
On proving integrabilityPeter H. van der KampFaulty of Sienes, Division of Mathematis & Computer SieneVrije UniversiteitDe Boelelaan 1081a, 1081 HV, Amsterdam, The NetherlandsE-mail: peter�few.vu.nlAbstrat. We prove the onjeture, formulated in [7℄, that the systemut = 12u3 + 12v3 + (2 � �)u0u1+(6� �)v0u1 + �u0v1 + (4� �)v0v1vt = 12 v3 + 12u3 + (2� �)v0v1+(6� �)u0v1 + �v0u1 + (4 � �)u0u1has polynomial symmetries of order 2k and weight 2k + 2n when � = 2(1 � kn )for any nonnegative integer k and any positive integer n. Moreover we provethe existene of in�nitely many nonpolynomial symmetries for any �. Thisdemonstrates the use of the impliit funtion theorem of Sanders and Wangtogether with the symboli alulus of Gelfand and Diki�� to prove the existeneof in�nitely many symmetries of evolution equations.Submitted to: Inverse Problems1. IntrodutionIt was observed and onjetured, f [5, 9, 6℄, that the existene of one (or a few)symmetries implies the existene of in�nitely many symmetries. Counterexampleswere found in [1, 10℄ and a (p-adi) method to prove that the number of symmetries is�nite has been developed, f [2, 11℄. These developments show that it is nessesary toprove the existene of in�nitely many symmetries. Although the methods employedin [14, 2, 15, 13, 16, 3℄ show how one an e�etively obtain integrability proofs, stillthe observation and onjeture are used to argue that it is enough to �nd only one ortwo symmetries of a system in order to delare it integrable, f [12, 7℄. In this paperwe explain and demonstrate the use of an impliit funtion theorem, as formulated in[14℄ and the symboli alulus whih is developed in [8℄.In [7℄ a lassi�ation of third order symmetrially oupled KdV{like equationswith respet to the existene of two symmetries is presented. One system (4.7) in thelist is quite speial.ut = 12u3 + 12v3 + (2� �)u0u1 + (6� �)v0u1 + �u0v1 + (4� �)v0v1vt = 12v3 + 12u3 + (2� �)v0v1 + (6� �)u0v1 + �v0u1 + (4� �)u0u1For all values of � odd order symmetries were found. At even order symmetries werefound as well, but only for some partiular values of �. Foursov veri�ed all weight2,4,6,8 and 10 symmetries and formulated the



On proving integrability 2Conjeture 1 (Foursov, [7℄) The system 4.7 has symmetries of order 2k and weight2k + 2n when � = 2(1� kn ) for any nonnegative integer k and any positive integer n.A partiular easy ase is � = 2, there are the symmetries of zero order and weight 2nut = (u� v)nvt = �(u� v)nNo extra odd weight symmetries were found beause it was assumed that thesymmetries were polynomial. The ruial observation one has to make is that theweight an be any number, i.e. the above system is a symmetry when � = 2 for alln 2 C .In this paper we prove that the system 4.7 has in�nitely many symmetries at anypositive order for all � 6= 2. The weight of the even order symmetries is generally areal number (or omplex when � is omplex). Only for the speial values of � statedin the onjeture the weight beomes even at speial orders. At � = 2 there aresymmetries at all odd orders and the symmetries of order zero but arbitrary weight.When �2� 2 N we �nd additional odd order symmetries. A omputer program thatprodues all these symmetries is inluded in appendix C. Also the existene of an extraset of symmetries of arbitrary order is proven and examples are given.2. Impliit funtion theoremWe an view the right hand side of an evolution equation (ut; vt) = K as an elementof a Lie algebra L.De�nition 1 An element Q 2 L is alled a generalized symmetry of K, or symmetryfor short, if ad(K)Q = [K;Q℄ = 0. An equation with in�nitely many independentsymmetries is said to be integrable and an in�nite set of symmetries is alled ahierarhyThe omputation of symmetries an be very umbersome. It is a useful proedureto divide the problem into a number of smaller omputations. This an be done byintroduing a �ltration on the algebra.De�nition 2 A Lie algebra L is �ltered if L = L0 � L1 � L2 � � � � suh that\1i=0Li = f0g and[Li;Lj ℄ � Li+jNow �nding a symmetry of K is equivalent to solving the set of equations[K;Q℄ 2 Lj for j = 1; 2; : : :Under some onditions all these equations hold provided that the �rst few do.De�nition 3 We all K 2 L0 nonlinear injetive if [K;Q℄ 2 Li+1 impliesQ 2 Li+1 for all Q 2 Li; i > 0.De�nition 4 We all K 2 L0 relative l-prime with respet to S 2 L0 if [S;Q℄ 2Im(ad(K)) mod Li+1 implies Q 2 Im(ad(K)) mod Li+1 for all Q 2 Li, i � l.The following impliit funtion theorem for �ltered Lie-algebras, whih is to be foundin [14℄, an be used to prove the existene of in�nitely many symmetries without theuse of extra strutures like a Lax-pair, a reursion operator or a master symmetry.The proof is is inluded in appendix A.



On proving integrability 3Theorem 1 (Sanders, Wang) Let L be a �ltered Lie algebra. Suppose K;S andQ 2 L0 suh that� [K;S℄ = 0� K is nonlinear injetive� S is relatively l-prime with respet to K� [K;Q℄ 2 Ll� [S;Q℄ 2 L1there exists a unique ~Q 2 Ll suh that Q̂ = Q + ~Q is a symmetry of both K and S,i.e.� [K; Q̂℄ = 0� [S; Q̂℄ = 0One has to �nd in�nitely many independent Q's for whih the onditions are satis�edto prove integrability. This an be done in the symboli alulus, see [8℄ and appendixB.3. A onjeture of FoursovWe put the system 4.7 in Jordan form by the invertable linear transformationu0 ! 12(u0 + v0); v0 ! 12(u0 � v0)then we apply a sale transformation u0 ! 12u0 and the parameter translation�! �+ 2 to obtain the system we denote K(�)ut = u3 + 3u0u1vt = �u1v0 + u0v1a generalisation of the usual KdV equation. The Foursov onjeture says that for allnegative � 2 Q the equation has a hierahy of even order polynomial symmetries. Thisis the ase as we show in the following subsetions that all onditions of the impliitfuntion theorem are satis�ed. Sine we allow the symmetries to be nonpolynomial,we �nd symmetries at any order for any � 6= 0.3.1. [K,S℄=0The �rst ondition in theorem 1 is �nding one symmetry (S). Instead of expliitlygiving S, we show that for all � the system has in�nitely many odd order symmetriesLemma 1 Let Kn be the (odd) nth order symmetry of the KdV equation. Then forall n the system Sn(�) = � Kn(�v0 + v1D�1x )Kn�2 �is a symmetry of K(�).



On proving integrability 4Proof 1 The braketDKSn(�)�DSnK(�)has �rst omponent DuK3Kn �DuKnK3 = 0 for Kn is a symmetry of KdV (K3). Theseond omponent is expanded in powers of �. The zeroth power has oeÆientv1Kn + u0v2D�1x Kn�2 + u0v1Kn�2 � v1D�1x DuKn�2K3�D�1x Kn�2(u0v2 + u1v1)= v1(Kn + (u0 �D�1x (D3x + 3u0Dx + 3u1)� u1D�1x )Kn�2)= v1(Kn � (D2x + 2u0 + u1D�1x )Kn�2)whih vanishes beause of the reursion relation for KdV symmetries. The oeÆientof � v0(DxKn � (D3x + 2u0Dx + 3u1 � u2D�1x )Kn�2)vanishes for the same reason, sine D�1x u1 � u1D�1x = D�1x u2D�1x . Finally �2has oeÆient u1v0Kn�2 � u1v0Kn�2 = 0. Therefore the Sn(�) with n odd forma hierarhy of the system K(�) for all �.3.2. K(�) is nonlinear injetiveAs a grading of the Lie algebra L we hoose the degree in u when a system is writtenas ut ��u + vt ��v =Xi KiNotie that one an have for example K�1 = v3 ��u . This grading indues a �ltration,Pi=lKi 2 Ll. For our system K(�) 2 L0 we writeK0 mod L1 = � u30 � and K1(�) = � 3u0u1�u1v0 + u0v1 �Lemma 2 Suppose that Q 2 Li and nonzero. Then [K;Q℄ � 0 modulo Li+1 impliesi = 0.Proof 2 The �rst symmetry ondition modulo Li+1 reads0 � [K;Q℄� � D3x 00 0 �� Q1Q2 ��� DuQ1 DvQ1DuQ2 DvQ2 �� u30 �� � D3Q1 �DuQ1u3DuQ2u3 �This implies �rst of all that Q1 does not ontain a part that depends on v beause thiswould be hanged by the operation D3 and left unhanged by DuQ1 . That Q1 2 L0 ismost easily seen by using the symboli method (see appendix B). When Q1 is nonzero(�1 + �2 + � � �+ �i+1)3 � (�31 + �32 + � � �+ �3i+1) = 0only if i = 0. Seond [K;Q℄ � 0 implies that Q2 does not depend on u or its derivatives,i.e Q2 2 L0.That is to say, K(�) is nonlinear injetive.



On proving integrability 53.3. S is relatively 2{prime with respet to KThe symmetries we onsider in the rest of this paper have the form (0; Q). Supposenow that Q 2 Li. The modulo Li+1 ations of K and Sn are symbolially given bymultipliation with the G{funtionsGin = �n1 + �n2 + � � �+ �niIn the symboli language SnQ 2 Im(K) implies Q 2 Im(K) modulo Li+1 wheneverGi+13 and Gi+1n are relative prime.Lemma 3 All Gin with i � 3 are irreduibleProof 3 If the projetive urve G3n = 0 has two omponents it has a singularity, thatis a projetive point (�1; �2; �3) where all partial derivatives of G3n vanish. It is easy tosee that no suh point exists. Thus G3n is irreduible and beause Gin = Gi�1n at �i = 0all Gin with i > 3 are irreduible as well.This shows that Sn is relatively 2{prime with respet to K(�).3.4. [K;Q℄ 2 L2We look for symmetries of the form (0; Qk). Then automatially the �rst equationKQk � 0 mod L1 holds, see setion 3.2. The next (already the last) equation iswritten modulo L2 0 � � D3x 00 0 �� 0Q1k ��� 0 0DuQ1k DvQ1k �� u30 �+� 3(u1 + u0Dx) 0�v0Dx + v1 �U1 + u0Dx �� 0Q0k ��� 0 0DuQ0k DvQ0k �� 3u0u1�u1v0 + u0v1 �leading to DuQ1ku3 � u0DxQ0k + �u1Q0k �DvQ0k (�u1v0 + u0v1)whih an be solved if the oeÆients of u0; u1 and u2 vanish. Expanding therighthandside terms givesu0DxQ0k + �u1Q0k �DvQ0k(�u1v0 + u0v1)� u0(DxQ0k � vi+1�viQ0k)+u1(�Q0k � (�+ i)vi�viQ0k)+u2(��i� i(i�1)2 )vi�1�viQ0k+ � � �where the sum over i is taken. Sine total di�erentiation is done by the operatorDx = vi+1�vi the oeÆient of u0 vanishes identially.Let � 6= 0. We make the followingAnsatz 1 The term of lowest grading has the formQ0k � 2kXj=0 jvjv2k�jvw=2�k�10 modulo L1of order 2k and weight w. Here k is a positive integer and w an be any number.



On proving integrability 6The operator ivi�vi ounts the order, it multiplies Q0k with 2k. The operator vi�viounts the degree in v, it multiplies Q0k with w2 � k + 1. Therefore the u1{oeÆientvanishes when w = 2k�� 2�When we put w = 2k + 2n we get � + 2 = 2(1 � kn ) as predited by Foursov in hisonjeture. If n 2 N this is where the symmetries are polynomial.Straight forward alulation shows that the vanishing of the u2-oeÆient impliesj = j�1 (j � 1� 2k)(2�+ 2k � j)j(2�+ j � 1)As long as � 6= 0;� 12 ; � � � ; 12 � k we an solve this reursion relation.The result is non empty beause k+i = k�i when k 2 N whih an be easilyproven by indution on i. One an look for odd order solutions, take for k a halfinteger. In this ase we have k+1=2+i = �k�1=2�i whih implies Q0k = 0. Howeverwhen �2� 2 N and 0 < 2k + 2� � k we have j = 0 for all j � 2k + 2�. This meansthat when �� is integer or half integer there exists respetively �� and �2(� + 1)additional odd order solutions.Example 1 The only additional odd order symmetry with this form of K(� 32 ) isut = 0vt = v0v5 + 53v4v1 + 253 u1v21 + 253 u0v1v2 + 10u1v0v2 + 5u0v3v0+ 9u2v0v1 + 32u3v20 + 92u0u1v20 + 6u20v1v0To over the higher values of k for integer or half integer negative � we startounting oeÆients from the other side of the polynomial. The assumption we mustmake here is that k � �� or k > �2� whenever �2� 2 N.Ansatz 2 Let Q0k � kXi=0 bivk+ivk�ivw=2�k�10 modulo L1Then the reurrene beomesb1 = 2b0 k(1� k � 2�)(k + 1)(2�+ k)bi = bi�1 (k + 1� i)(i� k � 2�)(k + i)(k + i� 1 + 2�)When �2� 2 N and k = �2�+ 1 + i; i 2 N all oeÆients bj ; j > i vanish.It is possible to do the omputations in higher �ltration spaes. A reursiveformula in symboli language for the terms Qnk modulo Ln+1 is given in appendix C.There, MAPLE (see [4℄) omputer ode that produes these kind of symmetries andan expliit example with omplex � is presented as well.There is more symmetry. We make anotherAnsatz 3 Let Q0k � kXj=0 ajvk�jvj1vw=2�k=2�j0 modulo L1of order k and weight w, again k is a positive integer and w 2 C .



On proving integrability 7The oeÆient of u1 vanishes if w = k ��2� and the oeÆient of u2 vanishes ifaj+1 = aj(k � j)(j + 1� 2�� k)2�(j + 1)This proedure works for all integer k > 1 and all w 2 C . We have Q0k = 0 when k = 1.For k = 2 one obtains the same symmetries as taking k = 1 in ansatz 1 (or 2). When� is a negative integer or half integer we observe that aj = 0 for all j > k � 1 + 2�.Example 2 K(� 43 ) has the extra symmetry of order 4 and weight 10ut = 0vt = v4v30 + 12v20v3v1 � 316v0v2v21 + 15256v41 + 43u2v40+ 5u1v30v1 + 4u0v30v2 + 54u0v20v21 + 43u20v403.5. [S;Q℄ 2 L1The �rst omponent of Sn does not depend on v and its seond vanishes modulo L1.Moreover the �rst omponent of Qk vanishes and its seond does not depend on umodulo L1. These properties make their braket vanish modulo L1.4. ResultsWe have shown that the KdV equation oupled to a nonlinear equationK(�) : ut = u3 + 3u0u1vt = �u1v0 + u0v1has in�nitely many odd order symmetries Sn(�) and that its linear part is nonlinearinjetive. The linear part of any odd order symmetry Sn(�) is relatively 2-prime withK(�). We solved the �rst two symmetry onditions [K;Q℄ 2 L2 for in�nitely many Q(twie) for all � and showed that [Sn; Q℄ 2 L1. By the impliit funtion theorem allQk(�) ommute with K(�) and with all Sn(�).There is a linear map that transforms every symmetry of K(�) into a symmetryof the system 4.7 found by Foursov. His onjeture turns out to be true inside thelass of polynomial symmetries. However, the symmetry struture of the equation isbigger than that.Appendix A. Impliit funtion theoremLemma 4 Let L be a �ltered Lie algebra. Suppose K;S and Q 2 L suh that� [K;S℄ = 0� K is nonlinear injetive� [K;Q℄ 2 Ll� [S;Q℄ 2 L1Then� [S;Q℄ 2 LlProof 4 We know [K; [S;Q℄℄ = [S; [K;Q℄℄ 2 Ll. Beause [S;Q℄ 2 L1 we an use thenonlinear injetiveness of K to onlude that [S;Q℄ 2 Ll.



On proving integrability 8Theorem 2 (Sanders, Wang) Under the onditions in lemma 4 and the additionalondition� S is relatively l-prime with respet to Kthere exists a unique ~Q 2 Ll suh that Q̂ = Q + ~Q is an invariant of both K and S,i.e.� [K; Q̂℄ = 0� [S; Q̂℄ = 0Proof 5 By indution we show that there exists a Q̂ suh that [K; Q̂℄ 2 Lp and[S; Q̂℄ 2 Lp for all p � l. Suppose [K;Q℄ 2 Lp and [S;Q℄ 2 Lp holds for somep � l. The ase p = l follows from lemma 4. We have[K; [S;Q℄℄ = [S; [K;Q℄℄and in partiular, [S; [K;Q℄℄ 2 Im(ad(K)) mod Lp+1. By relative l-primeness of Swith respet to K we have that [K;Q℄ 2 Im(ad(K)) mod Lp+1. Therefore we anuniqually de�ne ~Q 2 Lp by[K; ~Q℄ = �[K;Q℄suh that Q̂ = Q + ~Q satis�es [K; Q̂℄ 2 Lp+1 and by lemma 4 (taking l = p + 1)[S; Q̂℄ 2 Lp+1.This implies that Q an always be extended suh that all homogeneous parts of[K;Q℄ and [S;Q℄ vanish. Uniqueness follows from the assumption that \1i=0Li = 0.Appendix B. Symboli alulusThe Gel'fand-Diki�� transformation, f [8℄, is a one to one mapping between di�erentialpolynomials and symmetri polynomials. The basi idea is very old, probably datingfrom the time when the position of index and power were not as �xed as they aretoday. We give some rules without proof.A di�erential monomial with m symbols of the form ukM(u) = mYj=1 uijis mapped to M(�) = 1m!X�m mYj=1 �ijjwhere P�m means one has to sum over all di�erent permutations of the integers1; : : : ;m. Monomials at on eah other as follows, let N have n �{symbolsM(�) ÆN(�) = 1(m+ n)! X�m+nM(�)N(�)This mapping is extended to di�erential monomials in more variables by introduingother symbols M(u)N(v)!M(�)N(�)One does symmetrize only in the symbols with the same name sine uiuj = ujui anduivj 6= ujvi.



On proving integrability 9The operation of taking a total derivative turns into multipliation with the sumof all symbols involved. Let K have m �{symbols and n �{symbolsDxK(u; v)! ( mXi=1 �i + nXj=1 �j)K(�; �)Taking the Frehet derivative of a di�erential polynomial is done as followsDuM(u) =Xk=1( Yj=1;j 6=k uij )Dikxand in the symboli alulus, when there are other symbols involved as well,DuK(�;�) = nK(�1; : : : ; �n�1; D; �)Æwhere �n is replaed by the symbol D whih is representing the sum of all symbols inthe monomial the Frehet derivative is ating on.Appendix C. Higher order alulationsSymmetries of K(�) are symbolially given byQ(�; k) = � 0Pkn=0Qn �where Q0 is given by funtion F [k; �℄(�1; �2)v� 2k+aa0 where F satis�es the lineardi�erential equation�(��1 + ��2)F + 12(�1�2�1 + �2�2�2)F = 0The higher order Qi satisfy the reurrene relation(n nXi=1 �3i )Qn =Pnj=1(Pni=1;i6=j �i) + 2(�+ k)�j + �1 + �2)Qn�1(�n=j ; �1; �2)�(��j + �1)Qn�1(�n=j ; �2; �j + �1)� (��j + �2)Qn�1(�n=j ; �1; �j + �2)�3Pni=1Pnk>i(�i + �k)Qn�1(�n=i=k ; �i + �k; �1; �2)where �n=i = �1; : : : ; �i�1; �i+1; : : : ; �n. The impliit funtion theorem garantiesthat this relation generates polynomials, whih an be transformed into di�erentialfuntions. This transformation is done in MAPLE (see [4℄) by the following funtionTRANS(P,n) whih transforms polynomials P (x1; : : : ; xi; y1; y2) into the orrespondingdi�erential polynomial with degree n in u and 2 in v.TRANS:=pro(P,n)loal R,e,i,Q:R:=0:Q:=expand(P):if type(Q,`+`) then Q:=onvert(Q,list) else Q:=[Q℄ fi:for e in Q dofor i to n do e:=e*u[degree(e,x[i℄)℄/x[i℄^degree(e,x[i℄) od:for i to 2 do e:=e*v[degree(e,y[i℄)℄/y[i℄^degree(e,y[i℄) od:R:=R+e od:RETURN(R)end:



On proving integrability 10The symmetries an be alulated on a omputer in the following way. First set (a isthe same as �)a:=-4/3:k:=2:then run the program[0℄:=1/2:if type(2*a,integer) and a<0 and k>-2*a thenF:=[0℄*(y[1℄*y[2℄)^k:for i to k+2*a-1 do[i℄:=-[i-1℄*(k+1-i)*(k+2*a-i)/(k+i)/(k+i-1+2*a):F:=F+[i℄*(y[1℄^(k+i)*y[2℄^(k-i)+y[2℄^(k+i)*y[1℄^(k-i)) od:elseF:=[0℄*(y[1℄^(2*k)+y[2℄^(2*k)):for i to k-1 do[i℄:=[i-1℄*(i-1-2*k)*(2*k+2*a-i)/i/(i-1+2*a):F:=F+[i℄*(y[1℄^i*y[2℄^(2*k-i)+y[2℄^i*y[1℄^(2*k-i)) od:F:=F-[k-1℄*(k+1)*(k+2*a)/k/(k-1+2*a)*y[1℄^k*y[2℄^k fi:Q:=TRANS(F,0):F:=unapply(F,y[1℄,y[2℄):for n to k do G:=0:for j to n doG:=G+(sum(x['i'℄,'i'=1..n)+(2*a+2*k-1)*x[j℄+y[1℄+y[2℄)*F(seq(x[i℄,`i`=1..j-1),seq(x[i℄,`i`=j+1..n),y[1℄,y[2℄)-(a*x[j℄+y[1℄)*F(seq(x[i℄,`i`=1..j-1),seq(x[i℄,`i`=j+1..n),y[2℄,x[j℄+y[1℄)-(a*x[j℄+y[2℄)*F(seq(x[i℄,`i`=1..j-1),seq(x[i℄,`i`=j+1..n),y[1℄,x[j℄+y[2℄):for l from j+1 to n doG:=G-3*(x[j℄+x[l℄)*F(seq(x[i℄,`i`=1..j-1),seq(x[i℄,`i`=j+1..l-1),seq(x[i℄,`i`=l+1..n),x[j℄+x[l℄,y[1℄,y[2℄) od od:G:=fator(G/sum(x['i'℄^3,'i'=1..n)/n):Q:=Q+TRANS(G,n):F:=unapply(G,seq(x[i℄,`i`=1..n),y[1℄,y[2℄) od:Q:=[0,fator(Q)*v[0℄^(fator(-(2*k+a)/a))℄;to �nd the seond symmetry of K when � = � 43 , it has the same order and weight asexample 2 in setion 3.4. The whole proedure also works for omplex �.Example 3 When one setsk:=1:alias(a=RootOf(x^2+x+1,x)):the program alulates the �rst symmetryQ := [0, 1/6*(-1+a)*(-4*v[2℄*v[0℄+3*v[1℄^2+2*a*u[0℄*v[0℄^2-2*a*v[2℄*v[0℄-2*v[0℄^2*u[0℄)*v[0℄^(1+2*a)℄It an easily be heked that this Q ommutes withK := [u[3℄+3*u[1℄*u[0℄, a*u[1℄*v[0℄+u[0℄*v[1℄℄;for primitive third roots of unity a.
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