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es, Division of Mathemati
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ien
eVrije UniversiteitDe Boelelaan 1081a, 1081 HV, Amsterdam, The NetherlandsE-mail: peter�few.vu.nlAbstra
t. We prove the 
onje
ture, formulated in [7℄, that the systemut = 12u3 + 12v3 + (2 � �)u0u1+(6� �)v0u1 + �u0v1 + (4� �)v0v1vt = 12 v3 + 12u3 + (2� �)v0v1+(6� �)u0v1 + �v0u1 + (4 � �)u0u1has polynomial symmetries of order 2k and weight 2k + 2n when � = 2(1 � kn )for any nonnegative integer k and any positive integer n. Moreover we provethe existen
e of in�nitely many nonpolynomial symmetries for any �. Thisdemonstrates the use of the impli
it fun
tion theorem of Sanders and Wangtogether with the symboli
 
al
ulus of Gelfand and Diki�� to prove the existen
eof in�nitely many symmetries of evolution equations.Submitted to: Inverse Problems1. Introdu
tionIt was observed and 
onje
tured, 
f [5, 9, 6℄, that the existen
e of one (or a few)symmetries implies the existen
e of in�nitely many symmetries. Counterexampleswere found in [1, 10℄ and a (p-adi
) method to prove that the number of symmetries is�nite has been developed, 
f [2, 11℄. These developments show that it is nessesary toprove the existen
e of in�nitely many symmetries. Although the methods employedin [14, 2, 15, 13, 16, 3℄ show how one 
an e�e
tively obtain integrability proofs, stillthe observation and 
onje
ture are used to argue that it is enough to �nd only one ortwo symmetries of a system in order to de
lare it integrable, 
f [12, 7℄. In this paperwe explain and demonstrate the use of an impli
it fun
tion theorem, as formulated in[14℄ and the symboli
 
al
ulus whi
h is developed in [8℄.In [7℄ a 
lassi�
ation of third order symmetri
ally 
oupled KdV{like equationswith respe
t to the existen
e of two symmetries is presented. One system (4.7) in thelist is quite spe
ial.ut = 12u3 + 12v3 + (2� �)u0u1 + (6� �)v0u1 + �u0v1 + (4� �)v0v1vt = 12v3 + 12u3 + (2� �)v0v1 + (6� �)u0v1 + �v0u1 + (4� �)u0u1For all values of � odd order symmetries were found. At even order symmetries werefound as well, but only for some parti
ular values of �. Foursov veri�ed all weight2,4,6,8 and 10 symmetries and formulated the



On proving integrability 2Conje
ture 1 (Foursov, [7℄) The system 4.7 has symmetries of order 2k and weight2k + 2n when � = 2(1� kn ) for any nonnegative integer k and any positive integer n.A parti
ular easy 
ase is � = 2, there are the symmetries of zero order and weight 2nut = (u� v)nvt = �(u� v)nNo extra odd weight symmetries were found be
ause it was assumed that thesymmetries were polynomial. The 
ru
ial observation one has to make is that theweight 
an be any number, i.e. the above system is a symmetry when � = 2 for alln 2 C .In this paper we prove that the system 4.7 has in�nitely many symmetries at anypositive order for all � 6= 2. The weight of the even order symmetries is generally areal number (or 
omplex when � is 
omplex). Only for the spe
ial values of � statedin the 
onje
ture the weight be
omes even at spe
ial orders. At � = 2 there aresymmetries at all odd orders and the symmetries of order zero but arbitrary weight.When �2� 2 N we �nd additional odd order symmetries. A 
omputer program thatprodu
es all these symmetries is in
luded in appendix C. Also the existen
e of an extraset of symmetries of arbitrary order is proven and examples are given.2. Impli
it fun
tion theoremWe 
an view the right hand side of an evolution equation (ut; vt) = K as an elementof a Lie algebra L.De�nition 1 An element Q 2 L is 
alled a generalized symmetry of K, or symmetryfor short, if ad(K)Q = [K;Q℄ = 0. An equation with in�nitely many independentsymmetries is said to be integrable and an in�nite set of symmetries is 
alled ahierar
hyThe 
omputation of symmetries 
an be very 
umbersome. It is a useful pro
edureto divide the problem into a number of smaller 
omputations. This 
an be done byintrodu
ing a �ltration on the algebra.De�nition 2 A Lie algebra L is �ltered if L = L0 � L1 � L2 � � � � su
h that\1i=0Li = f0g and[Li;Lj ℄ � Li+jNow �nding a symmetry of K is equivalent to solving the set of equations[K;Q℄ 2 Lj for j = 1; 2; : : :Under some 
onditions all these equations hold provided that the �rst few do.De�nition 3 We 
all K 2 L0 nonlinear inje
tive if [K;Q℄ 2 Li+1 impliesQ 2 Li+1 for all Q 2 Li; i > 0.De�nition 4 We 
all K 2 L0 relative l-prime with respe
t to S 2 L0 if [S;Q℄ 2Im(ad(K)) mod Li+1 implies Q 2 Im(ad(K)) mod Li+1 for all Q 2 Li, i � l.The following impli
it fun
tion theorem for �ltered Lie-algebras, whi
h is to be foundin [14℄, 
an be used to prove the existen
e of in�nitely many symmetries without theuse of extra stru
tures like a Lax-pair, a re
ursion operator or a master symmetry.The proof is is in
luded in appendix A.



On proving integrability 3Theorem 1 (Sanders, Wang) Let L be a �ltered Lie algebra. Suppose K;S andQ 2 L0 su
h that� [K;S℄ = 0� K is nonlinear inje
tive� S is relatively l-prime with respe
t to K� [K;Q℄ 2 Ll� [S;Q℄ 2 L1there exists a unique ~Q 2 Ll su
h that Q̂ = Q + ~Q is a symmetry of both K and S,i.e.� [K; Q̂℄ = 0� [S; Q̂℄ = 0One has to �nd in�nitely many independent Q's for whi
h the 
onditions are satis�edto prove integrability. This 
an be done in the symboli
 
al
ulus, see [8℄ and appendixB.3. A 
onje
ture of FoursovWe put the system 4.7 in Jordan form by the invertable linear transformationu0 ! 12(u0 + v0); v0 ! 12(u0 � v0)then we apply a s
ale transformation u0 ! 12u0 and the parameter translation�! �+ 2 to obtain the system we denote K(�)ut = u3 + 3u0u1vt = �u1v0 + u0v1a generalisation of the usual KdV equation. The Foursov 
onje
ture says that for allnegative � 2 Q the equation has a hiera
hy of even order polynomial symmetries. Thisis the 
ase as we show in the following subse
tions that all 
onditions of the impli
itfun
tion theorem are satis�ed. Sin
e we allow the symmetries to be nonpolynomial,we �nd symmetries at any order for any � 6= 0.3.1. [K,S℄=0The �rst 
ondition in theorem 1 is �nding one symmetry (S). Instead of expli
itlygiving S, we show that for all � the system has in�nitely many odd order symmetriesLemma 1 Let Kn be the (odd) nth order symmetry of the KdV equation. Then forall n the system Sn(�) = � Kn(�v0 + v1D�1x )Kn�2 �is a symmetry of K(�).



On proving integrability 4Proof 1 The bra
ketDKSn(�)�DSnK(�)has �rst 
omponent DuK3Kn �DuKnK3 = 0 for Kn is a symmetry of KdV (K3). These
ond 
omponent is expanded in powers of �. The zeroth power has 
oeÆ
ientv1Kn + u0v2D�1x Kn�2 + u0v1Kn�2 � v1D�1x DuKn�2K3�D�1x Kn�2(u0v2 + u1v1)= v1(Kn + (u0 �D�1x (D3x + 3u0Dx + 3u1)� u1D�1x )Kn�2)= v1(Kn � (D2x + 2u0 + u1D�1x )Kn�2)whi
h vanishes be
ause of the re
ursion relation for KdV symmetries. The 
oeÆ
ientof � v0(DxKn � (D3x + 2u0Dx + 3u1 � u2D�1x )Kn�2)vanishes for the same reason, sin
e D�1x u1 � u1D�1x = D�1x u2D�1x . Finally �2has 
oeÆ
ient u1v0Kn�2 � u1v0Kn�2 = 0. Therefore the Sn(�) with n odd forma hierar
hy of the system K(�) for all �.3.2. K(�) is nonlinear inje
tiveAs a grading of the Lie algebra L we 
hoose the degree in u when a system is writtenas ut ��u + vt ��v =Xi KiNoti
e that one 
an have for example K�1 = v3 ��u . This grading indu
es a �ltration,Pi=lKi 2 Ll. For our system K(�) 2 L0 we writeK0 mod L1 = � u30 � and K1(�) = � 3u0u1�u1v0 + u0v1 �Lemma 2 Suppose that Q 2 Li and nonzero. Then [K;Q℄ � 0 modulo Li+1 impliesi = 0.Proof 2 The �rst symmetry 
ondition modulo Li+1 reads0 � [K;Q℄� � D3x 00 0 �� Q1Q2 ��� DuQ1 DvQ1DuQ2 DvQ2 �� u30 �� � D3Q1 �DuQ1u3DuQ2u3 �This implies �rst of all that Q1 does not 
ontain a part that depends on v be
ause thiswould be 
hanged by the operation D3 and left un
hanged by DuQ1 . That Q1 2 L0 ismost easily seen by using the symboli
 method (see appendix B). When Q1 is nonzero(�1 + �2 + � � �+ �i+1)3 � (�31 + �32 + � � �+ �3i+1) = 0only if i = 0. Se
ond [K;Q℄ � 0 implies that Q2 does not depend on u or its derivatives,i.e Q2 2 L0.That is to say, K(�) is nonlinear inje
tive.



On proving integrability 53.3. S is relatively 2{prime with respe
t to KThe symmetries we 
onsider in the rest of this paper have the form (0; Q). Supposenow that Q 2 Li. The modulo Li+1 a
tions of K and Sn are symboli
ally given bymultipli
ation with the G{fun
tionsGin = �n1 + �n2 + � � �+ �niIn the symboli
 language SnQ 2 Im(K) implies Q 2 Im(K) modulo Li+1 wheneverGi+13 and Gi+1n are relative prime.Lemma 3 All Gin with i � 3 are irredu
ibleProof 3 If the proje
tive 
urve G3n = 0 has two 
omponents it has a singularity, thatis a proje
tive point (�1; �2; �3) where all partial derivatives of G3n vanish. It is easy tosee that no su
h point exists. Thus G3n is irredu
ible and be
ause Gin = Gi�1n at �i = 0all Gin with i > 3 are irredu
ible as well.This shows that Sn is relatively 2{prime with respe
t to K(�).3.4. [K;Q℄ 2 L2We look for symmetries of the form (0; Qk). Then automati
ally the �rst equationKQk � 0 mod L1 holds, see se
tion 3.2. The next (already the last) equation iswritten modulo L2 0 � � D3x 00 0 �� 0Q1k ��� 0 0DuQ1k DvQ1k �� u30 �+� 3(u1 + u0Dx) 0�v0Dx + v1 �U1 + u0Dx �� 0Q0k ��� 0 0DuQ0k DvQ0k �� 3u0u1�u1v0 + u0v1 �leading to DuQ1ku3 � u0DxQ0k + �u1Q0k �DvQ0k (�u1v0 + u0v1)whi
h 
an be solved if the 
oeÆ
ients of u0; u1 and u2 vanish. Expanding therighthandside terms givesu0DxQ0k + �u1Q0k �DvQ0k(�u1v0 + u0v1)� u0(DxQ0k � vi+1�viQ0k)+u1(�Q0k � (�+ i)vi�viQ0k)+u2(��i� i(i�1)2 )vi�1�viQ0k+ � � �where the sum over i is taken. Sin
e total di�erentiation is done by the operatorDx = vi+1�vi the 
oeÆ
ient of u0 vanishes identi
ally.Let � 6= 0. We make the followingAnsatz 1 The term of lowest grading has the formQ0k � 2kXj=0 
jvjv2k�jvw=2�k�10 modulo L1of order 2k and weight w. Here k is a positive integer and w 
an be any number.



On proving integrability 6The operator ivi�vi 
ounts the order, it multiplies Q0k with 2k. The operator vi�vi
ounts the degree in v, it multiplies Q0k with w2 � k + 1. Therefore the u1{
oeÆ
ientvanishes when w = 2k�� 2�When we put w = 2k + 2n we get � + 2 = 2(1 � kn ) as predi
ted by Foursov in his
onje
ture. If n 2 N this is where the symmetries are polynomial.Straight forward 
al
ulation shows that the vanishing of the u2-
oeÆ
ient implies
j = 
j�1 (j � 1� 2k)(2�+ 2k � j)j(2�+ j � 1)As long as � 6= 0;� 12 ; � � � ; 12 � k we 
an solve this re
ursion relation.The result is non empty be
ause 
k+i = 
k�i when k 2 N whi
h 
an be easilyproven by indu
tion on i. One 
an look for odd order solutions, take for k a halfinteger. In this 
ase we have 
k+1=2+i = �
k�1=2�i whi
h implies Q0k = 0. Howeverwhen �2� 2 N and 0 < 2k + 2� � k we have 
j = 0 for all j � 2k + 2�. This meansthat when �� is integer or half integer there exists respe
tively �� and �2(� + 1)additional odd order solutions.Example 1 The only additional odd order symmetry with this form of K(� 32 ) isut = 0vt = v0v5 + 53v4v1 + 253 u1v21 + 253 u0v1v2 + 10u1v0v2 + 5u0v3v0+ 9u2v0v1 + 32u3v20 + 92u0u1v20 + 6u20v1v0To 
over the higher values of k for integer or half integer negative � we start
ounting 
oeÆ
ients from the other side of the polynomial. The assumption we mustmake here is that k � �� or k > �2� whenever �2� 2 N.Ansatz 2 Let Q0k � kXi=0 bivk+ivk�ivw=2�k�10 modulo L1Then the re
urren
e be
omesb1 = 2b0 k(1� k � 2�)(k + 1)(2�+ k)bi = bi�1 (k + 1� i)(i� k � 2�)(k + i)(k + i� 1 + 2�)When �2� 2 N and k = �2�+ 1 + i; i 2 N all 
oeÆ
ients bj ; j > i vanish.It is possible to do the 
omputations in higher �ltration spa
es. A re
ursiveformula in symboli
 language for the terms Qnk modulo Ln+1 is given in appendix C.There, MAPLE (see [4℄) 
omputer 
ode that produ
es these kind of symmetries andan expli
it example with 
omplex � is presented as well.There is more symmetry. We make anotherAnsatz 3 Let Q0k � kXj=0 ajvk�jvj1vw=2�k=2�j0 modulo L1of order k and weight w, again k is a positive integer and w 2 C .



On proving integrability 7The 
oeÆ
ient of u1 vanishes if w = k ��2� and the 
oeÆ
ient of u2 vanishes ifaj+1 = aj(k � j)(j + 1� 2�� k)2�(j + 1)This pro
edure works for all integer k > 1 and all w 2 C . We have Q0k = 0 when k = 1.For k = 2 one obtains the same symmetries as taking k = 1 in ansatz 1 (or 2). When� is a negative integer or half integer we observe that aj = 0 for all j > k � 1 + 2�.Example 2 K(� 43 ) has the extra symmetry of order 4 and weight 10ut = 0vt = v4v30 + 12v20v3v1 � 316v0v2v21 + 15256v41 + 43u2v40+ 5u1v30v1 + 4u0v30v2 + 54u0v20v21 + 43u20v403.5. [S;Q℄ 2 L1The �rst 
omponent of Sn does not depend on v and its se
ond vanishes modulo L1.Moreover the �rst 
omponent of Qk vanishes and its se
ond does not depend on umodulo L1. These properties make their bra
ket vanish modulo L1.4. ResultsWe have shown that the KdV equation 
oupled to a nonlinear equationK(�) : ut = u3 + 3u0u1vt = �u1v0 + u0v1has in�nitely many odd order symmetries Sn(�) and that its linear part is nonlinearinje
tive. The linear part of any odd order symmetry Sn(�) is relatively 2-prime withK(�). We solved the �rst two symmetry 
onditions [K;Q℄ 2 L2 for in�nitely many Q(twi
e) for all � and showed that [Sn; Q℄ 2 L1. By the impli
it fun
tion theorem allQk(�) 
ommute with K(�) and with all Sn(�).There is a linear map that transforms every symmetry of K(�) into a symmetryof the system 4.7 found by Foursov. His 
onje
ture turns out to be true inside the
lass of polynomial symmetries. However, the symmetry stru
ture of the equation isbigger than that.Appendix A. Impli
it fun
tion theoremLemma 4 Let L be a �ltered Lie algebra. Suppose K;S and Q 2 L su
h that� [K;S℄ = 0� K is nonlinear inje
tive� [K;Q℄ 2 Ll� [S;Q℄ 2 L1Then� [S;Q℄ 2 LlProof 4 We know [K; [S;Q℄℄ = [S; [K;Q℄℄ 2 Ll. Be
ause [S;Q℄ 2 L1 we 
an use thenonlinear inje
tiveness of K to 
on
lude that [S;Q℄ 2 Ll.



On proving integrability 8Theorem 2 (Sanders, Wang) Under the 
onditions in lemma 4 and the additional
ondition� S is relatively l-prime with respe
t to Kthere exists a unique ~Q 2 Ll su
h that Q̂ = Q + ~Q is an invariant of both K and S,i.e.� [K; Q̂℄ = 0� [S; Q̂℄ = 0Proof 5 By indu
tion we show that there exists a Q̂ su
h that [K; Q̂℄ 2 Lp and[S; Q̂℄ 2 Lp for all p � l. Suppose [K;Q℄ 2 Lp and [S;Q℄ 2 Lp holds for somep � l. The 
ase p = l follows from lemma 4. We have[K; [S;Q℄℄ = [S; [K;Q℄℄and in parti
ular, [S; [K;Q℄℄ 2 Im(ad(K)) mod Lp+1. By relative l-primeness of Swith respe
t to K we have that [K;Q℄ 2 Im(ad(K)) mod Lp+1. Therefore we 
anuniqually de�ne ~Q 2 Lp by[K; ~Q℄ = �[K;Q℄su
h that Q̂ = Q + ~Q satis�es [K; Q̂℄ 2 Lp+1 and by lemma 4 (taking l = p + 1)[S; Q̂℄ 2 Lp+1.This implies that Q 
an always be extended su
h that all homogeneous parts of[K;Q℄ and [S;Q℄ vanish. Uniqueness follows from the assumption that \1i=0Li = 0.Appendix B. Symboli
 
al
ulusThe Gel'fand-Diki�� transformation, 
f [8℄, is a one to one mapping between di�erentialpolynomials and symmetri
 polynomials. The basi
 idea is very old, probably datingfrom the time when the position of index and power were not as �xed as they aretoday. We give some rules without proof.A di�erential monomial with m symbols of the form ukM(u) = mYj=1 uijis mapped to M(�) = 1m!X�m mYj=1 �ijjwhere P�m means one has to sum over all di�erent permutations of the integers1; : : : ;m. Monomials a
t on ea
h other as follows, let N have n �{symbolsM(�) ÆN(�) = 1(m+ n)! X�m+nM(�)N(�)This mapping is extended to di�erential monomials in more variables by introdu
ingother symbols M(u)N(v)!M(�)N(�)One does symmetrize only in the symbols with the same name sin
e uiuj = ujui anduivj 6= ujvi.



On proving integrability 9The operation of taking a total derivative turns into multipli
ation with the sumof all symbols involved. Let K have m �{symbols and n �{symbolsDxK(u; v)! ( mXi=1 �i + nXj=1 �j)K(�; �)Taking the Fre
het derivative of a di�erential polynomial is done as followsDuM(u) =Xk=1( Yj=1;j 6=k uij )Dikxand in the symboli
 
al
ulus, when there are other symbols involved as well,DuK(�;�) = nK(�1; : : : ; �n�1; D; �)Æwhere �n is repla
ed by the symbol D whi
h is representing the sum of all symbols inthe monomial the Fre
het derivative is a
ting on.Appendix C. Higher order 
al
ulationsSymmetries of K(�) are symboli
ally given byQ(�; k) = � 0Pkn=0Qn �where Q0 is given by fun
tion F [k; �℄(�1; �2)v� 2k+aa0 where F satis�es the lineardi�erential equation�(��1 + ��2)F + 12(�1�2�1 + �2�2�2)F = 0The higher order Qi satisfy the re
urren
e relation(n nXi=1 �3i )Qn =Pnj=1(Pni=1;i6=j �i) + 2(�+ k)�j + �1 + �2)Qn�1(�n=j ; �1; �2)�(��j + �1)Qn�1(�n=j ; �2; �j + �1)� (��j + �2)Qn�1(�n=j ; �1; �j + �2)�3Pni=1Pnk>i(�i + �k)Qn�1(�n=i=k ; �i + �k; �1; �2)where �n=i = �1; : : : ; �i�1; �i+1; : : : ; �n. The impli
it fun
tion theorem garantiesthat this relation generates polynomials, whi
h 
an be transformed into di�erentialfun
tions. This transformation is done in MAPLE (see [4℄) by the following fun
tionTRANS(P,n) whi
h transforms polynomials P (x1; : : : ; xi; y1; y2) into the 
orrespondingdi�erential polynomial with degree n in u and 2 in v.TRANS:=pro
(P,n)lo
al R,e,i,Q:R:=0:Q:=expand(P):if type(Q,`+`) then Q:=
onvert(Q,list) else Q:=[Q℄ fi:for e in Q dofor i to n do e:=e*u[degree(e,x[i℄)℄/x[i℄^degree(e,x[i℄) od:for i to 2 do e:=e*v[degree(e,y[i℄)℄/y[i℄^degree(e,y[i℄) od:R:=R+e od:RETURN(R)end:



On proving integrability 10The symmetries 
an be 
al
ulated on a 
omputer in the following way. First set (a isthe same as �)a:=-4/3:k:=2:then run the program
[0℄:=1/2:if type(2*a,integer) and a<0 and k>-2*a thenF:=
[0℄*(y[1℄*y[2℄)^k:for i to k+2*a-1 do
[i℄:=-
[i-1℄*(k+1-i)*(k+2*a-i)/(k+i)/(k+i-1+2*a):F:=F+
[i℄*(y[1℄^(k+i)*y[2℄^(k-i)+y[2℄^(k+i)*y[1℄^(k-i)) od:elseF:=
[0℄*(y[1℄^(2*k)+y[2℄^(2*k)):for i to k-1 do
[i℄:=
[i-1℄*(i-1-2*k)*(2*k+2*a-i)/i/(i-1+2*a):F:=F+
[i℄*(y[1℄^i*y[2℄^(2*k-i)+y[2℄^i*y[1℄^(2*k-i)) od:F:=F-
[k-1℄*(k+1)*(k+2*a)/k/(k-1+2*a)*y[1℄^k*y[2℄^k fi:Q:=TRANS(F,0):F:=unapply(F,y[1℄,y[2℄):for n to k do G:=0:for j to n doG:=G+(sum(x['i'℄,'i'=1..n)+(2*a+2*k-1)*x[j℄+y[1℄+y[2℄)*F(seq(x[i℄,`i`=1..j-1),seq(x[i℄,`i`=j+1..n),y[1℄,y[2℄)-(a*x[j℄+y[1℄)*F(seq(x[i℄,`i`=1..j-1),seq(x[i℄,`i`=j+1..n),y[2℄,x[j℄+y[1℄)-(a*x[j℄+y[2℄)*F(seq(x[i℄,`i`=1..j-1),seq(x[i℄,`i`=j+1..n),y[1℄,x[j℄+y[2℄):for l from j+1 to n doG:=G-3*(x[j℄+x[l℄)*F(seq(x[i℄,`i`=1..j-1),seq(x[i℄,`i`=j+1..l-1),seq(x[i℄,`i`=l+1..n),x[j℄+x[l℄,y[1℄,y[2℄) od od:G:=fa
tor(G/sum(x['i'℄^3,'i'=1..n)/n):Q:=Q+TRANS(G,n):F:=unapply(G,seq(x[i℄,`i`=1..n),y[1℄,y[2℄) od:Q:=[0,fa
tor(Q)*v[0℄^(fa
tor(-(2*k+a)/a))℄;to �nd the se
ond symmetry of K when � = � 43 , it has the same order and weight asexample 2 in se
tion 3.4. The whole pro
edure also works for 
omplex �.Example 3 When one setsk:=1:alias(a=RootOf(x^2+x+1,x)):the program 
al
ulates the �rst symmetryQ := [0, 1/6*(-1+a)*(-4*v[2℄*v[0℄+3*v[1℄^2+2*a*u[0℄*v[0℄^2-2*a*v[2℄*v[0℄-2*v[0℄^2*u[0℄)*v[0℄^(1+2*a)℄It 
an easily be 
he
ked that this Q 
ommutes withK := [u[3℄+3*u[1℄*u[0℄, a*u[1℄*v[0℄+u[0℄*v[1℄℄;for primitive third roots of unity a.
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