Symmetry condition in terms of Lie brackets.
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Abstract

A passive orthonomic system of PDEs defines a submanifold in the cor-
responding jet manifold, coordinated by so called parametric derivatives.
We restrict the total differential operators and the prolongation of an evo-
lutionary vector field v to this submanifold. We show that the vanishing
of their commutators is equivalent to v being a generalized symmetry of
the system.

1 The standard symmetry condition

In the majority of cases where exact solutions of differential equations can be
found, the underlying property is a (continuous) symmetry of the equation [11,
7]. And, in the theory of integrable equations, the recognition and classification
methods based on the existence of symmetries have been particular successful
[5, 10, 13, 3].

A symmetry-group transforms one solution of an equation to another solu-
tion of the same equation. Although this idea goes back to Sophus Lie, we refer
to [7] for a good introduction to the subject, numerous examples, applications
and references. And we quote: 'The great power of Lie group theory lies in the
crucial observation that one can replace the complicated, nonlinear conditions
for the invariance of the solution set of an equation under the group transfor-
mations by an equivalent linear condition of infinitesimal invariance under the
corresponding infinitesimal generators of the group action’ [7]. In this paper
we provide a characterization of symmetries that is different from the standard
one, generalizing a similar characterization in the special setting of ordinary
differential equations [11, eq. (3.35)], and evolution equations [7, Prop. 5.19] to
the setting of passive orthonomic systems.

The natural framework in which symmetries of differential equations are
studied is the so called jet-manifold M. Coordinates on M consist of p indepen-
dent variables x;, ¢ dependent variables u® and the derivatives of the dependent



variables, which are denoted using multi-index notation, e.g.
9 0w
U1,03 = 5 773
. orots
when z = (r,s,t) and u = (v,w). A typical point z € M is z = (z;,u®, uf).
The ring of smooth functions on M will be denoted A. To indicate functional
dependence of f € A we simply write f(z). Thus the system A(z) =0, A € A"
is a system of n PDEs.

The action of a Lie group is defined on the space of dependent and indepen-
dent variables, and then prolonged to an action on the jet manifold. Likewise
the infinitesimal generator of the symmetry group is obtained by prolongation
from an infinitesimal vector field on the base manifold. It turns out that any
symmetry has an evolutionary representative [7, Prop. 5.5]. In terms of the
total differential operators
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the prolongation pr, of an evolutionary vector field vg = >, Q*9/0u” is

o O
Prg = Z Dk@Q 8u§"{' (2)
a, K

A simple computation shows that these derivations on A commute among each
other, we have [D;,D;] =0,4,j=1,...,p and

[Di,prol =0, i=1,...,p, Q€ A (3)

In fact, up to a linear combination of translational fields 9/0x;, evolutionary
vector fields are uniquely determined by property (3), cf. [7, Lemma 5.12].

The condition of infinitesimal invariance, the standard symmetry condition,

is [7, Theorem 2.31]

proA =0 mod A (4)
in which case vq, or the tuple @ € A™ itself, is called a (generalized) symmetry
of the system A = 0. The tuple @ is a trivial symmetry if Q@ = 0 mod A,
which defines an equivalence relation on the space of symmetries. In section
2 we show this is well defined for passive orthonomic systems. We restrict
@ to be a function Q € B on the sub-manifold of the jet-manifold defined
by our system of PDEs. Although this is a more than standard procedure,
restricting the derivations to act on this sub-manifold is not standard at all,
except possibly in the settings of ODEs and evolution equations. This is, at
least from a philosophical point of view, not fully satisfying.

In section 3, for any passive orthonomic system of partial differential equa-
tions, we define intrinsic total differential operators ©; and an intrinsic prolon-
gation pry, which are derivations on the sub-space B. Subsequently we show
that the vanishing of the Lie brackets

[Di,prgl =0, i=1,...,p, Q€ B

is equivalent to @) being a symmetry.



2 Passive orthonomic systems

Restricting to the sub-manifold is particularly easy when dealing with ortho-
nomic systems, in which case this amounts to using the equations as substitution
rules. However, in general the order of substituting and differentiating does
matter, one encounters integrability conditions. For example, for the system
uy = X,uy =Y to be formally integrable we need D,X = D,Y. In general,
a finite number of integrability conditions suffices to make the system formally
integrable, in which case the system is called passive.

The idea of a passive orthonomic system is the main idea behind Riquier’s
existence theorems [12] and the corresponding algorithms for solving systems of
PDEs due to Janet [2]. Riquier-Janet theory extended the works of Cauchy and
Kovalevskaya, it takes a prominent place in computer algebra applied to PDE
theory [8], and it has lead to important developments in polynomial elimination
theory [1]. The passive orthonomic system was the predecessor of what is now
called an involutive system of PDEs. For our purpose, the concept of involutivity
does not play a role. We adopt a similar philosophy as in [4], and stick to the
setting of passive orthonomic systems. In that paper an efficient algorithm is
given by which any orthonomic system can be made passive by construction of
a sufficient set integrability conditions free of redundancies [4].

Let N={0,1,2,...} and N, = {1,2,...,¢}. We denote the i-th component
of J € NP by J; and addition in NP is denoted by concatenation. A set of
basis vectors for N? is given by {1,2,...,p}, where i; = 1 when ¢ = j and
i; = 0 otherwise. Thus, with J, K € NP, we have (JK); = J; + K;, and in
particular (Kj); equals K; or, when j = i, K; + 1. Also, when L = JK we
write J = L/K. Since total differential operators commute we can define a
multi-differential operator Dy as

Dy = D' D ... DI, ©)

and we have Dgu? = uJK

Choose n points (1%, J*) € Ny xN?, with nonzero J*, a = 1,...,n. A deriva-
tive ul is called principal if there exist L € NP such that (j, K) = (i, J*L) for
some c. The remaining ones are called parametric. The set of all (j, K') such
that u), is parametric is denoted S, and the subspace of A consisting of smooth
functions of the parametric derivatives is denoted B.

We also choose a ranking < on N, x NP, that is, a total order relation which
is positive:

VL, (j, K) < (4, KL),

and, compatible with differentiation:
(1, J) < (4, K) < (i, JL) < (j, KL),

of. 6, 9].



We consider systems of n partial differential equations, with a =1,...,n,
uy. = P*,  PYeB. (6)

The system (6) will be written shortly A = 0, where A® = uf]aa — P*. We make
the following assumptions:

i) the P* only depend on w} with (j, K) < (i%, J%), and
ii) (1% J*K) = (i®,J°L) = D P® = D1 P".

Such systems are called passive orthonomic systems. Their crucial property is
that for any @ € A, there is a unique @ € B such that @ = @ mod A. This @
can be obtained from the following reduction algorithm.

Algorithm 1 Input: Ezpression @ € A. Output: Ezpression @ € B.
* if no principal derivative appears in @ then return QQ

* let uJK be the <-highest principal derivative appearing in Q, and let o, L
be such that j, K =i%, J*L

* substitute uJK = D P% in Q and call the result R
* return R

The algorithm terminates because the highest principal derivative of R, if it
exists, is <-smaller than uJ., due to assumption i). And, a different choice of «
wouldn’t change the result because of assumption ii).

The following lemma states that differentiation is compatible with the above
reduction A — B, cf. [4, Theorem 4.8].

Lemma 2 For any Q € A we have

DxQ = DxQ
Proof: Using a modified version of Algorithm 1 we can write Q = @ + R(A),
where R is some differential function of A such that R(0) = 0. Clearly Dx R(A)
vanishes. O

3 The intrinsic symmetry condition

Definition 3 We define an intrinsic multi-differential operator D : B — B by
OxP=DxP, PeB

From this definition and Lemma 2 we obtain the following properties.



Proposition 4 Intrinsic multi-differential operators are compatible with con-
catenation, D gD = Dkr,.

—

Proof: We have @ kD, P = Dx D P = DgD.P = D P = D1 P. 0

Corollary 5 We have the analogue of equation (5), Dk = DF1Dk> -'-Qf”,
Corollary 6 Intrinsic total differential operators commute, [9;,9;] = 0.

We would like to have a more intrinsic characterization of ®;, that is, without
reference to any principal derivative or total differential operator. For L € NP
we denote Sp, = {(a, K) : (o, KL) € S}, which is a subset of S. From equation
(1) and Definition 3 it follows that
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We note that when (k,L) € S\ S; there exist a € N,,, M € NP such that
(k, Lj) = (i*,J*M), and, for any 3 € N,,, N € N? such that (k, Lj) = (i®, J°N)
we have i® = i® and D, P* = Dy P”. Due to Corollary 5 equation (7) provides
a recursive schema for intrinsic total differentiation.

Proposition 7 The recursive schema (7) for ©; is well defined.

Proof: We show the schema terminates using transfinite induction. For any
Q € A, to evaluate ©;(Q, apart from some differentiation and multiplications,
we need to evaluate a finite number of expressions ©;P“. We assume that
’Z)ALP’B can be evaluated for all (i%, J°L) < (i, J*I). Suppose P® depends on
u}e. That implies (j, K) < (i%,J*). Suppose there are 3 € N,, and L € N? such
that (j, KI) = (i®,JPL). Then, to evaluate ®;P* one may need to evaluate
D PP. By the induction hypothesis this can be done. O

Definition 8 We define intrinsic prolongation, denoted prg : B — B, of an
evolutionary vector field vg with Q € B by

From equation (2) and Definition 8 we get the intrinsic formula

-
jKES Quie

We now state and prove our main theorem.

Theorem 9 A tuple Q € B is a symmetry of equation (6) iff

for all j.



Proof:
< We calculate pry A® modulo A

proA® = DjaQ" —proPe
= @]ana — thPoc (8)

Next we calculate the commutator [D;,prg]. Neglecting second order
derivatives, we get

0
@jth: Z @Lij@,

(k,L)eS
and
K O o O
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Hence we get
0

[Qjath] = Z <©J<¥MQia - thQMPO‘) EGE
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Suppose that J3* # 0. Then the action of the above vector field on uf]aa /i
yields the right hand side of equation (8). Since we have chosen J* #£ 0 €
NP this proves our case.

= Suppose D ja Q" = pro P Then

o O
[D;,pto] = > (D11, prq] P o
(i, J*M/j)€S\S; J*M/j
We will prove that [@Mth] P =0for all « € N, and M € NP. The
statement is certainly true for M = 0. Assume that [Dy,prg] PP =0
for all (i”, JPN) < (%, J*M). When M # 0 there exists j such that
M/j € NP. We write
(D1, peq] P =D; D). pra] P+ [Dj pra] Daryy P

The first term is zero by the induction hypothesis, so we concentrate on
the second, which is

0
> (D prg] PﬂauTgM/jPa-
(i8,J8 N)eS\S; JBN/j

Suppose P® depends on u%. Then (k,L) < (i% J%). The function
D/ P may depend on the derivative ule/j (namely, if u’ZM/j e S,

otherwise it depends on smaller derivatives). But when (i®, J°N/j) <
(k,LM/j) < (i*, J*M/j) by the induction hypothesis [@N,th] P8 van-
ishes. g
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