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Abstract

We globally classify two-component evolution equations, with homo-
geneous diagonal linear part, admitting infinitely many approximate sym-
metries. Important ingredients are the symbolic calculus of Gel’fand and
Dikĭı, the Skolem–Mahler–Lech theorem, results on diophantine equations
in roots of unity by F. Beukers, and an algorithm of C.J. Smyth.

1 Introduction

A long standing open problem is the classification, up to linear transformations,
of two-component integrable equations(

ut
vt

)
=
(
aun + F (u, v, u1, v1, . . .)
bvn +G(u, v, u1, v1, . . .)

)
(1)

where F,G are purely nonlinear polynomials in variables ui, vi, which denote
the i-th x-derivatives of u(x, t), v(x, t). Among the many different approaches
to recognition and classification of integrable equations, the so called symmetry
approach has proven to be particularly successful, see for example [17, 27]. Until
recently, all results obtained were for classes of equations at fixed (low) order
n. This situation changed dramatically when, by using a symbolic calculus
and results from number theory, Sanders and Wang classified scalar evolution
equations with respect to symmetries globally, that is, where the order n can
be arbitrarily high [22]. Our aim is to obtain a similar result for the class of
multi-component equations (1).

In the symmetry approach the existence of infinitely many generalized sym-
metries is taken as the definition of integrability. A generalized symmetry of
equation (1) is a pair of differential polynomials S = (S1, S2) such that equation
(1) is also satisfied by ũ = u + εS1, ṽ = v + εS2 up to order ε2. This leads to
the notion of Lie-derivative: L(K)S = 0 ⇔ S is a symmetry of (ut, vt) = K.
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The Lie algebra of pairs of differential polynomials is a graded algebra. The
linear part (aun, bvn) has total grading 0, the quadratic terms have total grading
1, and so on. Gradings are used to divide the condition for the existence of a
symmetry into a number of simpler conditions: L(K)S ≡ 0 modulo quadratic
terms, L(K)S ≡ 0 modulo cubic terms, and so on. This has been called the
perturbative symmetry approach [15]. In the same spirit the idea of an ap-
proximate symmetry was defined [16]. If L(K)S ≡ 0 modulo cubic terms, we
say that S is an approximate symmetry of degree 2. And, we call an equation
approximately integrable if it has infinitely many approximate symmetries.

We contribute to the above mentioned problem by globally classifying equa-
tions (1) that are approximately integrable of degree 2. This is achieved by
applying the techniques developed in the special case of so called B-equations,
where any approximate symmetry of degree 2 is a genuine symmetry [8]. It ex-
tends older results obtained by Beukers, Sanders and Wang [2, 3]. The present
article is a revised and extended version of the report [9].

As remarked in [16] the requirement of the existence of approximate sym-
metries of degree 2 is very restrictive and highly non-trivial. On the other hand
an equation may have infinitely many approximate symmetries of degree 2, but
fail to have any symmetries. This problem involves conditions of higher grading
and is left open.

2 Generalized symmetries

A symmetry-group transforms one solution to an equation to another solution
of the same equation. We like to refer to the book of Olver [19] for a good
introduction to the subject, numerous examples, applications and references. A
completely algebraic description of the notion of infinitesimal symmetry can be
found in [11]. That paper gives an overview on the application of number theory
in the analysis of integrable evolution equations.

We denote A = C[u, v, u1, v1, . . .] and g = A×A. We will endow g with the
structure of a Lie algebra. For any K = (K1,K2) ∈ g the pair S = (S1, S2) ∈ g
is a generalized symmetry of the two-component evolution equation(

ut
vt

)
=
(
K1

K2

)
(2)

if the Lie derivative of S with respect to K,

L(K)S =
(
δK(S1)− δS(K1)
δK(S2)− δS(K2)

)
, (3)

vanishes. Here δQ is the prolongation of the evolutionary vector field with
characteristic Q, cf. [19, equation 5.6],

δ(Q1,Q2) =
∞∑
k=0

Dk
xQ1

∂

∂uk
+Dk

xQ2
∂

∂vk
,
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and the total derivative Dx is1

Dx =
∞∑
k=0

uk+1
∂

∂uk
+ vk+1

∂

∂vk
.

The Lie derivative is a representation of g. This property, with P,Q ∈ g,

L(L(P )Q) = L(P )L(Q)− L(Q)L(P ) (4)

corresponds to the Jacobi identity for the Lie bracket [P,Q] = L(P )Q which is
clearly bilinear and antisymmetric, cf. [19, Proposition 5.15]. Another way of
expressing (4) is saying that g is a g-module. Another g-module is given by A,
the representation being L(K)F = δK(F ) with K ∈ g, F ∈ A.

The word ’generalized’ stresses the fact that the order of a symmetry can
be bigger than one. Generally symmetries come in hierarchies with periodic
gaps between their orders. For example, the Korteweg–De Vries equation ut =
u3 +uu1 possesses odd order symmetries only. Concurrently, the KDV equation
has approximately symmetries at any order.

3 Grading

Denote σu = (u, 0) and σv = (0, v). If P in some g-module is an eigenvector of
L(σu) (or of L(σv)), the corresponding eigenvalue is called the u- (or v-) grading
of P . One verifies that g can be written as the direct sum g =

⊕
i,j≥−1 gi,j where

elements of gi,j have u-grading i and v-grading j. Similarly A =
⊕

i,j≥0Ai,j .
The crucial property of a graded Lie algebra is that the u- (or v-) grading of

L(P )Q is the sum of the u- (or v-) gradings of P and Q. This follows directly
from equation (4). If P has u-grading i and v-grading j we say that i + j is
the total grading of P . For example, (u1v2, v3v4) ∈ g0,1 has total grading 1.
Gradings are used to divide the condition for the existence of a symmetry into
a number of simpler conditions.

We study evolution equations of the form(
ut
vt

)
= K0,0 +K−1,2 +K0,1 +K1,0 +K2,−1 + · · · , (5)

with K0,0 = (aun, bvn) and symmetries of similar form S = S0,0 +S−1,2 +S0,1 +
S1,0 + S2,−1 + · · · with S0,0 = (cum, dvm).2 Here the dots may contain terms
with total grading > 1. Certainly we have L(K0,0)S0,0 = 0. The symmetry

1In [11, section 4.1] the total derivative was denoted δx. This is misleading as Dx =
δ(u1,v1). Also δQ is the unique C-linear derivation on A satisfying δQ(u, v) = Q and δQ◦Dx =
Dx ◦ δQ.

2We remark that only if a = b then S may also contain terms S±1,∓1. In this paper we
implicitly assume this does not happen.
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conditions with total grading 1 are

L(K−1,2)S0,0 + L(K0,0)S−1,2 = 0,
L(K0,0)S0,1 + L(K0,1)S0,0 = 0,
L(K0,0)S1,0 + L(K1,0)S0,0 = 0, (6)
L(K0,0)S2,−1 + L(K2,−1)S0,0 = 0.

A criterion which guarantees that S is a symmetry of K if the first few symmetry
conditions of total grading 0, 1, . . . are fulfilled, was given by Sanders and Wang
[22]. In this paper we restrict ourselves to solving equations (6). Thus we
classify equations that admit infinitely many approximate symmetries of degree
2, which is a necessary condition for integrability. In the sequel we omit the
adjective ‘of degree 2’.

4 The Gel’fand–Dikĭı transformation

Comparing the Leibniz rule and Newton’s binomial formula,

(uv)n =
n∑
i=0

(
n

i

)
uivn−i, (x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i,

we see that differentiating a product is quite similar to taking the power of a
sum. On the right hand side the index, counting the number of derivatives,
gets interchanged with the power, while on the left hand side differentiation
becomes multiplying with the sum of symbols. Of course, with expressions
containing both indices and powers, one has to be more careful. The Gel’fand–
Dikĭı transformation [7] provides a one to one correspondence between Ai,j and
the space Ci,j : polynomials in C[x1, . . . , xi, y1, . . . , yj ] that are symmetric in
both the x and the y symbols. One may deduce the general rule from

u1u2v3 D
x1

1x
2
2 + x1

2x
2
1

2!
y3
1

1!
= û1u2v3,

or consult one of the papers [11, 15]. All usual operations from differential
algebra translate naturally. In particular,3

L(K0,0)Si,j D

(
Gi,j1;n[a,b] 0

0 Gi,j2;n[a,b]

)
Ŝi,j ,

where the so called G-functions are given by

Gi,j1;n[a,b](x, y) = a(xn1 + · · ·+ xni+1) + b(yn1 + · · ·+ ynj )
−a(x1 + · · ·+ xi+1 + y1 + · · ·+ yj)n,

3As a correction to [11, Section 4.3], when (f, g) ∈ gi,j then f ∈ Ai+1,j and g ∈ Ai,j+1.
One should think of (f, g) as representing the vector field f∂u + g∂v .
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and
Gi,j2;n[a,b](x, y) = Gj,i1;n[b,a](y, x). (7)

Symbolically we can solve the symmetry conditions of total grading 1, equations
(6), as follows. We may write the components of the quadratic parts of S as,
with k = 1, 2,

Ŝi,jk =
Gi,jk;m[c,d]

Gi,jk;n[a,b]
K̂i,j
k . (8)

Equation (5) has an approximate symmetry at order m with linear coefficients
c, d iff for all i+ j = 1 and k = 1, 2 the right hand side of equation (8) is either
polynomial or undefined (0/0).

5 Nonlinear injectivity

In our classification we distinguish between equations whose symmetries neces-
sarily have non-vanishing linear part and equations that allow purely nonlinear
symmetries.

Definition 1 Let K0 have total grading 0. We call K0 nonlinear injective if
L(K0)S = 0 implies that S has total grading 0. And, we call an equation
nonlinear injective if its linear part is nonlinear injective.

With K0 = (aun, bvn), the k-th component of L(K0)Si,j , with non-zero Si,j ,
vanishes iff Gi,jk,n[a,b] = 0. Solving the later equation with i+j = 1 yields ab = 0,
n ≥ 0, or n = 1, or (a − 2b)(2a − b) = 0, n = 0. In Table 1 we have displayed
all K0 and corresponding S1, such that the equation (ut, vt) = K0 + K1, with
arbitrary K1 ∈ g of total grading 1, has purely nonlinear symmetries S1. For

K0 (0, v) (2u, v) (au1, v1) (u1, v1) (0, vn), n > 1

S1 A2,0 ⊗A1,1 A0,2 ⊗ 0 A2,0 ⊗A0,2 g A2,0 ⊗ 0

Table 1: List of K0 and S1 such that L(K0)S1 = 0.

the same choices of K0 and S1 the linear equations (ut, vt) = K0 have symme-
tries (cum, dvm) + S1 for all m ∈ N and c, d ∈ C. Indeed, every tuple S ∈ g is a
symmetry of (ut, vt) = (u1, v1). In other words, (u1, v1) is a symmetry of every
equation. Also, every B-equation, that is, an equation (ut, vt) = (aun, bvn)+K1

with K1 ∈ A0,2, admits the zeroth order symmetry (2u, v). Only a subset of the
equations (ut, vt) = K0 +K1, with particular K1 ∈ g, has infinitely many sym-
metries with non-vanishing linear part. These will be classified in section 10.1.
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There is a good reason for including such equations: their approximate symme-
tries may correspond to approximately integrable nonlinear injective equations.
One integrable example, equation (30), is given in section 11.

6 Necessary and sufficient conditions

In this section we introduce convenient notation, we give necessary and sufficient
conditions for a nonlinear injective equation to be approximately integrable, and
we outline how we perform the classification.

The components of equation (5) are(
ut
vt

)
=
(
aun +K1,0

1 +K0,1
1 +K−1,2

1 + · · ·
bvn +K0,1

2 +K1,0
2 +K2,−1

2 + · · ·

)
. (9)

We denote the symbolic representation of the 6-tuple K1,0
1 , K0,1

1 , K−1,2
1 , K0,1

2 ,
K1,0

2 , K2,−1
2 by K1. And similarly we write S1,0

1 , . . ., S2,−1
2 D S1 and Gn =

G1,0
1;n, . . . ,G

2,−1
2;n . A 6-tupleH is called proper if it consists of polynomials with the

right symmetry properties, that is, if H ∈ C2,0⊗C1,1⊗C0,2⊗C0,2⊗C1,1⊗C2,0.
So, K1, S1, and Gn[a,b] are proper. We will also consider s-tuples, with s <
6. It should be clear from the context in which space a proper s-tuple lives.
We say that an s-tuple H = H1, . . . ,Hs divides an s-tuple P = P1, . . . , Ps if
Hi | Pi for all 1 ≤ i ≤ s and we write P/H = P1/H1, . . . , Ps/Hs. We are
now able to state the following: Equation (9) is nonlinear injective and has an
approximate symmetry of order m with linear coefficients c, d iff the 6-tuple
S1 = Gm[c,d]K1/Gn[a,b] is proper.

Let H be a proper tuple. With m(H) we denote the set of all m ∈ N such
that there exists c, d ∈ C for which H | Gm[c,d]. We have the following lemma.

Lemma 2 Equation (9) is nonlinear injective and approximately integrable iff
there is a proper 6-tuple H with m(H) infinite, such that Gn[a,b] divides K1H.

Proof: ⇐ The fact that Gn[a,b] divides a proper tuple implies that equation (9)
is nonlinear injective. The equation is integrable because for every m ∈ m(H)
there are c, d such that

S1 =
Gm[c,d]
H

K1H

Gn[a,b]

is proper. ⇒ Because equation (9) is nonlinear injective, the tuple S1 =
Gm[c,d]K1/Gn[a,b] is well defined for all m. The integrability implies that S1

is proper for infinitely many m ∈ N and c, d ∈ C. This only happens when
Gn = HP factorizes such that P | K1 and m(H) is infinite. �

According to Lemma 2, to classify approximately integrable nonlinear injec-
tive equations it suffices to determine the set H of all proper 6-tuples H with
infinite m(H). This will be done using results from number theory, provided
in section 7. In section 8 we determine the proper divisors of infinitely many
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functions Gi,1−ik,m for possible i, k. And, in section 9 we determine the proper
divisors of infinitely many 2-tuples Gi,1−i1,m , Gj,1−jk,m , where i 6= j if k = 1. From
those result H can be determined.

We organize H ∈ H by the lowest order n at which H divides a Gn-tuple.
Let Hn denote the set of all proper tuples H with infinite m(H) whose smallest
element is n. So, we have H =

⋃
n∈NHn. For each n ∈ N the set Hn is related

to the set of approximate integrable equations at order n, which are not in a
lower order hierarchy.

We would like to provide an explicit but minimal list of approximate inte-
grable equations from which one can derive all approximately integrable equa-
tions. The following observation is useful. Let P and Q be proper tuples.
From Lemma 2 it follows that if equation (9), with K1 = P , is approximately
integrable, then the same equation, but with K1 = PQ, is also approximately
integrable. Therefore, the list we provide only contains equations with quadratic
parts K1 of minimal degree, see section 10.

From the results of sections 8, 9 it follows that Hn is non-empty for all
n ∈ N. That means there are new approximately integrable equations at every
order. Therefore, although we classify them completely, we cannot explicitly list
them all. In section 10 we provide a complete list of approximately integrable
equations of order n ≤ 5. We decided to go up to order 5, because both the
cases n < 4, n > 3 and n odd, n even are quite distinct.

We explicitly provide the linear parts (cum, dum) of all the symmetries of
the equations in our list. This enables one to calculate any symmetry in prin-
ciple, using the Maple code provided in the Appendix. In this paper we do not
explicitly describe all symmetries of all approximately integrable equations that
can be obtained from the list. We remark that if one multiplies the quadratic
tuple of an equation with a proper tuple, the resulting equation may have more
symmetries than the original one. It may also be in a lower hierarchy.

From Lemma 2 we know that if H ∈ Hn and Gn[a,b] | K1H, then equation
(9) is approximately integrable with approximate symmetries at (higher) order
m ∈ m(H). The following lemma applies.

Lemma 3 Suppose H ∈ Hn and Gn[a,b] divides K1H. Then equation (9) has
more symmetries than the ones at order m ∈ m(H) iff there is a divisor Q ∈
Hk≤n of H, with m(H) smaller than and contained in m(Q), such that Gn[a,b]
divides K1Q.

Proof: Given a divisor Q ∈ Hk of H such that Gn[a,b] | K1Q, it is clear that
equation (9) has a symmetry at every order m ∈ m(Q) with

S1 =
Gm[c,d]
Q

K1Q

Gn[a,b]
.

To see that the converse holds, let Y denote the set of symmetries, with m(H)
smaller than and contained in Y . We need to prove that there is a Q such that
Y = m(Q). Take m ∈ Y \m(H) and write Gn = HP . Since Gn | K1H we have
K1 = PR. The tuple S1 = GmK1/Gn = GmR/H is proper. Since m 6∈ m(H),
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H does not divide Gm. There is a proper divisor Q of H such that Q | Gm and
H/Q divides R, that is, Gn | K1Q. Since Q | H the set m(Q) is infinite. �

In fact, one can also start with an equation that is not nonlinear injective,
multiply its quadratic tuple, and end up in the hierarchy of an nonlinear in-
jective equation. For example, apart from certain purely nonlinear symmetries,
equation 1.1. has approximately symmetries with linear part (cum, dvm) for
any c, d ∈ C when m is odd. By multiplying its quadratic tuple with the tu-
ple [0, (f1x1 + f2y1)/f, (y1 + y2)/2, 0, (i1x1 + i2y1)/i, (x1 + x2)/2] we obtain the
equation (

ut
vt

)
=
(
au1 + f1u1v + f2uv1 + gvv1
v1 + i1u1v + i2uv1 + juu1

)
,

which has approximate symmetries at all orders m > 0 for any c, d ∈ C, and, it
is in the hierarchy of an equation of the form 0.3 iff f1 = i2 = 0.

7 Results from number theory

Generally speaking, progress in classifying global classes of evolution equations
has been going hand in hand with applying new results or techniques from
number theory. For the classification of scalar equations [22] the new result was
obtained by F. Beukers, who applied sophisticated techniques from diophantine
approximation theory [1]. The Skolem–Mahler–Lech theorem first appeared
in the literature in connection with symmetries of evolution equations in [2].
Beukers, Sanders and Wang used a partial corollary of the full theorem, stated
below, to conjecture that there are only finitely many integrable equations (9)
with K1 = [0, 0, 1, 0, 0, 0]. This conjecture became a theorem in [3], where a
recent algorithm of C.J. Smyth [4], that solves equations f(x, y) = 0 for roots of
unity x, y, was used to produce an exhaustive list of the integrable cases. And,
the classification of B-equations was due to results on diophantine equations in
roots of unity, again proved by Beukers.

However, as it turns out, we do not need a new result from number theory to
globally classify two component evolution equations, with homogeneous diagonal
linear part, admitting infinitely many approximate symmetries.

7.1 The Skolem–Mahler–Lech theorem

A sequence {Um,m ∈ N} satisfies an order n linear recurrence relation if there
exist s1, . . . , sn such that

Um+n = s1Um+n−1 + · · · snUm.

The general solution can be expressed in terms of a generalized power sum

Um =
k∑
i=1

Ai(m)αmi ,
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such that the roots αi are distinct and non-zero, and the coefficients Ai(m) are
polynomial in m. By definition the degree of Um is d =

∑k
i=1 di, where di is

the degree of Ai(m). It can be shown that the order of the sequence equals
n = k + d [20].4

A generalized power sum vanishes identically, Um = 0 for all m, precisely
when all its coefficients vanish as polynomials in m, Ai(m) = 0 for all i. We
prove this by induction on the degree. For d = 0 the statement is plain, the
functions h → αhi are linearly independent for distinct αi. Let S : f(m) →
f(m+ 1) be the shift operator. Suppose d > 0. Then for some i we have di > 0.
The generalized power sum Vm = (S−αi)Um has degree d−1. By the induction
hypothesis we have, in particular, αi(S−1)Ai(h) = 0. Since αi 6= 0 this implies
di = 0 and hence we are done.

Theorem 4 (Skolem–Mahler–Lech) The zero set of a linear recurrence se-
quence {m ∈ N : Um = 0} is the union of a finite set and finitely many complete
arithmetic progressions {r + gh : h ∈ N}.

The theorem was first proved by Skolem for the rational numbers [24], by Mahler
for algebraic numbers [13], and by Lech for arbitrary fields of characteristic zero
[12]. The proofs rely on p-adic analysis and consist of showing the existence of
a difference g ∈ N such that every partial sum, with 0 ≤ f < g,

Uf+gh =
k∑
i=1

(Ak(f + gh)αfi )(αgi )
h (10)

either has finitely many solutions h or vanishes identically. We refer to [18, 26],
and references in there, for sensible sketches of a proof.

If (10) vanishes identically the sum on the right breaks up into disjoint pieces
I ⊂ {1, . . . ,m} each of which vanishes because the roots αgi , i ∈ I, coincide
and the sum of their coefficients

∑
i∈I Ai(f + gh)αfi vanishes identically as a

function of the variable h. Since Ai(f + gh) does not vanish identically, each
piece contains at least two terms. We may infer that if the diophantine equation
Um = 0 has infinitely many solutions m, at least there are two distinct roots
αi, αj such that the ratio αi/αj is a root of unity. In practise, much more will
be inferred. For example, when k = 3 the triple α1/α2, α2/α3, α1/α3 consists
of roots of unity.

7.2 Diophantine equations in roots of unity

The following theorems were proved by F. Beukers for the classification of B-
equations [8, Theorem 22,25]. They are of crucial importance for the classifica-
tion problem considered in this paper. We formulate the results a little sharper
than in [8]. We do not assume that µ, ν 6= −1. In certain cases this follows from
[8, Proposition 24], in others one has to rely on the following.

4In [20] one should replace equation 2.1.2 by equation 1.3 from [21].
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Proposition 5 If ν is a root of unity such that

(1 + νm)2m−1 = (1− ν)m,

then ν = −1 and m is even.

Proof: This can be seen as follows. By Galois theory we may assume that
ν = e2πi/n. Using that 2|x|/π ≤ |1− eix| when 0 ≤ x ≤ π, and |1 + eix| ≤ 2 we
have

1
2m−1

=
∣∣∣∣ 1 + νm

(1− ν)m

∣∣∣∣ ≤ 2
(4/n)m

.

It follows that n ≤ 2 and one verifies that ν 6= 1 and ν 6= −1 when m is odd. �

Also we do not in general need ν 6= µ and ν 6= 1/µ. We note that in [8,
Theorem 25] it was mistakenly supposed that µn 6= −1. This should have been
µn 6= ∓1 depending on the sign in [8, equation (10)].

Theorem 6 (Beukers) Take m > 1 integer. Let µ, ν be distinct roots of unity,
both not equal to 1, such that ν 6= µ−1 when m is odd. Then

(1− νm)(1− µ)m = (1− µm)(1− ν)m (11)

implies µm = νm = 1.

Theorem 7 (Beukers) Take m > 1 integer. Let µ, ν be distinct roots of unity,
not both equal to 1, such that ν 6= µ−1 when m is even. Then

(1 + νm)(1− µ)m = (1 + µm)(1− ν)m (12)

implies µm = νm = −1.

Theorem 8 (Beukers) Take m > 1 integer. Let µ, ν be roots of unity with
µ 6= 1. Then

(1 + νm)(1− µ)m = (1− µm)(1− ν)m (13)

implies µm = −νm = 1.

Whereas the Skolem–Mahler–Lech theorem implies that certain ratios are
roots of unity for the equation to have infinitely many solutions, the above
theorems tell us precisely what the solutions are. In particular, they imply that
the zero sets consist of arithmetic progressions only.

8 Homogeneous quadratic parts

In this section we determine the proper divisors of infinitely many 1-tuples
Gm = Gi,1−ik,m for all possible choices of i, k. We use the same notation for s-
tuples as for 6-tuples. Thus, m(H) denote the set of orders m such that there
exist c, d ∈ C for which the s-tuple H divides the s-tuple Gm[c,d]. And, Hn
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denotes the set of proper s-tuples H with infinite m(H) whose smallest element
is n.

Due to equation (7) we may take k = 1; equations of the form (ut, vt) =
(aun, bvn +K) are related, by the linear transformation u↔ v, to equations of
the form (ut, vt) = (aun +K, bvn). We start with the simplest case i = 1.

8.1 Classifying approximately integrable scalar equations

The Lie derivative of the quadratic part S1 of a possible scalar symmetry with
respect to the linear part K0 = un of a scalar equation ut = K0 + K1 + · · · is
symbolically given by L(K0)S1 D G1

nŜ
1 with G-function

G1
n(x, y) = xn + yn − (x+ y)n = G1,0

1;n[a,b](x, y)/a.

Thus the case i = k = 1 is equivalent to the scalar problem, which is easily seen
by taking v = 0. The function is also proportional to Gi,1−ik,n [a,a] so the results
apply to the case a = b as well.

In the classification of scalar equations [22] a different route was taken than
the one we take. Sanders and Wang performed the classification with respect
to the existence of symmetries. They showed in particular that any scalar
equation admitting a generalized symmetry admits infinitely many generalized
symmetries, which confirms the first part of the conjecture of Fokas [5]:

If a scalar equation possesses at least one time-independent non-
Lie point symmetry, then it possesses infinitely many. Similarly for
N -component equations one needs N symmetries.

We note that the conjecture of Fokas does not hold inside the class of B-equations
[10]. In their classification Sanders and Wang relied on the following ’hard to
obtain’ result from number theory, proved in [1].

Theorem 9 (Beukers) Let r ∈ C such that r(r+ 1)(r2 + r+ 1) 6= 0. Then at
most one integer m > 1 exists such that G1

m(1, r) = 0.

In contrast, we classify the equations with respect to (approximate) integra-
bility. Thus, we only need the following ’easy to obtain’ result. For obvious
reasons we do not include the constant divisors in H0 in our lists.

Proposition 10 The proper divisors of infinitely many G1,0
1;m[c,d](1, y) are prod-

ucts of

1. y ∈ H2, m > 1

2. (1 + y) ∈ H3, m ≡ 1 mod 2

3. 1 + y + y2 ∈ H5, m ≡ 1, 5 mod 6

4. (1 + y + y2)2 ∈ H7, m ≡ 1 mod 6

11



Proof: According to the Skolem–Mahler–Lech theorem if the diophantine equa-
tion G1

m(1, r) = 0 has infinitely many solutions m, then r = 0,−1 or r and r+ 1
are both roots of unity, in which case r is a primitive 3-rd root of unity. The
orders are found by substituting the values for r. We have G1

m(1, 0) = 0 for
all m, G1

f+2h(1,−1) = 1 + (−1)f = 0 when f = 1, and, with 1 + r + r2 = 0,
G1
f+6h(1, r) = 1 + rf − (1 + r)f = 0 when f = 1 or f = 5. Finally, by solving

the simultaneous equations G1
m(1, r) = ∂rG1

m(1, r) = 0 we find that r is a double
zero when both r and 1 + r are (m− 1)-st roots of unity. �

The reader should compare Proposition 10 with Theorem 9. As a particular
corollary of Proposition 10 we have the following. Equation (9) with a = b and
n = 2, 3, 5, 7 is approximately integrable.

8.2 B-equations

The case i = −2 has been globally classified with respect to integrability in [8].
This class of equations is particularly nice because any approximate symmetry
is a symmetry. We go through the main ideas and formulate the results slightly
different from [8], minimizing the role of biunit coordinates. This makes the
argument cleaner and sets the stage for the main results of this paper.

Proposition 11 All proper divisors H of G−1,2
1;m [c,d](1, y) with m(H) infinite

can be obtained from the following list.

1. 1 + y ∈ H1, m ≡ 1 mod 2, d 6= 0

2. (1 + y)n ∈ Hn, m ≥ n, d = 0

3. (y − r)(ry − 1) ∈ H2, r 6= −1, m ≥ 1

4. (y − r)2(ry − 1)2 ∈ Hn, r 6= −1, n > 3 the smallest integer such that
rn−1 = 1, m ≡ 1 mod n− 1

5. (y − r)(yr − 1)(y − r̄)(yr̄ − 1) ∈ Hn, r = ν(µ − 1)/(ν − 1), µ, ν roots of
unity such that (µ − 1)(ν − 1)(µ − ν)(µν − 1) 6= 0, n > 3 the smallest
integer such that µn = νn = 1, m ≡ 0 mod n

6. {rn = −1} ∈ Hn, m ≡ n mod 2n, c = 0

Unless stated otherwise, the coefficients of the linear part of the symmetries
satisfy c/d = (1 + rm)/(1 + r)m.

Proof: We study the zeros of the function

G−1,2
1;n [a,b](1, r) = b(1 + rn)− a(1 + r)n.

Take b 6= 0. Then r 6= −1 is a zero when

a

b
=

1 + rn

(1 + r)n
, (14)
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in which case 1/r is a zero as well. The point r = −1 is a zero when n is odd,
where it has multiplicity 1, or when b = 0, where the multiplicity is n. The other
multiple zeros are obtained from setting the r-derivatives of the function to zero,
see also [2]. Taking r 6= −1 and solving the simultaneous equations G−1,2

1;n (1, r) =
∂rG−1,2

1;n (1, r) = 0 yields rn−1 = 1, while ∂rG−1,2
1;n (1, r) = ∂2

rG
−1,2
1;n (1, r) = 0 yields

r = −1. Therefore, all multiple zeros r 6= −1 are double zeros. We have
a/b = 1/(1 + r)n−1 and 1/r is a double zero as well. Moreover, r and 1/r are
also double zeros of G−1,2

1;m [1,(1 + r)m−1] with m ≡ 1 mod n − 1. There are no
other double zeros since the equations |r| = |s| and |1 + r| = |1 + s| imply that
r = s or r = s̄. To classify higher degree divisors we have to find all r, s ∈ C,
with (1 + r)(1 + s)(r − s)(rs− 1) 6= 0 such that the diophantine equation

Un(r, s) = G−1,2
1,n [1 + rn, (1 + r)n](1, s)

= (1 + r)n + ((1 + r)s)n − (1 + s)n − ((1 + s)r)n = 0

has infinitely many solutions n. According to the Skolem–Mahler–Lech theorem
either rs = 0 or one of the pairs

1 + r

1 + s
,

(1 + s)r
(1 + r)s

or
1 + r

r(1 + s)
,

1 + s

s(1 + r)
or r, s (15)

consists of roots of unity. When rs = 0 we have a = b which we exclude.
Suppose the first pair of (15) consists of roots of unity, let µ = (1 + r)/(1 + s)
and ν = (1 + 1/s)/(1 + 1/r). We may write r =M(µ, ν), where

M(µ, ν) = ν
µ− 1
ν − 1

,

and find that s =M(1/µ, 1/ν) = r̄. In terms of roots of unity µ, ν we have

Un(r, s) =
(

1− µν
µ(1− ν)2

)n
((1− µ)n(1− νn)− (1− ν)n(1− µn)) .

Note that (µ− 1)(ν− 1)(µ− ν)(µν− 1) 6= 0 because (r− s)(rs− 1) 6= 0. Hence,
using Theorem 6, we obtain µn = νn = 1, which implies that µm = νm = 1
when m ≡ 0 mod n. Next, suppose the second pair of (15) consists of roots of
unity. By a transformation r → 1/r we get the first pair. Since M(a, b)−1 =
M(1/b, 1/a) we get the same solutions, but with s = 1/r̄. Finally, when r, s are
roots of unity Un(r, s) = 0 can be written in terms of µ = −r, ν = −s,

Un(r, s) = (1− µ)n(1− (−ν)n)− (1− ν)n(1− (−µ)n).

When n is odd Theorem 6 applies and when n is even Theorem 7 applies. �

Consider the set of points

{r ∈ C : r =M(µ, ν), µn = νn = 1, (µ− 1)(ν − 1)(µ− ν)(µν − 1) 6= 0}. (16)
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To illustrate where these points lie in the complex plane we use biunit coordi-
nates. Suppose ψ, φ are such that |ψ| = |φ| = 1 and r is the unique intersection
point of the lines ψR and φR− 1. Then r = R(ψ, φ), with

R(ψ, φ) = ψ2 φ2 − 1
ψ2 − φ2

,

and (ψ, φ) are called the biunit coordinates of r. Denote further

R(A,B) = {r ∈ C : r = R(a, b), a ∈ A, b ∈ B, a2 6= b2},

and
Φn = {r ∈ C : rn = 1, r2 6= 1}.

Using the algebraic relation M(φ2, ψ2/φ2) = R(ψ, φ) one verifies that the set
(16) is equal to {r ∈ R(Φ2n,Φ2n) : |r| 6= 1}. For n = 7 the upper half of this
set is plotted in Figure 1.

Figure 1: The corner points r, with |r| 6= 1 and r 6= 0 satisfy Um(r, r̄) = 0 when
m ≡ 0 mod 7. The two circles are |r| = 1 and |r + 1| = 1.

14



8.3 Quadratic terms bilinear in u-, and v-derivatives

This section deals with the case i = 0.

Proposition 12 If H is a proper divisor of G0,1
1;m[c,d](1, y) with m(H) infinite

then H is a product of the following polynomials.

1. y ∈ H1, m > 0, c 6= 0

2. y ∈ Hn, m ≥ n, c = 0

3. (y − r) ∈ H2, r 6= 0, m > 1

4. (y− r)(y(1 + r) + r) ∈ H3, m ≡ 1 mod 2. When (1 + r)2n = 1, r 6= 0, we
have extra symmetry at m ≡ 0 mod 2n with d = 0.

5. (y − r)2 ∈ H2n, r 6= 0, n the smallest integer such that (1 + r)2n−1 = 1,
m ≡ 1 mod 2n− 1

6. (y − r)2(y(1 + r) + r)2 ∈ H2n+1, n > 1 the smallest integer such that
(1 + r)2n = 1, m ≡ 1 mod 2n

7. (y−r)(y(1+r)+r)(y−r̄)(y(1+r̄)+r̄) ∈ Hn, n > 3 odd, r = (µ−ν)/(ν−1),
(µ− 1)(ν − 1)(µ− ν)(µν − 1) 6= 0, n the smallest integer such that µn =
νn = 1, m ≡ n mod 2n

8. (y − r)(y − r̄) ∈ Hn, n > 2 even, r = (µ− ν)/(ν − 1), (µ− 1)(ν − 1)(µ−
ν)(µν − 1) 6= 0, n the smallest integer such that µn = νn = 1, m ≡ 0
mod n

9. (y−r)(y(1+r̄)+r̄) ∈ Hn, n > 2 even, r = (ν−µ)/(µ−1), (µ−ν)(µν−1) 6=
0, n the smallest integer for which µn = νn = −1, m ≡ n mod 2n

Unless stated otherwise, the coefficients of the linear part of the symmetries
satisfy c/d = rm/((1 + r)m − 1).

Proof: We are after the zeros of infinitely many

G0,1
1;n[a,b](1, y) = a− a(1 + y)n + byn.

Take a 6= 0. Then r 6= 0 is a zero of precisely when

b

a
=

(1 + r)n − 1
rn

. (17)

When n is odd −r/(1 + r) is a zero as well. The point r = 0 is a zero for all
a, b, n. It has multiplicity 1, except when a = 0 where the multiplicity is n.
One can show that the multiple zeros r 6= 0 of G0,1

1;n[a,b] are the double zeros
{r 6= 0 : (1 + r)n−1 = 1}, with a/b = rn−1. When r is a double zero the only
other double zero is r̄ = −r/(1 + r) when n is odd. Higher degree divisors are
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given by distinct non-zero r, s ∈ C, with r+ rs+ s 6= 0 when n is odd, such that
the diophantine equation

Un(r, s) = G0,1
1,n[rn, (1 + r)n − 1](1, s)

= rn − rn(1 + s)n + sn(1 + r)n − sn = 0

has infinitely many solutions n. We exclude the cases r = −1, s = −1, as
this corresponds to equations with a = b. Then, according to the the Skolem–
Mahler–Lech theorem, at least one of the pairs

r

s
,
r(1 + s)
s(1 + r)

or
s

r(1 + s)
,
s

r
(1 + r) or 1 + r, 1 + s (18)

consists of roots of unity. Suppose the first pair consist of roots of unity. Let
µ = r/s and ν = r(1 + s)/s/(1 + r). Then (µ − 1)(ν − 1)(µ − ν) 6= 0, µν 6= 1
when n odd, r = N (µ, ν) and s = N (1/µ, 1/ν) = r̄ with

N (µ, ν) =
µ− ν
ν − 1

.

When µν = 1 and n even we have r̄ = −r/(1 + r). In terms of µ, ν we get

Um(r, s) =
(

ν − µ
µ(ν − 1)2

)m
((1− µ)m(1− νm)− (1− ν)m(1− µm)) ,

which implies, using Theorem 6, that µn = νn = 1 and m ≡ 0 mod n. In bi-unit
coordinates we have r ∈ R(Φ2n,Φ2n) such that |r + 1| 6= 1 when n odd.

Next, suppose that the second pair of (18) consists of roots of unity, µ =
−r/s/(1 + r), ν = −(1 + s)r/s. We have (µ − 1)(ν − 1)(µ − ν)(µν − 1) 6= 0
when r + rs + s 6= 0, that is, when n odd. When r + rs + s = 0 and n even
we get (1 + r)n = 1, which corresponds to b = 0. Otherwise, r = K(µ, ν) =
(ν − µ)/(µ− 1) and s = −r̄/(1 + r̄). In terms of µ, ν we have

Un(r, s) =
(

ν − µ
µ(µ− 1)(ν − 1)

)n
((1− ν)n(1 + (−µ)n)− (1− µ)n(1 + (−ν)n))

When n is odd Theorem 6 implies µn = νn = 1, while for n even Theorem
7 yields µn = νn = −1. The biunit coordinate description can be found as
follows. Solve the simultaneous equations K(µ, ν) = R(ψ, φ), K(1/µ, 1/ν) =
R(1/ψ, 1/φ) to find that µ = ψ2/φ2, ν = ψ2. For odd n we don’t find new
values for r, but for n even we get r ∈ R(Φ4n \Φ2n,Φ2n) such that |r + 1| 6= 1.
Finally, suppose that the last pair of (18) consists of roots of unity. Then
µ = 1 + r and ν = 1 + s satisfy equation (11). According to Theorem 6 we have
(1 + r)n = (1 + s)n = 1, that is, the second eigenvalue equals 0. �

Actually, when n is odd the two cases i = −1, i = 0 are related. We have

G0,1
1;n[a,b](1, r) = G−1,2

1;n [b,a](1,−1− r). (19)
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Indeed, at odd order n the zero r = −1 of G−1,2
1,n translates into the zero r = 0

of G0,1
1,n. Also the image of the unit circle |z| = 1 under f3 : r → −1 − r is the

unit circle |z + 1| = 1, relating the double zeros of the two G-functions. The
symmetry f2 : r → 1/r is translated into f4 = f3 ◦f2 ◦f3 : r → −r/(1 + r). And
we note that set R(Φn,Φn) is invariant under the group of an-harmonic ratios,
generated by f2 and f3, cf. [14]. Using the above, for odd n one may obtain
Propostion 12 from Proposition 11 and vise versa.

Summarizing this section, it implies that equations with homogeneous qua-
dratic parts are approximately integrable when n < 4. At any order n ≥ 4 a
finite number of new approximately integrable equations has been found.

9 Non-homogeneous quadratic parts

This section deals with equations whose quadratic part is not homogeneous, that
is, K1 = Ki,1−i

1 ,Kj,1−j
k with i 6= j when k = 1. We provide the corresponding

sets Hn of 2-tuples. This time we do find conditions on the ratio a/b for low
orders n < 4.

When i = 1 the first part of the condition H ∈ Hn, H1 being a divisor of
infinitely many G1,0

1;n, does not give conditions on a/b, see Proposition 10. In
this case the Hn are obtained from the classification of H2 dividing infinitely
many Gj,1−jk;m , which was obtained in the previous section. A similar remark
can be made when (j, k) = (0, 2). Due to equation (7) there are four cases
left to consider, with k = 1: (i, j) = (−1, 0); and with k = 2: (i, j) = (0, 1),
(i, j) = (−1, 2), (i, j) = (−1, 1).

There are certain divisors of infinitely many Gm[c,d]-functions for any value
of c/d. These will be called trivial divisors. Apart from the constant divisors
we have

(1 + y) | G−1,2
1;2m+1(1, y) y | G−1,2

1;m (1, y)

(x+ 1) | G2,−1
2;2m+1(x, 1) x | G1,0

2;m(x, 1)

We may take H1 (or H2) to be trivial. Then H ∈ H if H2 (H1) is one of the
divisors of infinitely many G-functions presented in the previous section. In the
sequel we assume that neither H1 nor H2 is trivial. Also we will assume that
ab(a− b) 6= 0.

Proposition 13 We list the non-trivial divisors H of the 2-tuple G−1,2
1;m [c,d](1, y),

G1,0
2;m[c,d](x, 1) with m(H) infinite. Firstly suppose n is odd and P (y) divides
G−1,2

1;m [c,d](1, y) with infinite m(P ) whose smallest element is n, cf. Proposition
11. Then P (y), P (−1− x) ∈ Hn. Secondly, when n is even we have:

1. (y − r)(ry − 1), x+ 1 ∈ H2, r ∈ Φ′3, m ≡ 2, 4 mod 6

2. (y − r)2(ry − 1)2, x+ 1 ∈ H4, r ∈ Φ′3, m ≡ 4 mod 6

3. (y − r)(ry − 1), r̄x + r̄ + 1 ∈ Hn, r = −ν(µ− 1)/µ/(ν − 1), µ 6= 1, n the
lowest integer such that µn = −νn = 1, m ≡ n mod 2n
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The linear coefficients of the symmetries satisfy c/d = (1 + rm)/(1 + r)m.

Proof: When the order of the equation n is odd, no new conditions on the
linear part are obtained since the relations (7) and (19) imply that

G−1,2
1;m [c,d](1,−1− r) = G1,0

2;m[c,d](r, 1).

For even n, there should be r ∈ C with s 6= 0 such that

G−1,2
1;m [c,d](1, r) = G1,0

2;m[c,d](s, 1) = 0,

or, equivalently,

Um(r, s) = sm + (rs)m + (1 + r)m − ((1 + r)(1 + s))m = 0 (20)

for infinitely many m including n. Then, using the Skolem-Mahler-Lech theo-
rem, we may infer that either rs(1 + r)(1 + s) = 0 or at least one of the pairs

r, 1 + s
rs

1 + r
,

s

(1 + s)(1 + r)
,

rs

(1 + r)(1 + s)
,

s

1 + r
(21)

consists of roots of unity. When r(r + 1) = 0 we have a = b or b = 0, which we
excluded. When s = −1 we are left with the equation Um = (−1)m + (−r)m +
(1 + r)m = 0. Applying the Skolem–Mahler–Lech theorem we see that both r
and 1 + r are roots of unity and hence, that r is a primitive third root of unity.
One verifies that Ui+3k =

(
(−1)i + (−r)i + (1 + r)i

)
(−1)k = 0 when i equals 1

or 2. Also, if −1 is a zero of G1,0
2;m[a,b], then a/b = (−1)m+1.

Suppose the first pair of (21) consists of roots of unity. Writing equation (20)
in terms of µ = 1 + s, ν = −r, we get equation (13). Theorem 8 then implies
µm = −νm = 1, which corresponds to the case a = 0, which we excluded.
Suppose the second pair of (21) consists of roots of unity. Then µ = s/(1 +
s)/(1 + r) and ν = −rs/(1 + r) are roots of unity, and we get r = K(u, v) =
−ν(µ− 1)/µ/(ν − 1), s = −(1 + r̄)/r̄, and

Un =
(

µ− ν
(µ− 1)(ν − 1)µ

)n
((1 + (−ν)n)(1− µ)n − (1− µn)(1− nu)n).

When n is even, Theorem 8 yields µn = −νn = 1 or µ = 1. But, when µ = 1 we
have s = −(1 + r)/r and U2n = 2(1 + r)2n = 0 iff r = −1, which we excluded.
Using K(1/φ2, ψ2/φ2) = R(ψ, φ) we may write r ∈ R(Φ4n \ Φ2n,Φ2n).

The third pair of (21) is obtained from the second by f2 : r → 1/r. Under
this transformation we have R(ψ, φ) → R(ψ−1, φψ−1). Hence we get the solu-
tions r ∈ R(Φ4n \ Φ2n,Φ4n \ Φ2n) and s = −1− r̄. Or one can express Um = 0
in terms of µ = rs/(1 + r)/(1 + s), ν = −(1 + r)/s to find these values. Another
way of describing the last item would be: 3. [(y − r)(ry − 1), x + r̄ + 1] ∈ Hn,
r = µ(ν − 1)/(µ − 1), µ 6= 1, n the lowest integer such that µn = −νn = 1,
m ≡ n mod 2n �
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In the remaining cases the diophantine equation we obtain from the zeros of
the G-functions will be of the form

(1 + aAm)(1 + bBm) + cCm = 0. (22)

Lemma 14 Suppose that the diophantine equation (22), with ABC 6= 0, has
infinitely many solutions. Then A, B, and C are roots of unity.

Proof: As a corollary to the Skolem–Mahler–Lech theorem 7.1, three of the
numbers 1, A,B,AB,C have a root of unity as a ratio and the same is true
for the remaining two. Therefore at least one of the pairs C,A; C,B; C/A,B;
C/B,A consists of roots of unity. When C and A are roots of unity, their
powers yield a finite number of values. Moreover, for the infinite number of
solutions we have (1 + aAm) 6= 0. Hence, for these infinite number of solutions
(1 + bBm) has only finitely many values. This only happens when B is a root
of unity. The other cases lead to the same result, e.g. when C/A and B are
roots of unity we divide the equation by Am and find that A is a root of unity. �

Suppose that the triple ζ, η, f(ζ, η) consist of roots of unity. Then we can ap-
ply the algorithm of Smyth, cf. [4], to solve the equation f(ζ, η)−1 = f(ζ−1, η−1)
for roots of unity. In particular, a finite number of values will be obtained. We
denote the set of all primitive n-th roots of unity by Φ′n.

Proposition 15 We list the non-trivial divisors H of the tuple G−1,2
1;m [c,d](1, y),

G0,1
1;m(1, y) with m(H) infinite.

1. y2 + y + 1, y − r + 1 ∈ H2, r = 0, m ≡ 1, 2 mod 3

2. (y2 + y + 1)2, y − r + 1 ∈ H4, r = 0, m ≡ 1 mod 3

3. (y−r2)(y− r̄2), (y−r+1)(y− r̄+1) ∈ H3, r ∈ Φ′10, m ≡ 1, 3, 7, 9 mod 10

4. (y− r2)2(y− r̄2)2, (y− r+ 1)2(y− r̄+ 1)2 ∈ H11, r ∈ Φ′10, m ≡ 1 mod 10

5. (y−r)(y− r̄), (y−r+1)(y− r̄+1) ∈ H5, r ∈ Φ′12, m ≡ 1, 5, 7, 11 mod 12

6. (y − r)2(y − r̄)2, (y − r + 1)2(y − r̄ + 1)2 ∈ H13, r ∈ Φ′12, m ≡ 1 mod 12

The linear coefficients of the symmetries satisfy c/d = (r − 1)m/(rm − 1).

Proof: We have G−1,2
1;n [a, b](1, r) = G0,1

1;n[a, b](1, s) = 0 when

Un(r, s) = (1 + rn)(1− (1 + s)n) + (s(1 + r))n = 0. (23)

We want to classify all r, s ∈ C, with rs(1 + r) 6= 0, such that equation (23)
has infinitely many solutions. According to Lemma 22 we have s = −1, or
r, 1 + s, s(1 + r) consists of roots of unity. When s = −1 we obtain that r is a
third root of unity and Ui+3k = 0 iff i = 1, 2. When x = r, y = 1+s, f = s(1+r)
consists of roots of unity, then x, y are cyclotomic points on the curve

1 + (xy − 2(x− y))(xy − 1) + (x− y)2 = 0,
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and can be found algorithmically. They are x ∈ Φ′3, y ∈ Φ′6; y ∈ Φ′10, x = y2 or
x = ȳ2; y ∈ Φ′12, x = y or x = ȳ. The first case only happens when a = b. In the
second case we have f = y4 or f = y2 and we find Ui+10k = 0 iff i ∈ {1, 3, 7, 9}.
Note that with s = y − 1, |y| = 1 we have −s/(1 + s) = s̄. The last case gives
f = y4 or f = y3 and Ui+12k = 0 iff i ∈ {1, 5, 7, 11}.

The multiplicity of the zeros is obtained from Proposition 11 and 12. We
have r ∈ Φ′3 is a double zero of G−1,2

1;m when m ≡ 1 mod 3. When y ∈ Φ′10 we
have that both r = y2 and r = ȳ2 are in Φ′5. They are double zeros of G−1,2

1;m

for m ≡ 1 mod 5. Also, we have that s = y − 1 and s̄ are double zeros of G0,1
1;m

for m ≡ 1 mod 10. A similar argument shows the multiplicity in the last item. �

Proposition 16 We list the non-trivial divisors H of the tuple G−1,2
1;m [c,d](1, y),

G2,−1
2;m (x, 1) with m(H) infinite:

1. (y − r)(y − r̄), (x− r)(x− r̄) ∈ H2, r ∈ Φ′3, m ≡ 1, 2 mod 3

2. (y − r)2(y − r̄)2, (x− r)2(x− r̄)2 ∈ H4, r ∈ Φ′3, m ≡ 1 mod 3

3. (y − r2)(y − r̄2), (x− r)(x− r̄) ∈ H3, r ∈ Φ′5, m ≡ 1, 3, 7, 9 mod 10

4. (y − r2)2(y − r̄2)2, (x− r)2(x− r̄)2 ∈ H11, r ∈ Φ′5, m ≡ 1 mod 10

5. (y + r)(y + r̄), (x− r)(x− r̄) ∈ H4, r ∈ Φ′12, m ≡ 1, 4, 5, 7, 8, 11 mod 12

6. (y + r)2(y + r̄)2, (x− r)2(x− r̄)2 ∈ H13, r ∈ Φ′12, m ≡ 1 mod 12

The linear coefficients of the symmetries satisfy c/d = (r + 1)m/(rm + 1).

Proof: We have G−1,2
1;n [a, b](1, r) = G2,−1

2;n [a, b](s, 1) = 0 when

Un(r, s) = (1 + rn)(1 + sn)− ((1 + s)(1 + r))n = 0. (24)

We want to classify all r, s ∈ C, with rs(s + 1)(1 + r) 6= 0, such that equation
(24) has infinitely many solutions. According to Lemma 22, the points r, s, and
(1 + s)(1 + r) are roots of unity. Hence r, s are cyclotomic points on the curve

1 + (rs+ 1)(rs+ 2(r + s)) + (r + s)2 = 0.

Smyths algorithm yields: r, s ∈ Φ′3; s ∈ Φ′5, r = s2 or r = s̄2; s ∈ Φ′12, r = −s or
r = −s̄. Substitution these into the equation (24), we obtained, by performing
some Groebner basis calculations, the solutions n ≡ 1, 2 mod 3, n ≡ 1, 3, 7, 9
mod 10, and n ≡ 1, 4, 5, 7, 8, 11 mod 12 respectively. The multiplicities are de-
termined using Proposition 11, and using relation (7). �

Proposition 17 We list the non-trivial divisors H of the tuple G0,1
1;m[c,d](1, y),

G1,0
2;m(x, 1) with m(H) infinite:

1. y + 1− r, x+ 1− r ∈ H2, r = 0, m > 1
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2. (y+ 1 + r2)(y+ 1 + r̄2), (x+ 1− r)(x+ 1− r̄) ∈ H3, r ∈ Φ′10, m ≡ 1, 3, 7, 9
mod 10

3. (y+ 1 + r2)2(y+ 1 + r̄2)2, (x+ 1− r)2(x+ 1− r̄)2 ∈ H11, r ∈ Φ′10, m ≡ 1
mod 10

4. (y + 1 + r), (x+ 1− r) ∈ H2, r ∈ Φ′12, m ≡ 1, 2, 5, 7, 10, 11 mod 12

5. (y+ 1 + r)(y+ 1 + r̄), (x+ 1− r)(x+ 1− r̄) ∈ H5, r ∈ Φ′12, m ≡ 1, 5, 7, 11
mod 12

6. (y + 1 + r)2(y + 1 + r̄)2, (x+ 1− r)2(x+ 1− r̄)2 ∈ H13, r ∈ Φ′12, m ≡ 1
mod 12

The linear coefficients of the symmetries satisfy c/d = (rm − 1)/(r − 1)m.

Proof: Similar to the above, G0,1
1;n[a, b](1, r) = G1,0

2;n[a, b](s, 1) = 0 when

(1− (1 + r)n)(1− (1 + s)n)− (rs)n = 0. (25)

We want to classify all r, s ∈ C, with rs 6= 0, such that equation (25) has
infinitely many solutions. If one of r, s equals −1, the other is a third root of
unity. When r = s = −1 we have a/b = −(−1)n, otherwise a = b. Suppose
that (1 + r)(1 + s) 6= 0. According to Lemma 22 1 + r, 1 + s, and sr are roots
of unity. Then x = 1 + r, y = 1 + s are cyclotomic points on the curve

1 + (xy + 1)(xy − 2(x+ y)) + (x+ y)2 = 0.

They are: x, y ∈ Φ′6; y ∈ Φ′10, x = −y2 or x = −ȳ2; y ∈ Φ′12, x = −y or x = −ȳ.
The first are zeros only when a = b and the others yield the results. �

10 List of approximately integrable two compo-
nent evolution equations of order n < 6

We list approximately integrable equations whose quadratic tuple has minimal
degree. However, we have left some arbitrary constants in the equations. This
organizes the quadratic part of the equations and it may remind the reader of
the fact that the quadratic tuple of the equations can be multiplied by arbitrary
proper tuples.

The list divides naturally into two parts. Any nonlinear equation (9) of order
n < 6, which is not nonlinear injective and admits infinitely many approximate
symmetries with non-vanishing linear terms, can be obtained from an equation
listed in section 10.1. And, any nonlinear injective approximately integrable
equation (9) of order n < 6, can be obtained from an equation listed in section
10.2.

The classification is performed up to the transformation u→ v. If an equa-
tion, whose quadratic tuple has minimal degree, is approximately integrable of
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order n < 6 and not in our list, then the equation with u and v interchanged is
in the list. To make it easier to identify equations in the list, we have scaled the
coefficient b of vn to 1. This we could do, since when b = 0 we assume a 6= 0
and we apply u↔ v.

We gave each approximately integrable equation a unique label n.h where n
is the order, and h is a counter. And, we expressed the linear coefficients c/d of
the approximate symmetries in terms of integer sequences, or in its power sum
solution if that displays well.

10.1 Equations that are not nonlinear injective

For each K0 in Table 1 we have determined the highest degree r-tuple H, with
m(H) infinite, which divides the r-tuple consisting of the non-zero components
of its Gn-tuple. The quadratic tuple K1 has only r non-zero components K1 =
Gn/H, unless the remaining components of the Gm-tuples at infinitely m ∈
m(H) vanish.

The equation (
ut
vt

)
=
(
eu2 + fuv + gv2

v + hv2 + ju2

)
0.1

has approximate symmetries at order m = 1, for all c/d ∈ C, and at any order
m, with c = 0. The equation(

ut
vt

)
=
(

2u+ eu2 + fuv
v + hv2 + iuv + ju2

)
0.2

has approximate symmetries at any order m ∈ N, for all c, d ∈ C. The equation,
with a 6= 1, (

ut
vt

)
=
(
au1 + fuv + gv2

v1 + iuv + ju2

)
1.1

has approximate symmetries at odd orders m ≡ 1 mod 2 for all c, d ∈ C. The
equation (

ut
vt

)
=
(

eu2 + fuv + gv2

v2 + hv2 + iuv + ju2

)
2.1

has approximate symmetries at orders m ≡ 2 mod 4 with c = 0. The equation(
ut
vt

)
=
(

eu2 + fuv + gv2

v3 + hv2 + iuv + ju2

)
3.1

has approximate symmetries at orders m ≡ 3 mod 6 with c = 0. The equation(
ut
vt

)
=
(

eu2 + fuv + gv2

v4 + h(4vv2 + 3v2
1) + iuv + ju2

)
4.1

has approximate symmetries at orders m ≡ 4 mod 8 with c = 0. And the
equation (

ut
vt

)
=
(

eu2 + fuv + gv2

v5 + hv2 + iuv + ju2

)
5.1

has approximate symmetries at orders m ≡ 5, 25 mod 30.
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10.2 Equations that are nonlinear injective

For each 0 < n < 6 we have gone through Proposition 10 to Proposition 17. For
each H ∈ Hn, we determined the coefficient a of the linear part of the equation.
Then we constructed the highest degree 6-tuple P that divides Gn[a, 1] such that
m(P ) is infinite. And we take Gn/P to be the quadratic tuple of the equation.
We remark that by following this procedure, the list can be extended to any
higher order n > 5, in principle.

The equation, with a(2a− 1)(a− 2) 6= 0,(
ut
vt

)
=
(
au+ eu2 + fuv + gv2

v + hv2 + iuv + ju2

)
0.3

has approximate symmetries at any order m ∈ N, for all c, d ∈ C. The equation(
ut
vt

)
=
(
u2 + eu2 + fuv + gv2

v2 + hv2 + iuv + ju2

)
2.2

has approximate symmetries at all orders m > 1 with c = d = 1. The equation,
with (r2 + 1)(r + 1) 6= −1,(

ut
vt

)
=

(
1+r2

(1+r)2u2 + eu2 + f((1 + r2)u1v − ruv1) + gv2

v2 + hv2 + i((1 + r2)uv1 + ru1v) + j(2ru2u+ (1 + r)2u2
1)

)
2.3

has approximate symmetries at all orders m > 1 with c/d = (1 + rm)/(1 + r)m.
The equation, with r(r + 2) 6= 0,(

ut
vt

)
=
(

r
2+ru2 + eu2 + fuv + g(rv2

1 − 2vv2)
v2 + hv2 + i(u1v + (2 + r)uv1) + j(2uu2 + (2 + r)u2

1)

)
2.4

has approximate symmetries at all orders m > 1 with c/d = rm/((1 + r)m− 1).
The equation (

ut
vt

)
=
(
−u2 + eu2 + fuv + gv2

v2 + hv2 + iuv + ju2

)
2.5

has approximate symmetries at order m ≡ 1, 2 mod 3, with c/d = −(−1)m.
The equation, with ι2 = −1,(

ut
vt

)
=
(

(−1 + 2ι)u2 + eu2 + f(5u1v + (3 + ι)uv1) + gv2

v2 + hv2 + iuv + j(4uu2 + (1 + ι)u2
1)

)
2.6

has approximate symmetries at orderm ≡ 2 mod 4, with c/d = −1+(−1)(m−2)/42m/2ι.
The equation, with γ2 = 3,(

ut
vt

)
=
(
ι(2 + γ)u2 + eu2 + fuv + g(4vv2 + (2 + γ − ι)v2

1)
v2 + hv2 + iuv + j(4uu2 + (2 + ι− γ)u2

1)

)
2.7

has approximate symmetries at ordersm ≡ q mod 12, with q ∈ {1, 2, 5, 7, 10, 11}.
Define integers Pk by P1 = 1, P2 = 2, and

Pk =
{
Pk−1 + Pk−3 k ≡ 1 mod 3
Pk−1 + Pk−2 k ≡ 0, 2 mod 3 . (26)

23



When q = 2 or q = 10 the coefficients of the linear part of the approximate sym-
metries of equation 2.7 are given by c/d = (−1)(m−q)/12ι(P3m/2−1 +P3m/2−2γ),
or else by

∓(−1)(m−q)/12c/d =
{
P(3m−5)/2 + P(3m−7)/2γ q = 6± 5
P(3m+1)/2 + P(3m−1)/2γ q = 6± 1 . (27)

The equation (
ut
vt

)
=
(
u3 + eu2 + fuv + gv2

v3 + hv2 + iuv + ju2

)
3.2

has approximate symmetries at odd orders with c = d = 1. The equation, with
r3 6= −1,(

ut
vt

)
=

(
1+r+r2

(1+r)2 u3 + eu2 + f(2u2v + 2u1v1 + (r3 − 2r − 1)uv2) + gv2

v3 + hv2 + iuv + j(2uu2 − (r3 − 2r − 1)u2
1)

)
3.3

has approximate symmetries at odd orders m with c/d = (1+rm)/(1+r)m. Let
φ denote the golden ratio or its conjugate, that is, φ(φ− 1) = 1. The equation(

ut
vt

)
=
(
−(2 + 3φ)u3 + eu2 + fuv + gv2

v3 + hv2 + iuv + ju2

)
3.4

has approximate symmetries at order m ≡ q mod 10, q ∈ {1, 3, 7, 9}, with

c/d =
{
Fm−2 + Fm−1φ q = 5± 4
−Fm − Fm+1φ q = 5± 2 ,

where the Fk are the Fibonacci numbers F0 = 0, F1 = 1, Fk = Fk−1 +Fk−2 [25,
A000045]. The equation

(
ut
vt

)
=


−3u4 + (e(4u2u+ 3u2

1) + f(6u3v + 9u2v1 + 6u1v2

+2uv3) + gv2

v4 + h(4v2v + 3v2
1) + i(2u3v + 2u2v1 + 3u1v2 + 2uv3)

+j(4u4u+ 4u1u3 + 3u2
2)

 4.2

has approximate symmetries at orderm ≡ 0 mod 4 with c/d = 1+(−1)m/42m/2.
The equation(

ut
vt

)
=
(
−u4 + e(4u2u+ 3u2

1) + f(uv2 + u1v1 + 2u2v) + gv2

v4 + h(4v2v + 3v2
1) + i(2uv2 + u1v1 + u2v) + ju2

)
4.3

has approximate symmetries at order m ≡ 1 mod 3 with c/d = −(−1)m. The
equation, with ζ(ζ + 1) = 1,

(
ut
vt

)
=


3(1 + 2ζ)u4 + e(4uu2 + 3u2

1) + f(6u1v + (1− 4ζ)uv1)

+g(14v4v + (4− ζ)(12v3v1 + 9v2
2))

v4 + h(4v2v + 3v2
1) + i(7u3v + (2 + 3ζ)(2u2v1 + 2uv3

+3u1v2)) + j(14u4u+ (2 + 3ζ)(4u3u1 + 3u2
2))

 4.4
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has approximate symmetries at order m ≡ 1 mod 3, with c/d = (−3)(m−1)/2

when m ≡ 1 mod 6, and with c/d = −(1+2ζ)(−3)(m−2)/2 when m ≡ 4 mod 6.
The equation, with ε = ±1,

(
ut
vt

)
=


ε/5u4 + e(4uu2 + 3u2

1) + f(2u1v + (1− 2ε)uv1)

+g(4v3v1 + 3v2
2 + (1− 5ε)v4v)

v4 + h(4v2v + 3v2
1) + i(10(2u2v1 + 3u1v2 + 2uv3)

+(5− ε)u3v) + j(5(4u3u1 + 3u2
2) + (5− ε)u4u)

 4.5

has approximate symmetries at order m ≡ 0 mod 4, with c/d = −ε/((−4)m/4−
1). The equation

(
ut
vt

)
=


ι/3u4 + e(4uu2 + 3u2

1) + f(2u1v + (1− 2ι)uv1)

+g(10vv4 + (1− 3ι)(4v1v3 + 3v2
2))

v4 + h(4v2v + 3v2
1) + i(5u3v + 3(3 + ι)(2u2v1 + 3u1v2

+2uv3)) + j(10u4v + 3(3 + ι)(3u2
2 + 4u3u1))

 4.6

has approximate symmetries at ordersm = 4+k8, k ∈ N, with c/d = (−1)k22kι/(2A2
k+1+

1), where the integers Ai are the NSW numbers defined by A0 = −1 ,A1 = 1,
Ai = 6Ai−1 −An−2 [25, A002315]. The equation

(
ut
vt

)
=


√

2ιu4 + e(4uu2 + 3u2
1) + f(2u1v + (1−

√
2ι)uv1)

+g(2(4v1v3 + 3v2
2) + (2 +

√
2ι)v4v)

v4 + h(4v2v + 3v2
1) + i((1−

√
2ι)u3v + 2(2u2v1 + 3u1v2

+2uv3)) + j(3u2
2 + 4u3u1 + (1−

√
2ι)u4v)

 4.7

has approximate symmetries at ordersm = 4+k8, k ∈ N, with c/d = (−1)k26k
√

2ι/Bk+1,
where the integers Bi are defined by B0 = −1 ,B1 = 1, Bi = 34Bi−1 − Bn−2

[25, A046176]. The equation

(
ut
vt

)
=


(7 + 4γ)u4 + e(4uu2 + 3u2

1) + f(2u1v2 + 3u2v1 + 2u3v

+(2γ − 3)uv3) + g(6vv2 + (6 + γ)v2
1)

v4 + h(4v2v + 3v2
1) + i((3 + 2γ)u3v − 2uv3 − 3u1v2

−2u2v1) + j(6uu2 + (6− γ)u2
1)

 4.8

has approximate symmetries at order m ≡ q mod 12, q ∈ {1, 4, 5, 7, 8, 11}.
When q = 6±2 the coefficients of the linear part of the approximate symmetries
are given by c/d = ∓(−1)(m−q)/12(P3m/2−1 +P3m/2−2γ), where the integers Pk
are defined by the recursive formula (26). When q is odd, c/d is given by
equation (27). The equation(

ut
vt

)
=
(
u5 + eu2 + fuv + gv2

v5 + hv2 + iuv + ju2

)
5.2
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has approximate symmetries at orders m ≡ 1, 5 mod 6 with c = d = 1. The
equation(

ut
vt

)
=
(
− 1

4u5 + eu2 + f(u4v + 2u3v1 + 2u2v2 + u1v3 + uv4) + gv2

v5 + hv2 + iuv + j(2uu4 + 6u1u3 + 5u2
2)

)
5.3

has approximate symmetries at ordersm ≡ 1, 5 mod 12, with c/d = (−1)(m−1)/42(1−m)/2.
The equation

(
ut
vt

)
=

 −(4 + 5φ)u5 + eu2 + f((4− φ)uv4 + 11(u1v3 + 2u2v2

+2u3v1 + u4v)) + gv2

v5 + hv2 + iuv + j(2φuu4 − 2u1u3 + (2φ− 1)u2
2)

 5.4

has approximate symmetries at ordersm ≡ 5, 25 mod 30, with c/d = (−1)m/5(1+
Fm−1+Fmφ), where Fm denotes the m-th Fibonacci number. And, the equation

(
ut
vt

)
=


(26 + 15γ)u5 + eu2 + f(u2v + u1v1 + (γ − 1)uv2)

+g(4vv2 + (3 + γ)v2
1)

v5 + hv2 + i(u1v1 + uv2 − (1 + γ)u2v)

+j(4uu2 + (3− γ)u2
1

 5.5

has approximate symmetries at orders m ≡ 1, 5, 7, 11 mod 12, with c/d given
by equation (27).

11 Concluding remarks

In the formal symmetry approach [17], as well as in the computer-assisted
schemes [6, 27], not knowing the ratios of eigenvalues strongly complicates the
classification of integrable equations. There the ratios are obtained, if possible
at all, at the very last stage of the calculations. We hope that the a priori knowl-
edge provided in this article will be an impetus to complete the classification.

Usually, in classification programs one considers homogeneous equations. A
2-component equation (ut, vt) = K is homogeneous of weighting λ if K is an
eigenvector of L(σx+λ1σu+λ2σv), where σx = (xu1, xv1) counts the number of
derivatives. We have compactly provided a list of nonhomogeneous equations.
A complete list of homogeneous equations can be obtained from our list by mul-
tiplying the symbolic quadratic parts with appropriate tuples of polynomials.
And Lemma 3 can be used to determine all symmetries of those equations.

A classification of second order integrable 2-component evolution equations
has been given in [23]. The lemmas 6.3, 6.4, 6.5, and 6.6, proved in there, are
special cases (n = 2) of Proposition 13, 16, 17, and 15, respectively. As it turns
out, the linear and quadratic parts of the integrable equations listed in [23] can
all be obtained from equations 2.3 and 2.5.

A classification of third order 2-component evolution equations with weight-
ing (2, 2) and symmetries of order 5, 7, or 9, is given in [6]. Of the five equations
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listed [6, Theorem 3.3], two are nonlinear injective and have diagonalizable linear
part: (

ut
vt

)
=
(
u3 + uu1 + vv1
−2v3 − uv1

)
(28)

and (
ut
vt

)
=
(

4u3 + 3v3 + 4uu1 + vu1 + 2uv1
3u3 + v3 − 2vv1 − 4vu1 − 2uv1

)
. (29)

When put in Jordan form the ratio of the coefficients of the linear part of equa-
tion (29) becomes a/b = −3φ− 2, where φ is the golden ratio. Our diophantine
approach perfectly explains the ’unusual’ symmetry pattern. We remark that
the conjugate of φ gives rise to another equation with a/b = −3(1 − φ) − 2 =
1/(−3φ−2), which can be obtained by interchanging u and v. A similar remark
holds for all equations derived from the ’symmetric’ Propositions 16 and 17.
For example, by interchanging u and v in equation 4.8 we get an equation with
a/b = 1/(7 + 4γ) = 7− 4γ.

According to [6, Theorem 3.3] we have the following. A non-decouplable fifth
order two component equation in the KDV weighting, possessing a generalized
symmetry of order 7 can be reduced by a linear change of variables to a symmetry
of lower order equations, or to the Zhou-Jiang-Jiang equation,

(
ut
vt

)
=


u5 − 5(2uu3 + 5u1u2) + 15(2vv3 + 3v1v2) + 20u1u

2

−30(u1v
2 + 2uvv1)

−9v5 + 5(2u3v + 7u2v1 + 9u1v2 + 6uv3)− 10(2uu1v

+2u2v1 + 3v2v1)

 .

However, since the ratio of coefficients of the linear part a/b = −1/9 does not
appear in our list, this equation has an approximate symmetry at lower order. In
fact, the equation has a genuine symmetry at third order. The Zhou-Jiang-Jiang
equation is in the hierarchy of the equation(

ut
vt

)
=
(

−3vv1
v3 − u1v − 2uv1

)
, (30)

which is linearly equivalent to a third order equation that appears in the same
paper [6, Equation (17)], cf. [27, Sections 3.2.1, 4.2.6]. The special value of the
ratio a/b = −1/2 in equation (28) also does not appear in our list and is due to
higher grading constraints.

We conclude with a more philosophical remark. The concept of general-
ized symmetry really is about local symmetry. The (inverse) Gel’fand-Dikĭı
transformation translates polynomials in the symbols x, y into local differential
functions, that is expressions in u, v and their derivatives. A question arises:
can we also translate rational functions in the symbols x, y? The answer is yes.
One could think of non-local variables ui, vi with 0 > i ∈ Z. Here a negative
index indicates integration and Dx would be such that Dx(ui−1) = ui for all
i. We can expand rational functions in Taylor-series, which are transformed
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into non-local differential sums. For example, consider the rational function
F̂ = 1/(x1 + x2). Its symmetric Taylor-series is

F̂ =
1
2

∞∑
k=0

(−1)k(
xk1
xk+1

2

+
xk2
xk+1

1

)

which is transformed into the non-local object

F =
∞∑
k=0

(−1)kuku−k−1,

and we have DxF = u2. In this non-local setting every equation has a symmetry
at any order. For example, the equation, with a 6= 1,(

ut
vt

)
=
(
au1 + (1− a)uv
v1 + (1− a)uv

)
,

and its approximate symmetries (but the ones in A2,0 ⊗ A0,2), are in the ap-
proximate hierarchy of the zeroth order non-local equation(

ut
vt

)
=
(
u+ uv−1

v − u−1v

)
.

Still, there would be a quest for equations, or symmetries, that are in certain
sense close to local.
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A Maple-code

We felt it appropriate to include some Maple-code here. This allows one to
perform a computation like Gm[c,d]K1/Gn[a,b] and translate the result into an
approximate symmetry of an evolution equation. Also an implementation of the
Lie-bracket is provided.

g:=proc(k,n,i,j,a,b,x,y) if k=2 then return(g(1,n,j,i,b,a,y,x)) fi:
a*(add(x[q]^n,q=1..i+1)-(add(x[q],q=1..i+1)+add(y[q],q=1..j))^n)
+b*add(y[q]^n,q=1..j) end:
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TRANS:=proc(P,d) local R,e,i,Q: R:=0: Q:=expand(P): if type(Q,‘+‘)
then Q:=convert(Q,list) else Q:=[Q] fi: for e in Q do for i to d
do e:=e*u[degree(e,x[i])]/x[i]^degree(e,x[i]) od: for i to 2-d do
e:=e*v[degree(e,y[i])]/y[i]^degree(e,y[i]) od: R:=R+e od: R end:

Prod:=proc(A,B) [seq(A[i]*B[i],i=1..6)] end:

div:=proc(a,b) if factor(a)=0 and factor(b)=0 then return(nnli)
fi: factor(a/b) end:

Div:=proc(A,B) [seq(div(A[i],B[i]),i=1..6)] end:

G:=proc(a,b,n) [seq(g(1,n,1-k,k,a,b,x,y),k=0..2),
seq(g(2,n,k,1-k,a,b,x,y),k=0..2)] end:

TRA:=proc(K) [add(TRANS(K[i],3-i),i=1..3),
add(TRANS(K[i],i-4),i=4..6)]: end:

And here is an implementation of the Lie-bracket:

VAR:=proc(P) local R: R:=NULL: for e in indets(P) do
if evalb(op(0,e) in {u,v}) then R:=R,e fi od: {R} end:

DD:=proc(P,n) local R,i,e,Q: R:=P: for i to n do Q:=0: for e in VAR(R)
do Q:=Q+op(0,e)[op(1,e)+1]*diff(R,e) od: R:=diff(R,x)+Q od: R end:

FR:=proc(x,A,B) local e,R: R:=0: for e in VAR(A) do
if op(0,e)=x then R:=R+diff(A,e)*DD(B,op(1,e)) fi od: R end:

MFR:=proc(A,B) local R,i,j,Q,U: U:=[u,v]: R:=[]: for i to 2 do
Q:=0: for j to 2 do Q:=Q+FR(U[j],A[i],B[j]) od: R:=[op(R),Q] od:
R end:

LIE:=proc(K,S) RETURN(expand(MFR(S,K)-MFR(K,S))) end:

To calculate the first approximate symmetry of equation 0.3, we proceed as
follows. The linear part of equation 0.3 is eq0:=[a*u[n],v[n]], with n:=0. The
constant tuple is set K:=[e,f,g,h,i,j], which is translated into the quadratic
part of the equation eq1:=TRA(K). The first approximate symmetry appears at
order m:=1. It has has linear part sy0:=[c*u[m],d*u[m]] and quadratic part
sy1:=TRA(Div(Prod(K,G(c,d,m)),G(a,1,n))), that is(

cu1

dv1

)
+ (c− d)

(
v1(2gv/(a− 2)− fu)

u1(iv/a+ 2ju/(2a− 1))

)
.

To check that this is an approximate symmetry we verify that LIE(eq0,sy1)+
LIE(eq1,sy0) yields [0,0].
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One can do the same calculation, but with a=0, i=0 from the start. The
program will tell you that the linear part is not nonlinear injective by introduc-
ing a constant nnli in the approximate symmetry, cf. section 5. The above
procedure can be used to calculate any approximate symmetry of any equation
in our list, which is useful to further classify with respect to integrability.
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