

(n,m) = (4, 24), (4, 28), (6, 42), (7, 8), (7, 49), (8, 56), (10, 70)

Three factors appear at n = 7, m = 11 and four at n = 7,m = 29.

8 Conclusions

We have shown that the existence of one or two generalized symmetries of an evolution
equation does not necessarily imply integrability. We hope that this illustrates the use
of p-adic and resultant methods to this field and that these methods will be more widely
applied. With these results in mind this puts a burden of proof on anyone claiming
integrability (with respect to generalized symmetries). We mention the successful use of
number theoretic methods, especially the Lech-Mahler theorem, in this respect, cf. [3, 17].
These methods are not restricted to the special kind of systems we study here, but they
are applicable to any polynomial system, in principle.
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