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Abstract

Closed form expressions in terms of multi-sums of products have been given in [13] [16] of integrals
of sine-Gordon, modified Korteweg-de Vries and potential Korteweg-de Vries maps obtained as so-
called (p, —1)-traveling wave reductions of the corresponding partial difference equations. We prove
the involutivity of these integrals with respect to recently found symplectic structures for those maps.
The proof is based on explicit formulae for the Poisson brackets between multi-sums of products.

1 Introduction

Integrable systems boast a long and venerable history. The history dates back to the 17th century
with the work of Newton on the two body problem. The notion of integrability was first introduced
by Liouville in the 19th century in the context of finite dimensional continuous Hamiltonian systems.
Since then, it has been expanded to classes of nonlinear (partial) differential equations, see for example
[4, [5]. More recently, there has been a shift of interest into systems with discrete time, e.g. integrable
ordinary difference equations (or maps) and integrable partial difference (or lattice) equations. Some of
the first examples of discrete integrable systems appeared in [0, [I1]. And a classification of integrable
lattice equations defined on a elementary square of the lattice has recently been obtained [I], based
on the notion of multi-dimensional consistency. For maps there is the notion of complete or Liouville-
Arnold integrability [2, [8, I7], analogues to the same notion for continuous systems. Briefly speaking,
a mapping is said to be completely integrable if it has a sufficient number of functionally independent
integrals that are in involution, that is, they Poison commute.

In this paper we study the involutivity of integrals of a certain class of integrable maps related to
the fully discrete sine-Gordon, modified Korteweg-de Vries (mKdV) and potential Korteweg-de Vries
(pKdV) equations. These maps arise as travelling wave reductions from the corresponding lattice
equations. Such maps typically come in an infinite family of increasing dimension, and for this reason
it is not feasible to calculate Poisson brackets one by one and show that they all vanish. One way to
circumvent this problem is to use the so-called Yang-Baxter structure, and that is the approach taken in
[3,9]. This approach was used to prove the involutivity of integrals for the so-called (p, —p)-reduction of
the lattice pKdV equation. We refer to [10] [15] for the background on (p, ¢)-travelling wave reductions.
In this paper we study (p, —1)-reductions and we take a different approach. Starting from recently
found symplectic structures [7, 12], and recently obtained closed-form expressions in terms of multi-
sums of products for integrals of our family of sine-Gordon, mKdV and pKdV maps [16] 13|, we proceed
to prove involutivity of the integrals directly, using explicit formulae for the Poisson brackets between



multi-sums of products. These formulae will be proven by induction on the number of variables, that
is, on the dimension of the maps.

Recall, cf. [2, [7, 17], that a 2n-dimensional discrete map L : x z' is said to be completely
integrable if:

e there is a 2n X 2n anti-symmetric non-degenerate matrix €2 satisfying the Jacobi identity

0 0 0
Qi =— Vi + Ui — Qs + Up=—Q;5 | =0,
;( zaxl ik + l]axl ki + lkaxl _])
oz’

— 2
Ox;

such that dL(x)Q(z)dLT (z) = Q(2"), where dL is the Jacobian of the map, dL;; :

e there exist n functionally independent integrals Iy, Is, ..., I, satisfying {I,, s}, = 0 for all 1 <
r,s < n, where the Poisson bracket is defined by

{f. 9}z = Val()-2(Val9))T, (1)

with V, = (8%1’ 8872, e agﬂ). Note that we will encounter several (related) Poisson brackets
which are distinguished by the label x denoting the coordinates in which the bracket is expressed.

Also, V, will always have the right number of components.

The families of ordinary difference sine-Gordon, mKdV and pKdV equations are given as follows,
[16, [13]

sine-Gordon : o (VpUn4pt1 — Vnt1Un+p) + 020 Vn41Vn4pUnpr1 — 03 = 0, (2)
modified KdV : B1(0nVntp — Unt1Vn4p+1) + B20nUns1 — B3Vn1pUnipt1 = 0, (3)
potential KdV : (v, — vpipt1)(Uns1 — Vngp) — 7 = 0. (4)

These equations are obtained from the (p, —1)-traveling wave reductions of the corresponding partial
difference equations of the form

f(ul,ma Ul4-1,m> Wl m+1, ul+1,m+1) = Oa (5)

where we have taken v, = w;,, with n = [ + mp, introducing the periodicity u;, = w4pm—1, cf.
[10, [15].
The corresponding d = p + 1 dimensional maps derived from equations , , are R? — R,

(vl,vg,...,vd) — (UQ,Ug,...,Ud_H), (6)
where
vap = vyt Q1v2v4 + O3 e =y Brva + 52112’
Qovavg + a1 Brvz + Bavg
respectively. The integrals of sine-Gordon and mKdV maps can be expressed in terms of multi-sums of
products, which we call Theta:

Ud—}—l:vl_v Udv
0 —

@?:E(fap fa+1, . 7fb) = Z H(fij)(,l)j-&-s’ (7)

a<i1<ig<---<ir<bj=1

with f; = v;v;41. In [16] it was shown that |d/2] integrals of the sine-Gordon map are given by
Vd 1d-1 _ _ _
¢ =y <U@;;ff1 C é@é;ffo 1) + a0y + a0y 0<2r<d—1 8)
1
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and |(d — 1)/2] integrals of the mKdV map are given by
- 1 - _ _
1 — gy (sl + OB ) 4 el + AOYE, 0<ar<a O
In [13] it was shown that |(d — 1)/2]| integrals of the pKdV map are given by

PRV = 02972 4 (0 — ) U2 o+ (v —v) U2 U3 4 (0amy — v1) (va — v2) — ) U292, (10)

r—1

where 0 <r < [(d —1)/2] and

T 1 b+1
a,b _
U2 (Cay Catly vy Chr1) = E s Hci, (11)
a<in i1 4+1<in g4 1, <in<bj=1 LT | 2

with ¢; = v;_1 — v;41. In this paper we will prove that the integrals ,@D and are in involution
with respect to accompanying symplectic structures.

The paper is organized as follows. In section 2, we prove the involutivity of integrals of the sine-
Gordon maps. Firstly, we consider the odd-dimensional maps. We introduce a transformation to reduce
the dimension of the map by one and we present a symplectic structure of the reduced map. Then we use
properties of Theta with respect to the Poisson bracket associated to this symplectic structure. These
properties are proven in Appendix A. To prove the involutivity of the integrals, we write the Poisson
bracket {I,, Iy} as a polynomial in a1, ag, a3 and prove that all the coefficients of this polynomial vanish.
Secondly, we consider the even-dimensional map. We provide a symplectic structure for it, and show
that it relates to the symplectic structure for the odd dimensional map. Therefore, many properties of
Theta with respect to the new Poisson bracket can be obtained directly from the ones with respect to
the old Poisson bracket. The proof of involutivity is similar to the first case.

In section 3, we present relationships between symplectic structures of the sine-Gordon and mKdV
maps. We use these relationships to derive analogous properties of Theta with respect to the Poisson
bracket of the mKdV maps. Involutivity of the integrals of the mKdV follows from these properties.

In section 4, we prove that the integrals of the pKdV map are in involution (with respect to the
approriate symplectic structures). We again distinguish even and odd dimensional maps and present
a relationship of symplectic structures between the two cases. For the even-dimensional map, the
properties of multi-sums of products, ¥, with respect to the symplectic structure are proved by induction
in Appendix B. For the other case, the properties of ¥ with respect to its symplectic structure are
derived from the previous case. The involutiviy of integrals is proved by using these properties.

In section 5 we discuss results, obtained in [?], on the functional independence of the sets of integrals
, @ , and conclude the integrability of the difference equations for any value of the order
d.

2 Involutivity of sine-Gordon integrals

In this section, we distinguish two cases: the odd-dimensional and even-dimensional sine-Gordon maps.
In [16] it is shown that for the even-dimensional map, we have enough integrals for integrability. For
the odd-dimensional map, we need to reduce the dimension of the map by one. We expand the Poisson
bracket between two integrals {I,, I} as a quadratic polynomial in the parameters oy, as, a3 and prove
the involutivity of integrals by showing its coefficients vanish.



2.1 Thecased=2n-+1

Using a reduction f; = v;v;41, we obtain a 2n-dimensional map

fofa-.. fon(aifofa. .. fon +a3f3fs... foan1) ) (12)
fifs.o fon—1(aafofa. .. fon +oafafs... fon1))

sG : (fl,fg,. . -;an) — <f2,f3,-~~7f2n7

This map has n integrals given by

o (Sofa b gion s S
= <flf:3...!}"271—1@27"’1 * fofa... fon

where the argument of © is f; and 0 <r <n — 1.

1,2n 1,2n 1,2n
@2r,0> + @057 1+ 3057 (13)

A symplectic structure for the map is given by QZ%, where
0 fife fAfs fAfs o fifer fifp
—foftr 0O fafs  fafa oo fafp—2 fofp
ol = —f3fi —fsf2 0 fsfa oo f3fp-1 f3fp . (14)
“fofi —fofe —fofs —foft oo —fpfpr O

cf. [7,12]. One can verify that dsG - QG - dsGT = Q5G 0 sG. Let g and h be functions differentiable
with respect to the f;’s. The symplectic structure Q}S,G defines the following Poisson bracket

{g9.h}s = Vilg)- - (Vi(h)"

g (2900 g on
- LA (of 3%, ~ 55 01): 1)

We will prove that integrals are in involution with respect to the symplectic structure Q%%, ie

{156, 155} y =0, forall 0 < r,s <n—1. The proof is based on the following explicit expressions for
the Poisson bracket between Theta multi-sums, which are proved in Appendix A.

Lemma 1. Let 1 <r,s <p and e € {0,1}. We have

0 r,s are both odd or both even,
Z(—l)i@i’fi 6@;& . r even, s odd and r > s,
ety =4 & (16)
Z(_l)%l@if@e@if@e r even, s odd and r < s.
i>1

Note that the right hand side of (@ s a finite sum.

The next proposition provides the Poisson bracket between two Theta multi-sums with different
values of e.

Lemma 2. Let 1 <r,s <p.
1. If r=s (mod 2), we have
Al 1,
1 1 go(_lygrpl2[@'/2J,i@sf1+2u/2j,i+1 r<s,
{6,0.6,1}r =4 < Al 1 (17)
Z(_l)Z@sf)l—Q\_i/Qj,i@rf1+2\_i/2j,i+1 r>s.

i>0



2. If r 2 s (mod 2), we have

i 0,p
Z(_l) ®8+z 19,0 iy r odd, s even,
1 1 i>0
{6 Y @ ;P — >
0’ “s,1 f i—1 P 1,p
Z( ) @s Zz+1®r+i7i reven, s odd.
>0

Using Lemma [I] and Lemma [2] we have the following corollary.

Corollary 3. Let r and s be both even or both odd and let € € {0,1}. Then
(CRACh TR CRACR TR}

0, T, S even
Lp l’p P = ’ ’
{@r 16793,6 }f + {@7“67@5 le}f { @ 1 6957? @ 1 E@r’f, r,s odd,

T— S—

0, T,S even,

{007 11, O} +{OLF, 07 41} :{ L, 1, :
r—1letl) sl f r s—1,ex1Sf @sfl,eﬂ@h?_e)sger Letts TS odd.

Theorem 4. Let 0 < r,s <n — 1. Let I3¢, I*C be given by formula . Then

r TS
(59,159}, = 0.

Proof. First of all, we denote

_ fifsofonn
fafa. . fon

For any g(f1, fo, - - -, fon) we find {F*!, g}y = £F*1E;g, where

RIS

i>1

(19)

(20)

(21)

(22)

which scales any homogeneous expression by its total degree. Every term in the multi-sum has total

degree 0 if r is even and degree (—1)¢*! if r is odd, hence

0 if
{Fil, @710:5 ;= { 1I 7 even,

T(—1)FEO P if r odd.
Now we expand {I3¢, 156} ¢ in terms of polynomials in a1, ag, a3 as follows
{6, 5%} = 0 A1 + a3 As + a3 A3 + a1 din + arazArz + azazAss,
where
AL ={F7'0y7 + FO,, F' oy + FO,7 1,
1,2 QL2
Ay = {057 1,01}
Ax — {@l,2n l 2n }
3 2r+1,0 23+1 oJfs
1,2 12n 1,2 1,2 —141,2 1,2
A ={F" 1@27’? + FOy 0,051 11 r T {991 1, F~ 005y + FOy 5}y,
1,2 120 1,2 1,2 —141,2 1,2
Az = {F 71051 + FO,L 1, 0.7 o} r + {00110 F 10501 + FOy gy,

1.2n 1 2n 1,2n 1 2n
A2z = {051 1,051 0} f +{O2711.0:O2is 1111

(23)



We prove that all these coefficients equal 0. Using Lemma [I| and Corollary [3, we have Ay = Az =
Aoz = 0. We now expand Aq, A1 and Aq3, we obtain

- 1,2 1 ,2 1,2 1 2 1,2 1 )2 1,2 1 2
Al =F 2{®2r?? 25 ?}_‘_{GQTIL’ 2sg}+{@2r6L7 25 ?}_‘_FQ{@%(?? 238
1,2 1 2 1,2 l 2 1,2 1 2 1,2 1 2
+@2r? 25?{F F 1}+®27“g 23711{FF 1}+@2r? QS(T)L{F F}+®2rg ZSQ{F F}
— 1 )2 1,2 - 1,2 — 1,2 1,2 1,2 1,2 1,2
+ F ( 23 ?{627",?7 F 1}f + ®2r,{z{F ) @23 ?}f + @25 3{627“,?? F}f + @2r,g{F7 623,?}]0)
1 )2 1,2 1,2 1,2 — 1,2 1,2 1,2 1,2
F ( 2r ?{F 925,g}f + @25,711{@27“7617 F 1}f + GQT,S{F7 923,g}f + @28,3{921”,37 F}f)
= 07

where the second and third terms cancel each other, due to ((19), and all other terms vanish according

to equations , and .
We also get

Ao = FH({037. 03 )y + {037, 0350 + F ({035 030y + (03210335 Yy
érz?{F 9552:31 1}f + @%ES{F 955%:11 1}f + @;;2,?{@%}2111,17 F_l}f + @;fg{@éffl 1) }f
= P (ees s — 03,050 ) + F (035505, — 03 103
— FTRO5 050 1+ FOy 03y + F 05057 — FO057 ),
=0,

where we have used , , and . Similarly we get 413 = 0. Hence, we have {I5¢, 56}, = 0. O

2.2 The case d =2n

In this section, we consider a 2n-dimensional map

_1 0102V, + 3

sG : (v1,v9, -+ ,va,) > (Vg,03, ..., 02,V 24
( y U2, s n) ( » Y3 ny Y1 a2U2U2n+al ( )
This map has n integrals given by
sG V2n ~1,2n—1 U1 ~1.2n—1 1,2n—1 1,2n—1
LY=o <v1 Ogr1 T+ Vo Or0 ) + 2057 1 + 30,570 o, (25)
n

where 0 <r<n-1 and fi = vivi41 in the argument of Theta . The sine-Gordon map has a
symplectic structure an, where

0 V12 0 VU4 ... 0 V1Up
—V9U1 0 VU3 0 co. VUp 0
Q;G — 0 —vU3V2 0 V3V4 ... 0 v3Up | | (26)
—UpU1 0 —UpU3 0 cee —UpUp_1 0

cf. [7, 12]. The Poisson bracket %Vv(g)Qf:é (Vo(h)T is denoted {g,h},. Before we prove that the
integrals are in involution with respect to this bracket, we first establish the following Poisson
brackets between Theta multi-sums:

(017,017}, = {812,612}l )



where the right-hand-side is given by Lemmas |l| and [2| Equation follows as a corollary from the
next Lemma. Consider the map RP — RP~1,

Gp : (v1,02,...,0p) — (V1V2, VU3, . .., Vp_1Vp).
Lemma 5. With g, h differentiable functions on RP~! we have
{90Gp,hoGplo ={9:h} =, )
i.e. G 1s a Poisson map.

Proof. The (p — 1) x p Jacobian of the map G, is

V2 U1 0 0
0 w3 wg --- O
dG)p = )
0
0 O Up  Up—1
By direct calculation, we have
Gy - 8 - (dGy)T = 2088 [ ;_ g (- (28)

Applying V to (g0 Gp)(v) = 9(f)|f=g, ) (and omitting some arguments) we find

Viu(go Gp) = vf(g)de|f:Gp(v)-
Hence, we have

1 —_~
{goGp,hoGply = ivv(g o Gp)QZva(Q o Gp)T

1 e
- §Vf(g)de!f=Gp<u)QpG(Vf(h)de>T!f=Gp<v>

= V@B (V) 16,0
= {9, h}r=c, )

Now we will prove the involutivity of the integrals (25| of the sine-Gordon map .
Theorem 6. Let IﬁE and Igf;, with 0 < r,s <n—1, be given by the formula . Then we have
{16,155}, =o.
Proof. With V' = vy /va, we have

0 if r even

+1 1py :I:lE 1p _ )

V5 Bneho =V BOre { F(=1)VEOR?  if r odd.
The Poisson bracket between 2 integrals is expanded as

{156,159}, = a2B; + 03By + a2B3 + a10aB1a + ajas Bz + asaz Bag,

where the coefficients By are similar to the Ay given in section @ replacing F' by V and 2n by 2n — 1.
The rules for simplification are also similar. Therefore, {I:¢, I5¢}, = 0. 4



3 Involutivity of mKdV integrals

We consider the d-dimensional mKdV map

Bivg + 521)2> ' (29)

(’Ul, V2, ... 7Ud) = <U27 V3,...,0d,V1 51’02 T Bg'l)d

As shown in [16], this map has |(d — 1)/2] integrals given by the formula (9) with 0 < 2r < d. If
d = 2n + 1, the map reduces to a 2n-dimensional map with exactly n integrals via a reduction
2; = vj+1/v;. For the other case, where d = 2n + 2, the map (29) reduces to a 2n-dimensional map with
exactly n integrals via the reduction z; = v;12/v;. We will show that the integrals of these reduced maps
are in involution. In each case, we present a relationship between the relevant symplectic structures
and the symplectic structures of the sine-Gordon map in the even case . This relation can be used
to derive properties of Theta with new symplectic structures.

3.1 Thecased=2n-+1

Using the reduction z; = v;+1/v;, we obtain the map

1 12223 ... 290 + D2
mKdV : (21, 22, ..., 22n) — <22,Z3, e 2om, T gl n Bgzgzgn zf ) (30)
s 220 ... 29
The integrals of this map are given by
1
2 2 2 2
KAV _ g, <Z1Z2 N 2712222@;;“”1’1> + 2051 + B3O5 % (31)

where arguments for Theta are f; = 2723 ...22 2;. Here we have used an ’inverse reduction’, v; =

V12122 - - - Zi—1 to express f; = v;v;11 in terms of the z; and we omitted the v; dependence as both the
integral and the map do not depend on it.
We obtain a symplectic structure QE“KdV for the map , where

n

0 Z129 —Z1%3 2174 e (—1 pzlzp
—2921 0 2923 29724 .. (—1)p_1222p
Q]I;leV — 2321 —23%29 0 2324 . (_1)1)72232}) , (32)
(=1)P7tzpzr (=1)Pzp2a (1P lzpzs (=1)Pzp2q ... 0

cf. [7,[12]. This gives us a Poisson bracket {g, h}. = V.(9)Q0KIV (V_(h))”. As before we can express
the z-Poisson brackets between Theta multi-sums in terms of the corresponding f-Poisson brackets.
Consider the map

My : (21,29, ..., 2p) &> (21, 2729, .., 2525 - zgflzp).

We have the following result.

Lemma 7. With g, h differentiable functions on RP we have

{g o Mp7 ho Mp}z = {ga h}fZMp(z)7

i.e. M, is a Poisson map.



Proof. The p x p Jacobian of the map M), is
0 i<,
dM, = 2_11 ZI% , =7,
QZzJIHk 122 0>

and a calculation shows

AMy QN M) = Q0 [y 2 - (33)
The argument is finished along the lines of the proof for Lemma [5] O

We are ready now to prove the following theorem
Theorem 8. Let I{.anV and ISmKdV be given by the formula with 1 < r,s < n. Then we have
N (34)

Proof. With Z = (2122 ... 22,) ! we have F*! o My, = Z*!. Thus, Lemma implies

0 if r even
1 gl2ny _ ’
{27, 0n: { F(-1)zHep"  ifrodd. (35)
Writing the left hand side of equation as
(LR IR, = BEP + B3Py + B3P + 5182 P12 + B183 Prs + 5283 Pas, (36)

yields coefficients P; similar to the A given in section [2 replacmg F by Z, 2r by 2r — 1, and 2s by
2s — 1. Now that we know the brackets between Z, Z~ I , and the @25 1> we can expand the coefficient
and show they vanish.

As before, the coefficients Pa, P3, and P are the easy ones. For P; we get, using equation (35
and Lemma |7|in conjunction with equations and ,

b =2z ( %5%1 0{@;2—”1,07 Z}: + 9%}231 olZ 9%5%1 oszt 95;2f1,1{@%}2f1,07 Z7} + @;}21L1,1{Z_17 9%;2—711 0
+z7! ( §32n1 1{@;«2111,1’ Z}. + @;}2111 H{z7, 9;;2111 a5zt @53”1 olZ, @;San 15z T @éffl 0{9;3”1 15

+ <{@§;ﬂ2—n1,079%;2—nl,1 2zt {®§r2n1 1 %527110 )
=7’ (‘95;2f1,0@%¥2f1,0 + @érznl of %sin 0) +Z7? ( ;sznl 1@%}231,1 + @;}%1,1@;;2?1,1)

+ <{@5}2f1,0’ 95;2—71,1 zt {(9%7«2”1 1 %s2n1 0 )

+ 95227711,195}231,0 - @;;«2111,0@;32”1 1+ 9552711 099

:()7

1,2n @1 2n @1,271

2r—1,1 2r—1,1~2s5-1,0

where we have used and and . Expanding P2 yields
1,2 1,2 1.2n 1,2 1 1,2 1,2 1.2n 1,2
Py=2 <{@2rf1079257f 2t {927"?»925—711,0 Z> +Z <{®2r—nl,17625,711 =+ {051,057 2>
1,2 1,2 oL2 1,2 1,2 1 Al2 1,2 12n -1
+ ®2r—nl 2,051} + 057 ({091 2} + 05" ({Z77, 051} + @25—111,1{@%,?7 Z7 )
— 0,

where the first and the second terms, as well as the third and the fourth terms cancel each other, and
the last four terms are equal to zero. Similarly, we get Pz = 0. O

)

71:)



3.2 The case d =2n+2

Now using a reduction w; = v;y2/v;, we obtain the map

rT 1 Brwawy . . . wap + B2
mKdV : (w1, wa, ..., wey,) — <w2,w3,...,w2n, . . (37)
WIW3 ... Wap—1 P1+ Pawawy. .. wap
Integrals of this map are given by
mKdV _ 1,2n+1 1 1,2n41 1,2n+1 1,2n+1
I, =0 <w2w4 - w2 O + w2w4w292r—1,1> +aaOy 1 + @Oy, (38)

where © = Ole;] with e; = fi_1, with fo = 1 and f; = wyws...w; (i > 0). Note, we have changed
notation in order to relate the next Poisson bracket to the bracket {,}s; the argument of Qb is
(eq, -+ ,ep) with e; = v;v;41. In the ’inverse reduction’, we have

7 .

B (3 Hj:l woj—1 N = 20+ 1,
Un = -1 Y
Uy szl (Y n = 2i.

Therefore (similar to the case d = 2n+1) both the reduced map as well as the reduced integrals depend
on the variables w;. Using , we obtain

1,2 1 2,2 1 2.2n+1
G)s:en—’— [el] = @s:en+ [62] + 63—?,64—1[6@']
1,2
= Ou"fil+ 0,7 lfil.

Let Kp : (w1, we,...,wp) — (wi,wiws,...,wiwy---wpy) and W = wowy ... wz,. Then, the integrals
can be written

nKdV 1 (A2 1,2 1,2 1,2
LY=oy (W <92r—nl,0 + 92r—nz,1) +W <@2r—n1,1 + @zr—n2,0)>

(39)
taz (9;2? + 95}2111,0) +as (9;2,3 + @;}2f1,1) .
where © = O[f;] with f = K,(w).
The map 1) has a symplectic structure Qg}LKdV, where

0 w1w9 0 0 e 0

—wawy 0 wows 0 0

e 0 —w3ws9 0 W3wyq e 0
iV = . . : . : (40)

0 0 0 ... 0 Wp—_1Wp
0 0 0 ce. o T WpWp—1 0

—

This gives us a Poisson bracket {g, h}w = Vu(g)QRKIV (7, (R))7. Once again we can express the
w-Poisson brackets between Theta multi-sums in terms of the corresponding f-Poisson brackets.

Lemma 9. With g, h differential functions on RP we have

{g © va ho Kp}w = {97 h}f:Kp(w)7

i.e. K is a Poisson map.

10



Proof. This follows from
KdV T G
dK, QK = Q) | =y (w) - (41)

Because F*! o Ky, = W¥*! this Lemma implies that {W, W1}, =0,

0 if r even,

+1 gl2ny  _
W O b {IF(—l)GWﬂ@}{?n if r odd,

and we can also evaluate the brackets between @if "

mechanical expansion and evaluation of the bracket.

Thus, the following theorem can be proven by

Theorem 10. Let IV gnd 1KY be given by the formula (@ Then

{ITI‘anV’ I;anV}w =0.

4 Involutivity of pKdV integrals

In this section, we prove the involutivity of the integrals of order-reduced pKdV maps. Similar to the
sine-Gordon map, we consider two cases where the dimension d of the map is even or odd. Here,
in both cases there are not enough integrals for integrability, and therefore we perform reductions. We
present symplectic structures for the reduced maps in both cases and give a relationship between these
symplectic structures. For the case where d is even, properties of multi-sums of products, ¥, with
respect to its symplectic structure are proved in Appendix B. For the case where d is odd, the Poisson
bracket between W multi-sums are derived from those in the even case and the relationship between
the two symplectic structures.

4.1 The case d =2n+2

We have a (2n+2)-dimensional map (6]). The integrals I,. of this map are given by with0 <r <n-—1
which are not enough integrals for integrability in the sense of Liouville-Arnold. Therefore, we use a
reduction ¢; = v; — vi42 to reduce the dimension of the map by 2. From equation (4)), we obtain the
following map:

v

KAV : (c1,¢2,...,Con) — (2,C3 ..., Com, el —C3— . —Cop1). (42
p (c1,c2 con) > (c2,c3 Con PTY——— c1—c3 Con—1) (42)

This map has exactly n integrals given by

PRV —w (o tes o eon) BT = (a3t o) U T
F U2 (e 34 Fcon1)(caFcat ..+ o) —7) UL (43)

with r =0,1,...,n — 1. The map is symplectic, we have dpKdV - QngV - dpKdvT = Qgi{dv o pKdV,

n
where

0 1 0 0 --- 0
-1 0 1 0 0
0 -1 0 1 0
KdV _
Qg - : ) (44)
0O 0 O 0 1
0 0 O -1 0



which is given in [7, [12]. The corresponding Poisson bracket is denoted {g, h}. = Vc(g)ngf NV (v (n)T.
We prove that the integrals of the map pKdV are in involution with respect to this Poisson bracket.
The proof is based on knowledge of the Poisson brackets between two ¥ multi-sums which is given as
follows.

Lemma 11. Let p> 1 and 0 <r,s < [(p+1)/2|. Then we have the following identities

(wlr wlry, =0, (45)
(Wi Wity 4 (u L wle), —o ()

A corollary [17] derives from this Lemma is given in Appendix B.
Theorem 12. For all 0 <r,s <n — 1, we have {I,,Is}. = 0, where I,, I, are given by [43).

Proof. To prove this theorem we need the following formulas. Let g(ci,co,...,co,) be a differentiable
function on R?". Denote

Ci=ci4+c3+---+cop_1, Co=ca+cqg+ -+ cop,

we have
dg Jg

{g7 Cl}c = _Ev {9702}C = 8701 (47)

In addition, since we have

W , — Cb+1\1jab+ \Ilab 1 nd W(ﬂ,,b — Cawg—Fl,b +Qa+2,b

r—1 >

we obtain bit
ovd

= 0% and —

8Cb-|-2 Ca

Now we write {1, [s}. = A1 + Az + A3 + Ay + A5 + Ag + A7 + Ag + Ag + Ajg + A11, where

_ ygra+1,b
= gotlb,

L= (U2 oyl gl g glaney
A2 = (U2l g2y o2l g2y o g2l opgnly
Ag = {Uh2nl g22n-2y 2202 glon- 1}6_’_{\1]2271 2 g2y
A4::{C\1112n20\1122n 1}c+{C\1122” L opul ey

As: = —{Cpul2im2 g2 rg22n-2 02\1113? 2 ..

Ag: = —{C U2 22n 2y (g 01\113’2"_1

T c s—1 Cy

A7 = —{\Ifl 2n—1 (01612_7)\1,;,211 1}0_{(0102_ )\I’l 2n—1 \I’l 2n 1}07

Ag = —{CoW, 2172 (C10y — 7)WL 1Y — {(C1Co — 7) W™ 1,02@@3;‘ te,
Ag = —{CrU22 71 (C10y — )WL 1 — {(C1Co — 7)WL o220
Ao :{\1,22n 2 (0102_v)wlﬂn—l}c_'_{(Cle_ )\1,1 2n—1 ‘112 2n 2}07

Apr = {(C1Cy — 7)1 (C1Cy — )W 1)

12



Using Lemma Corollary (17| and formulas (47)), we have

120252201 1,202 1.2.2n—1 1,2n—21.2.2n—2 1,2n—21.2.2n—2
Al - \Ilrfl \Ilsfl - ‘Ijsfl ‘I]rfl + 02 (\Ilsfl \Ilrfl - \Ijrfl \Ijsfl ) ’

022101202 2.2n—1751,2n—2 2.2n—17,2,2n—2 2.2n—1.752,2n—2
Ag = \Ils—l \Ilr—l - qu—Q ‘Ils—l +Ch (lI/r—l \I/s—l - lIls—l lIlr—l ) ’

2292011202 2.9n—1.3.1,2n—2
A3 - \Ilr—l \Ils—l - \Ijs—l \I]'r—l ’

B 1,2n—-2 122n—1 22n—1.1,1,2n—2
A4 - _\Ijr—l \Ijs—l + \Ilr—l \Ils—l ’

B 1,2n-2 12202 1,2n—2 1.2.2n—2
A5 - _02 <\Ilsfl \Ilrfl - \Ijrfl \Ilsfl ) ’

2.2n—17,2,2n—2 2.2n—1 7,2,2n—2
A = —Ch (‘Ijr—l \Ijs—l - \Ils—l \I]r—l ) .

It follows that A; + As + Ag + Ay + As + Ag = 0. Now we show that A7 + Ag + Ag + A9 + A1 = 0.
We also have

A= Oy (W AT ST G (i e ),

Ay = CalC1Cy = ) (W T on 2 gln tylin2) 4 gy (Wit - gl -yl
FOC, (BT ) (G0 ) (e e e

Ay = C1(C1Cy =) (W10t — gl g2ant) 4o (w2 ekt — w2l
FO0 (W ) (O ) (W e ),

At = (C1Ca =) (W32 1w 2 = w2 Rt e ul e 2),

All — (0102 _ 7)01 (\Ili,Qn—lqlg,Qn—l _ ‘P},’Qn_l‘PE’Qn_l) + (\p;,2n—2\p71n,2n—1 o \Ij;in_l\Ij}"in_Q)
(Crea —7)Cs.

This implies A7 + Ag + Ag + A1g + A11 = 0. Therefore, we have {I,, I;} = 0. O

4.2 Thecased=2n-+1

We introduce a reduction u; = v; — v;41. We obtain a 2n-dimensional map

—_ ,7
KAV : (uy,uq,...,u2,) — (u2,us, ..., U, —U—Ug— ... — U 48
b (u1,u1 2n) (u2,us 2n Uy + Uz + o+ Uz 1 2 2n) (48)

with n integrals (0 <r <n—1)

IPRAY = 12072 (g g o+ un) U T = (g u g ) U
F P ((ug 4 uz + . uze) (g Uz + . uze1) — ) TR (49)

where the argument of U is f; = 1/(¢;ci41) with ¢; := u; + u;j+1. Based on the method given in [12], we

—

obtain a symplectic structure Qgg 4V for the map 1) where

0 1 -1 - (=1)P
- -1 0 1 - (=Pt
QY =1 S B (50)
(—=1)p=t  (=1)P 0 1
O O N



—

The Poisson bracket is denoted {g,h}, = Vu(g)ﬂgff WV (V. (h)T. Next we present a relationship be-
tween the two symplectic structures and and the corresponding Poisson brackets. Consider
the map

Qp : (ur,ug, ..., up) = (U1 + U2, ug +us, ..., Up—1 + Up).

Lemma 13. The map Q) is a Poisson map, i.e.

{f o Qpa go Qp}u = {fa g}c:Qp(u)v (51)
where f(c) and g(c) are differentiable functions.
Proof. By calculation we obtain

dQ, PV dQy = Y. (52)

Theorem 14. Let I, I be given by (@) Then, for all 0 <r,s <n—1 we have

{Ir7 Is}u = 0.

Proof. As the following formulas hold,

0
{97U2+U3+..-+u2n}uziag; (53)
(51
0
{g7u1+u2+~--+u2n—l}u:_8g ) (54)
U2n

and the properties of ¥ with respect to the bracket {, }, which are the same as those with respect to
the bracket {, }., one can prove the involutivity of the integrals similarly to what we did for the
case d = 2n + 2. O

5 Conclusion

In this paper, we have proved the involutivity of integrals of sine-Gordon, pKdV and mKdV maps
directly by using induction and using recently found symplectic structures of these maps. In order to
prove these maps are completely integrable in the sense of Louville-Arnold [2 I7], one also needs to
prove the functional independence of their integrals. We briefly discuss some results that are based on
different techniques which fall outside the scope of this paper and will be published elsewhere [14].

To prove functional independence, due to the analyticity of the integrals, it suffices to prove linear
independence of the gradients of the integrals at a certain point. It turns out that we can evaluate
the multi-sums of products at certain points in terms of binomial coefficients (counting its number of
terms). Also, using the recursive formulas we can find the gradients at these points. The proof of
functional independence thus boils down to LU-decomposition of a matrix whose entries are expressed
in binomials coefficients. This has been performed in [I4]: For the sine-Gordon the integrals are
independent at v; = v9 = --- = vg = ¢ when asc* # as, from which the result follows by varying c.
For the mKdV map we proved functional independence except when 32 # 33. And for the pKdV map
the functional independence has been established for the generic case where v # (df)Q + %. In these
case we conclude the integrability of the equations for arbitrary order d = p + 1.

We note that the integrals of maps obtained as (p, —1)-reductions of the equations in the ABS list
[1], with the exception of 4, can be expressed in terms of multi-sums of products, ¥ [13]. It would be
interesting to study their symplectic structures and furthermore their complete integrability.
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A Properties of © with respect to the Poisson brackets

In this Appendix, we prove Lemma [I] and Lemma [2| First of all, the following lemma follows from a
property of the operator Ky .

Lemma 15.

T even
{@Lp

0
, B 55
€ P+1 }f { (—1)6+6+1f}£+i)6@}~:5 r odd ( )

Proof. 1t is because

oL, foy, = (—1 £ Brelr.

Remark 16. If we introduce t; = 1/ f;, then we get

®7l~,’p[fz} = re+1[t2]

We have

0eLr 005 peLr 00§
@71'75’ @ ,p T,€ $,0 T,€ s )

9. 0’
. Z (8@7, f—l—l 863 041 t2t2 867’ ?—4—1 a@s ,0+1 2 2) 1

=1 (s
~ ot; oy ot tit; =T

_{@T‘E+17 sé—i—l}f =T(f

where T is defined as follows
T:(f17f27-,fp)H<. >.

A.1 Proof of Lemma [

Proof. We will prove this lemma by induction. The following properties, given in [16], [13] will be used
in our proof:

@ab @ab 1+fb ﬁbliy (56)
ej:l 1 b
9?? = @?’ng,b + £t @?+1 el (57)

Using Remark it is sufficient to prove for the case ¢ = 1. One verifies that holds for p = 1,2
and for all 1 < r, s < p. Suppose that holds for p—1 and p (p > 2). We will prove that holds
for p + 1.
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Using identity , we expand the left hand side of and we obtain

p+1 1,p+1
{@ i ’('_)szl7 }f

1
_{87"1’ }f+fp V {e,? L1 1’p}f+@ 1{ p+1 @l’p}f+fzg+1 {67"17 Piats
17‘+1 s+1 'r+1 1s+1
+@s 11{@“» p+1 }f+fp e {@r 1,1 0,~ 11}f+@r 11 s— 11{fp+1 f;EH }f
+1 _1\r+1 (71)s+1
+fp+1 0, ll{fp+1 0,~ 11}f+fp+1 0, 11{@r 1,10 Jp+1 }f- (58)

The case r = s is trivial. Now we distinguish 3 cases.

1. r and s are both even or both odd. Since {6, Lo+l (9;”1?“} —{0.7 Lrtl g ’p+1}f, without loss
of generality we assume that r > s.
If both r and s are even, on the right hand side of the first, third, fifth, sixth, seventh terms
vanish. Thus, we have

{@ 7P+1 7P+1}f fp+1 ({@r 11’ }f+{@r1’ S— 11}f)+fp+1®r 11{f;+117 5— ll}f
+fp+193 11{@7' 1,1 p_+1}f

-1 ; 1
=Jp+1 Z(_l)l@s 7,1 r+z 11+Z r+zl s— 1 7,1

i>1 i>0
P
+fp+1@7“ 1193 1,1 fp+1@s 11@7‘ 1,1
1 Z 1)j+1 Z oL
“JIp+1 ( ) G)5]11 r+]1+ 7‘+zl 5121
7>0 i>0

=0.

If both r and s are odd and assuming r > s, on the right hand side of the first, sixth, seventh,
eighth, and ninth terms vanish. Therefore, we have

Pl Alpt+l
{e. 7t e " }f

—fp+1 {@r 1, 1,0 }f + {@7"17 s—1 1}f) + 67" 1 1{fp+1a }f + @s 1 1{@71«,7f>fp+1}f

1,p i—1 1p Lp
—fp+1 r 1+z 163—1‘,1 - E ( ) @s 1—i 19r+i,1 fp+1@r 11 + fp+195 1 167“71
z>0 i>1
—f 0,7, =Y (-1ye,r e -6 e +e.r e
—Jp+1 'r 1+z 1~s—1,1 s—73,1r+5-1,1 r—1,1 s—1,1%r1
z>0 j>2
—fp+1< r— 11 @ @s 1,1 67’ 11@ s llfp+1@'rl)
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2. r is even, s is odd and r > s. We have

(0,17, 0,771,
—{@r’%@ T+ {@7' RTINS fp+1@s 1, 1{@7“ 10 fority + 97“ 1 1{f;ﬁ1’@if}f

1.p P i—1qLlp 1,p 1p 1,p -1 qolp 1p
= § : 0,4, 1@s il § :(_1) 0,75 119, 1401 | O.5119,501 + [,419,51197
i>0 i>1
_2 : 1.p P } : Lp P
r—i—z 198 i,1 s z 1167" 1+7,1+fp+1®r 11931
>0 >0
,p+1 1,p+1
- r+z 1 s 2,17
'L>0

where in the last step we used .

3. r is even, s is odd and r < s. We do similarly as in the previous case. Therefore, with ¢ = 1
identity holds for p + 1. Then, it holds for all p > 0.

g

A.2 Proof of Lemma [2
Proof. The proof proceeds by induction again. It is easy to see that (17 can be rewritten as follows
17p 17p 1,]) l’p
>0 (O, 791 09s2it11 — ®r—2i—1,1®s+2i+1,0 r<s,

{@7"07 f = el,p @1,]7 _ @LP @Lp (59)
Zizo 5—2i—1,0 Or+2i+1,1 5—2i—1,12r+2i+1,0 r>s.

Identities (or ) and hold for p = 1,2. Suppose that they hold for p—1 and p (p > 2). We
will prove that they hold for p + 1.
Using identity (56), expanding the left hand sides of (or (59)) and (18], we have

(CHARCH A
={o, ot/ ;EJJ) @qln 1,00 171 +f;§4_r})s+l 7 11)f
:{@r’ga@ ; }f+ ) I)QH{@r 1,00 Os= 11}f+@r759 {fp+1 ) zEJri)gH}f
1) . {67"7(1])7@3 R fp+1 {@r 10,© }f + @s 1, 1{@7"0’ p+}) +1}f

1 1)
r 10{ ’ }f+ }5+1) s— 11{@7“ 107 [()—i-l } fp+1 7’ 10 (fgg—i-l )~ s— 11}f' (60)

+f

1. r=s (mod 2). We distinguish 2 cases.
Case 1: s —r =k > 0, we first prove the following

+ ; 1, _ +egls L,
Z( )Z GC—')spl zz—&—e@r—&z—)i,i—i-e—s—l *Z( )Z Ee)rpz lz+e@s—il-)i,i+e+1' (61)

i>0 i>0
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The left hand side of this identity equals

1

»
|

' M

i+e Z+E 1p
( ) 68 1—12 z+e®r+z i+e+1 + E : @s 1—2 1+e@r+i,i+e+1

i=k
r—1
_ k+4j+e Lp
=D DO ke O et
j=0
£
i+e 1p k—1—i+eqlp Lp
+ <( 1) 68 1—i z+6®r+i7i+e+1+(_1) 65 1— (k—i—1),k—i—1+5®r+k7i71,k7i+e)
i=0
r—1 E—l

1)7+e z+e Lp _1)itetl Lp
( ) 87‘ —J— 1,]+6®8+j7j+6+1 + Z ( @s 1—12 z+€@r+i,i+e+1 + ( 1) ®r+z z+e+1@s—i—17i+e

r"n

=0
r—1

_ i+eql.p Lp

- ( ) ®r 1—1 z+e@s+i,i+e+17
=0

which is the right hand side of .
Now using , we expand the right hand side of the first identity of . We have

1,p+1 1,p+1 1,p+1 1,p+1
E : <@r—2i—1,0@s+2i+1,1 - @r—2i—1,1@s+2i+1,0>

i>0
1p _ aolp 1p 1p 1p _ aolp 1p
—E ,( r— 21—1 O@s+2i+1,1 @r—2i—1,1@s+2i+1,0+@r—2—2z‘,0@s+2i,1 @r—2—2z‘,1@s+2i,o)
>0
(71)7‘71 17p 17p 17p 17p
+ fp1 E 0,9 9095421411 — 0221211954210

1>0

(-1)® 1,p 1p 1,p 1p
+ foi1 0,79i-1,09s42i1 — ©:09- 2195 25410

>0
1p 1p 1p 1p 1p 1p
= E : ( r— 2171 0@s+2i+1,1 - @r72i71,1®s+21+1 ot 67« 2-2; 0®s+2i,1 - ®r7272i,1®s+2i,0
>0
(_1)S+1 i—1 % 17p 17p
+ fp+1 E ( 1) @'r 1—i z+1@s+z it fp+1 E (=1) @r—l—i,i@s—i-i,i—l-l' (62)
i>0 i>0

If r and s are both even. Using and the induction assumption, we have
p+1 olp+1
ChaaNChA

§ : Lp Lp Lp Lp
- ( r— 22—1 0@s+2i+1,1 - 97‘ 2i—1 1®s+21+1 0) + Z ( r— 2 21 0@s+2i,1 - @r—2—2i,1@s+2i,0)

>0 >0
Z iglp 1p
fp+1 (_1) ®s+i,i+1®7“ 1—i, + @s 1, 167‘ 1,0 67’ 1 065 1,1
>0
(=1t i—1 Lp
+ fp+1 E (=1) @s 1—i,i+197 00
>0

which equals by using with € = 1.

18



If r and s are both odd, we have

{@ 1,p+1 Gl,p—l-l}f

’» sl
@ + 7p (_)17]7 @17p
- 'r 22 1,0 s+2z+1 1 r—2i—1,1 s+2z+1 0 'r 2 21,0 s+2z 1 r—2—2¢,1~"54+24,0
i>0 >0
(71)S+1 i 17p Ny i—1 Y 17p ( 1 s+l 17p 17p
+ fp+1 § :(_1) @s—l—l—i,i-l—l@r i + f E ( ) @5 i z+1@r—1+i i prrl 6371,1@1",0
>0 >0

1p 1p
+ fp+1 r—1 06
E : Lp E : 1p 1p 1p
- ( r— 22 1,0 s+21+1 1 @r 2i—1 1@s+2z+1 0) + ( r— 2 21 0@s+2i,1 - @r—2—2i,163+2i,0)

i>0 >0
(71)S+1 1 P P (71)7‘ ] 17p 17p
+ foi1 Z( 1)~ @s—f—z z@r 1—iit1 T pia Z(_l)zes—l—i,i@r—i—i,i—f—l‘
i>0 >0

which equals by using with € = 0. Thus, the first identity of (or ) holds for
p+1

Case 2: s —r = —k < 0, identity (or (59))) also holds by using Remark

.r#s (mod 2). Case 1: s —r =k > 0 With r even, s odd and r < s, we now expand the right
hand side of the first identity of with p 4+ 1. Similar as , we have the following identities

1 17 '1, 17
D (D700 = Y (VOO (63)

>0 i>1
i—1qLlp 74 1 P 1.p . % 17p Lp
Z(_l) es—i—l,i—i—l r+z 7 + Z es 7 H—ler—i—i—l,i - Z(_l) @r—l—i,i®s+i,i+l
>0 >0 i>1
i—1gLp Lp
+ Z(—l) 0,711k (64)
>0

We now expand the right hand side of by using we obtain

i—1 7p+1 17p+1 _ i—1 P 1 1 P 17p
Z( ) es zz—l—l@T-‘,—i,i _Z( ) @s 4,0+1 T+zz+fp+1z es i— lz+1®7‘+i—l,i

>0 >0 i>0
+f (-1) z—l@ P ebr + f, § (-1) Z lglr oLr
p+1 E : s—i—1,i+1 r+i,i p+1 s—i,i+1 2 r+i—1,i"

i>0 i>0

(65)
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For the left hand side of , using and the induction assumption, we have
Lp+l olp+l
{6,07.0,7 }s

— Z 1 P 1,])
- § : - @s 1,041 r+1z + fp—i-l § : s 1+z z+1@r717i,i
i>0 i>0
p+1 r 21 10 s 14+2i4+1,1 = Yr—2i—1,1"s—1+2i+1,0
>0
1.p 1.p 1.p P
+fp+1 E ,( r— 1 2i— 10@s+2i+1,1 - @r—l—Qi—1,1@s+2i+1,0> fp+l@r 10 fp+1@s 1, 1®r 1,0
i>0
_} : z 1gLlp l,p } : 2 : 1p
- (_ @s 4,041 r+i,i+ +1 s l—i—zz—i—l r 1 12+fp+1 1“ l zl®s+i,i+l
>0 i>1 i>1

’L 1 117 17p
+fp+1§ (_ @r 1— zz+1®s+i,i
i>0

p+1 olptl
= Z(_ - 163 pz z—i-l@'r—ll—)i,i
i>0
where in the final equality we used and . That implies that the second identity of
holds for p + 1.
With r odd, s even and r < s, we do similarly to what we did in the previous case.
Case 2: s =1 = —k <0, identity still holds by using Remark

[l
B Properties of ¥ with respect to the Poisson brackets
B.1 Proof of Lemma 1]
Proof. We prove and simultaneously by induction. We use the following property
‘Ijab-i-l_cb Q\I/ab—|—\Ilab 1 (66)
and therefore we get
=0t 67
Jcpi2 " (67)

We see that (1) and (2) hold for p = 1,2,3. Suppose (1) and (2) hold for p —2,p — 1 and p. We need
to prove that (1) and (2) hold for p + 1. Expanding the right hand side of the first identity, we have

(TP UP Y = {epra WP + 0P WL + W
= {Cp+2\11 s o2 sPhe + {cp+2\111’p \I"s’pl e+ {\I’r’pl g cpt2¥s Y + {\I’ﬁpl g ‘I’ifl_l c
= Cpra W P{UP, Cpae + cpia WP {Cpra, UePhe + WP eppn, WP 1)
PO o)t o ((UFP 007 e + (U0 WL,
=y (WU wlrulet g fule W qule ek,
For the second identity, we also have

{‘I’i’pﬂa ‘I’;’p}c + {‘I’i’pv ‘I’;’pﬂ}c = {Cp+2\1’1 PppPt \I’l Ple+ {\I’r ’Cp+2‘1’1 P+ \Ijs’pl ! c

r—1 >

) 1 3 ) 1 3 ) 1 3 ) -1
- {\Ij P \Ij; p}C + {\Ijlp \Ils pl c \I]}‘p\lls—pl ‘IJ; p\prfl

r—1 >
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Now to prove (1) and (2) hold for p + 1, we only need to prove that
T = {Ohrrt wley, 4 qwle glerty —wlegl?t p glegl?-t — g
Using and the induction assumption to expand T', we obtain

T = (cpp U7~ 1_,_\1, P 2)\1,1710 U epra(cp WP~ 1+\IJ P 2)\1,1,10 1
 {epan U WP P Y (U e U W R

r—1 > r—1 »

S i T e S ({\P”"2 v e el

r—1 > r—1 7 Fs—1

1,p—1 ,p 1 1,p—1
+ WP {epi, ¥ | {‘I’r 1 vCerl}c
_ gylr—2glp-1 1p—2q,1,p— 1 p—2 qlp—1 p—1 g 1,p—2
_‘Ilsfl \I,T _Cp+2\11r71 \I]s {\Ijr 1 ’\Ijsfl C+{\Ijr 1 ’\Ijsfl c
7p 2 717 1 D 1 1,p_2
( r—1 ’ }+{\Ilr 1 ?\Ils—l
= 0.

That means (1) and (2) hold for p + 1.

B.2 Corollary of lemma

We obtain the following formulas for (sums of) Poisson brackets of Ws.

Corollary 17. Let p > 1 and let r,s € Z. Then,

PR 2 i W & G e W 20 X G

2. {U2 WY =0 with0<r,s < |(b—a)/2] +1,

ERRE R TN R & G G W Gl R R

4o AT WP+ { U0, ) = 0,

5. (WP wrPty o (WP ey, =0,

6. {07 WP Y + (ORI Py = URPOPT - wd e

(ARE 2L T WNER L AU g T R L S [

8. { TP WEPY {2 UMY = 0,

P »p 1 P— 1 1»p — 27p 17p71 27p 1’p71 27p 17p71 27p 17p71
9. {\IJT S —|—{\IJT 5 U e = UM N — WP P R — W vt

Proof. 1. It follows from the proof of Lemma [T}

2. It follows from Lemma [Tl
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3. Using (2) we have {U2” ¥2P}, = 0. On the other hand, we have

(URP, W07} = {coW I + W20, U + W27
— {co‘ll};p,collli’p}c—i—{CO\P;’p,\P P e+ {UPP ) cgULPY, 4 {UPP WP
= coUiP{UL?, co} + coULP{co, TP} + co ({‘1’1”’ Ui} + {‘I’T’pl,‘lfl’p}c)
FULPLUPP o) 4 WP {cp, WP Y,

= —cULPWEP 1 o UlPYZP 4 ¢, ({xyiap, Uy 4 (WP xI:lvp})
Therefore, we get {UF, W22}, 4 {U2P WIP}, = WP W2P — wlPwl?,

r—1»

4. For this identity, we expand the left hand side. We have

07 P P
LHS = {W}7, W0F) — oW, Ty Yo + {U0F) — co¥,fy, WP e
0, 0, ;
= {q,l,p \Ilsfl ct {\I]r—flv \Ijl p}c - s+1{\II CO}C B 7“+1{CO’ \I] }

07 07 P ’ 2,
= (WP, WP Yo+ (WD) UL} 4 U U2 — WP WP,
By property (3) we have

). ) 1, ) ). . )
{\IJLP \I]sfl c + {\Ijrflﬂ v p}C - stlq]rfl - \I]rfl\llsfl
= (oW, + U)Wy — (oW, Ty + W)W,

27}’ P 2’p P
= ‘ljr+1 vy \Ilerl

It means that {¥}?, O2P}, 4 {W2P WP}, =o0.

5. One can verify that this identity holds for p = 1,2,3. Expanding the left hand side using ,
we have

LHS = {W}* Cp+2\1’2’p + \I/s7p1 e+ {Cp+2\1"z’p + \I/gfl_17 P,
= Cpra({Up P, UoP Yo+ {U2P, W oPYe) + WIP{WLP, cppa}e + W2P{pra, WP
SRR 2 G PR A G G B
= QZrgle=l _gZrgle-l g ge L @leml o ghPe? gty
H{URPT e WP BT
= UZPOLT WP o ({0 WP (U el
+\I/71"’p71{cp+17\1/§ 1 c+\I’1’p 1{\11 o Cp+1}c+ {‘II e ‘Ififl ! ¢t {‘I/ Pl wlr?

r—1 > r—1 » *s=1 J¢
:\1;271?\1;1717—1 _\1127:0\111717 1+Cp 1(\111719 1@24} 1 _\I,Lp 11112713 1)
\Ijlvp 1\:[/ 7p 2+\I/1,p 1\:[/ 7p 2+{\I} p—2 \I}ifl_l C+{\Il ,p—1 ‘Illyp_2

r—1 > r—1 » *s5—1 c
p—2 2,p 1 p—1 qlp—2
- {‘117" 1 7\115—1 C+{\Ij7" 1 7\115—1 c:

Therefore, using induction we prove our statement.

6. This identity follows from the proof of the identity in (5).
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7. We have
1, 1,p—1 1,p—1 1, _ 1, 1,p+1 1,
{\I,T p7\11571 ¢t {\I’rfl 7\Ijs p}C - {\Ilr pvqjsp - CPJrQ\I]s p}C
17 +1 17 17
+ {\I,r P - Cp+2\:[’7, p7 \I/s p}C
1, 1, 1, L,

- _\Ijs p{\pr p’ CP+2}C - \Ilr p{cp+2’ \Ijs p}C
_ Lpygylp—1 Lpygylp—1
= —pleglel 4 pleg!

8. We prove this by induction. This identity holds for p = 1,2. Suppose that this identity holds for
p— 2, and p — 1 we need to prove that it holds for p. We have

(UL WPy 4 (WP, WPty
_ {cp+2q;1{7p + pler-l q,?,p}c + {q;%{ cp+2\I/;’p + \pifl—l .

r—1 >
_ qglr-1l g2p 2,p pylr-1 Lpg2,p—1 Lpyy2.p—1
- {\Ilr—l 7\115 }C + {\Ijr ’ \I}s—l c \IIT \Ils + \Ils \Ilr
_ 1,p—1 2,p—1 2,p—2 2,p—1 2p—2 1,1,p—1
= {\Ilr—l ?cp"rlqls + \I]s—l et {cp-‘rlqu + \Ilr—l ) \Ils—l c

— q;};qug,p—l 4 \I,;,p\p%,p—l

= {0 W e+ {U 2 W e e ({0 3P e {020 WP )
S e SO Uais i PR G Ll

= ({2 WP+ U WP )+ WO e P

1pgy2.p—-1 1pg2.p—1
— U P + U P .

Since { W, 7, WPPT Y {2 WP = 0 (by (4)), we get { TP, UIP T = (WP wkP

r—1 > r—1 >
. . 2p—1 g 1p—1 2,p—1 7 1,p—1
Similarly, we obtain {U;P™", WP, = {UIP 0P} Therefore, we have

1p—1 g2,p—1 2,p—1 g, Lp—1y __ 1,p—1 y2:p—1 2,p—1 g,1,p—1
{\Ijr—l 7\Ilsp }C+{\Ijrp 7\:[18—]. c {\I/sp 7\117“—1 C+{\I/s—1 7\I/Tp }C
_ wlp—1yq2,p—1 1,p—17,2,p—1
= plr-lg2e-1 _ gle-lg2e-1,

Thus, we get {U 7T WIPY, + {77, 0P, = 0.

9. We have
LHS = {¥,?, ‘Ijifirl - Cp+2‘I’§f1}c + {‘Pfﬂ“ - Cp+2‘I’72f17 Py
2.p+1 2,p+1 7 2, p— 2, 1,p—1 7 2, 2, 1,
= {\1171”7])7 \I/sfl }C + {\Prfl 7\1/; p}C - \Ijsflqjip ! + ‘Ilrfllpsfl - CP+2({\I/71"p7 \Psfl}c + {\Ijrfh \Ils p}C)

_ rolp 2o+l 2,p+1 g 1,p 2p glp—1 2p qylo-l Lpp2,p Lp\p2:p
- {\Ijr 7\118—1 }C + {\Ijr—l 7\115 }C - \Ijs—l\I}T + ‘Ilr—lq/s—l - Cp+2(‘lls \IIT‘ - \Ijr \I/s )
Now we have

(U0 Wy 4 (U2 wyPy,

— {\I/};p, ‘I’S’pH _ CO\II;7P+1}C + {\I,g,pﬂ _ colI/}n’pH, \I,;,p}c

= U WO} (WO LY (P, WP e W) el o),
_ qji,p+1{00’ \I,bp}c

— ‘I’;’Hl\llg’p _ ‘I’%’Hl\llg’p'

Therefore, we get
LHS = UpPHhu? — WppHulr — o o (UpPURP — WEPWeP) — OOP Upp=t 4 @2 g o
Sl Tt PO ol I e Tt G Ay 96
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