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1. Introduction

The study of integrable systems has witnessed an ongoing shift of direction towards the

discrete setting which, according to many, seems to be of fundamental nature due to

its rich structure. Integrable partial difference equations (P∆Es) on a planar lattice

were obtained in the 80s under integrable discretizations from known integrable PDEs

[6, 7, 8, 14]. Some years later, an elegant and efficient algorithmic method, dubbed

the staircase method, was applied to the discrete potential Korteweg-De Vries equation

(pKdV) [11], in order to reduce the P∆E to a family of ordinary difference equations

(O∆Es) or, more or less equivalently, integrable mappings, via discrete travelling waves,

and therefore solve the periodic initial value problem of the P∆E. The method took

advantage of the Lax matrices for the P∆E, which carried an spectral parameter, to

construct a monodromy or transfer matrix, the trace of which yielded integrals of

motion of the obtained mapping. Subsequently, it was shown that these integrals were

in involution with respect to a symplectic structure [4, 9], establishing the complete

integrability, in the Liouville-Arnold-Veselov (LAV) sense, of the mappings in question,

cf. [3, 20].

Recently, there has been a renewed interest in the study of integrable P∆Es,

specifically since [1], where a classification of integrable equations on quad-graphs,

possessing the three-dimensional consistency property, was given. The relevance of

this property is such that it gives a way [1, 10] to obtain the Lax representation of the

integrable P∆E under study.

As for integrable maps, an 18-parameter family of integrable planar mappings

(nowadays known as the QRT-mappings) was presented in [15, 16]. Such discovery

was based on the observation that simple solutions to many soliton equations lead to

integrable mappings. Higher dimensional integrable mappings, derived from integrable

discretizations of sine-Gordon and KdV-type equations, were presented in [12], where a

characterization of possible travelling wave reductions was given in terms of two natural

numbers s1 and s2, corresponding to different periodicity conditions

ul,m = ul+ks1,m+ks2 , for all k ∈ Z, (1)

along a descending staircase on the Z2-lattice. The case where s1 = z2 and s2 = −z1,

where z1 and z2 are relatively prime numbers was treated extensively in that paper.

This complemented the original staircase considered in [4, 9, 11], which corresponds to

the case s1 = −s2. In the present paper we unify the two extremes and provide an

algebraic description of the standard staircase for any s := (s1, s2) ∈ Z2. Our algebraic

description of such s-reduction, which poses well-defined initial value problems for P∆Es

on a square [2, 18], has the advantage of, above its generallity, being algorithmic, which

enables one to produce mappings of any phase-space’s dimension (i.e., order of the

O∆E), with the aid of computer software. The procedure presented here applies to

periodic initial value problems of P∆Es, not necessarily integrable. By this method, an

integrable P∆E reduces to a system of q coupled O∆Es, where q is the greatest common

divisor of |s1| and |s2|. If these two integers were coprime, the reduction goes into a
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single equation. Reductions for open-ended initial value problems are also possible, as

was shown in [5] with respect to the KdV equation.

We mentioned already that, for integrable P∆Es that belong to the Adler-Bobenko-

Suris (ABS) classification [1], a Lax pair can be obtained from the equation itself. We

have also mentioned how, starting from a periodic initial value problem of a P∆E, one

obtains a mapping for each s-travelling wave reduction, generating a two-parameter

dependent family of mappings for each chosen equation from, but not restricted to, the

ABS list. Then, if all integrable systems possess a Lax representation, as it is widely

believed [17], the following questions arise: do the mappings obtained by s-reductions

possess a Lax representation? And, if so, how does one obtain it? In this paper, based

on the staircase method, we provide an affirmative answer to the first question, and

provide explicit formulas for the Lax-matrices of the system of O∆Es in terms of the

Lax-matrices of the original P∆E. This generalizes the observation made in [13] that, in

the case where s2 = 1, the Lax matrix L coincides with the monodromy matrix defined

on a standard staircase, whereas the matrix M appears to be a particular factor of it.

The Lax pairs for either an equation or a system of equations can be obtained from our

result.

The structure of this paper is as follows: In section 2 we briefly review the notion of

Lax representations in the settings of P∆Es, O∆Es, and systems of O∆Es ‡. In section

3 we will describe the two parameter family of travelling wave reductions in detail.

In section 4 we describe the standard staircase, and show how it can be stated as a

set of reduced variables. In section 5 we show how to obtain the Lax representation

of mappings obtained by an s-reduction. Finally, in section 6, we derive, from a

(4,−2)-reduction of the lattice sine-Gordon equation, a new four-dimensional integrable

mapping which is symplectic, reversible and possesses two functionally independent

integrals in involution, from which it follows that the considered mapping is completely

integrable.

2. Lax representation

Consider a P∆E on a two-dimensional lattice

fl,m := f(ul,m, ul+1,m, ul,m+1, ul+1,m+1) = 0, (2)

for fields ul,m defined at the sites (l,m) of a two dimensional lattice Z2. We assume that

(2) is an affine linear function, which allows to solve for any of its variables. The P∆E

(2) possesses a Lax representation if there are matrices L and M , usually depending

on a spectral parameter λ, such that, given the linear problem Ψl+1,m = Ll,mΨl,m,

Ψl,m+1 = Ml,mΨl,m, their compatibility condition (or discrete zero-curvature condition)

‡ It is common to use indistinctly the term Lax representation or zero-curvature condition, the main
difference being that the first aludes to ODEs, whereas the last to PDEs. In this paper we use the
term Lax representation for both ordinary and partial equations, always mentioning to which of them
we are refering.



Lax pairs for O∆Es 4

yields

Ll,mM
−1
l,m −M−1

l+1,mLl,m+1 = fl,mNl,m (3)

where Nl,m is a matrix that is non-singular on solutions of (2). Attempts to give a

systematic way of finding Lax pairs for P∆Es have been made, but it seems an efficient

and algorithmic method exists only for equations that are three-dimensionally consistent

[1, 10].

An order-d ordinary difference equation (O∆E), with n, d ∈ N,

fn := f(vn, vn+1, . . . , vn+d) = 0, (4)

or the corresponding d-dimensional mapping

(vn, vn+1, . . . , vn+d−1) 7→ (vn+1, vn+2, . . . , vn+d), (5)

where vn+d is given by the solution of fn = 0, admits a Lax representation if there exists

non-trivial matrices L,M,N such that M is non-degenerate, and

MnLn − Ln+1Mn = fnNn. (6)

The significance of having a Lax representation for an integrable O∆E is apparent.

Right-multiplying (6) by −M−1
n and taking the trace we obtain

Tr(Ln+1)− Tr(Ln) = fnΛn, (7)

where Λn = −Tr(NnM−1
n ). Thus Tr(Ln) is an invariant and called an integral, of the

equation fn = 0 with integrating factor Λn.

The integral Tr(Ln) will in general still depend on the spectral parameter λ. The

coefficients in the λ-expansion of Tr(Ln) yield integrals of the mapping, whereas the

corresponding integrating factors will be given by the λ-expansion of Λn. In [19] closed

form expressions, in terms of multi-sums of products, for the integrals of (s1,−1)-

travelling wave reductions of the mKdV and the sine-Gordon equations were given.

For systems of O∆Es, with i = 1, . . . , q,

f in := f i(v1
n, v

1
n+1, . . . , v

1
n+d1

, v2
n, . . . , v

q
n+dq

) = 0, (8)

corresponding to the (d1 + d2 + · · ·+ dq)-dimensional mapping

vin+j 7→ vin+j+1, 0 ≤ j < di, (9)

where vin+di
is the solution of f in = 0, the Lax representation takes the form

MnLn − Ln+1Mn =
∑

f inN i
n (10)

which vanishes on the system. Similarly as was done with (6), right-multiplying (10) by

−M−1
n and taking the trace we obtain

Tr(Ln+1)− Tr(Ln) =
∑

f inΛi
n, (11)

where Λi
n = −Tr(N i

nM−1
n ).

Let s := (s1, s2). Then, by the s-travelling wave reduction described in the next

section, a P∆E of the form (2) reduces to a system of q O∆Es of order di = a+ b, where

q is the greatest common divisor of |s1| = aq and |s2| = bq, which is equivalent to a

(|s1|+ |s2|)-dimensional mapping (9).
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3. s-travelling wave reductions

Based on [[12], third concluding remark]§ we propose the following travelling wave

reduction. We define a new lattice variable n and a modular variable p counting the

reduced fields, such that the periodicity condition (1) holds. We may restrict ourselves to

taking s1 ∈ N, s2 ∈ Z such that s1 6= 0 when s2 ≤ 0. This is the area in which reductions

have been defined since [12]. Let ε denote the sign of s2, i.e., sgn(s2) = ε. Let q be

the greatest common divisor of s1 = aq and |s2| = bq. We fix c, d ∈ N by choosing the

smallest c in 0 < c ≤ s1 such that bc− ad = 1. The proposed (s1, s2)-reduction is

ρ : ul,m ; vpn, (12)

where

n = bl − εam, p ≡ εcm− dl mod q, (13)

and p ∈ Nq := {0, . . . , q − 1}. This reduction has the following properties:

• a k-shift on p, leaving n invariant is given by

σk : ul,m 7→ ul+ak,m+εbk ; vp+kn . (14)

• a k-shift on n, leaving p invariant is given by

δk : ul,m 7→ ul+ck,m+εdk ; vpn+k. (15)

From the first property we immediately obtain the periodicity condition (1). Under the

reduction (12) the P∆E (2) reduces to the following system of q O∆Es

fpn = f(vpn, v
p+εd
n+b , v

p+εc
n+a , v

p+ε(c+d)
n+a+b ) = 0, (16)

which can be solved for any of the variables to give

vpn+a+b = g(vp−ε(c+d)n , vp−εcn+b , v
p−εd
n+a ). (17)

This system is equivalent to the mapping τ : C|s1|+|s2| → C|s1|+|s2| given by

(ξ0
0 , ξ

1
0 , . . . , ξ

q−1
0 ) 7→ (ξ0

1 , ξ
1
1 , . . . , ξ

q−1
1 ) (18)

where ξij := (vij, v
i
j+1, . . . , v

i
j+a+b−1) and via+b in ξi1 is given by equation (17) taking n = 0.

In section 5 we provide a Lax representation for the system (16), in terms of Lax matrices

L, M of the original P∆E.

4. The standard staircase

A staircase is a discrete path connecting two points of the lattice. Initial values are

given at the points of such staircase, which historically has been taken from the upper

left in the plane to the lower right. Provided the P∆E (2) is affine-linear, allowing to

solve for ul+1,m+1, say, the initial value problem is well-defined. Whenever a periodic

initial value problem is given, such that equation (1) is satisfied, periodic solutions of

the P∆E can be found by solving the system of O∆Es (16).

§ However, our notation is closer to [12, page 248], with p1 = d, p2 = c.
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The standard staircase is defined to be the path from the point u0,0 ; v0
0 to the

point us1,s2 ; v0
0 such that the set of points it passes through, reduces to the set of initial

values given in the left hand side of equation (18). For any choice of integers s1, s2 such

a path always exists, and the one defined by the standard staircase is optimal [18]. The

staircase for the (q,q)-reduction was first given in [11]. A description of the standard

staircase when s1 and s2 are co-prime, can be found in [12]. That description, which

also includes the case s2 = −1, studied in more detail in [13, 19], is generalised, for any

s1, s2 ∈ Z, with the one we will present below.

In order to construct the standard staircase, one could, in principle, build the

staircase corresponding to an (a, b)-reduction, starting at the point u0,0, and then glue

q copies of such staircase, having as the endpoint of the q-th staircase, the point

us1,s2 = u0,0. The staircase leading from u0,0 to us1,s2 is then repeated periodically

by a subsequent shift consisting of s1 steps in the horizontal direction, combined with

s2 steps in the vertical direction. A simple way to describe the points on a descending

staircase, corresponding to a reduction where s1,−s2 ∈ N where gcd(|s1|, |s2|) = q, is

as follows:

• Without loss of generality, one can start with the point at (l,m) = (s1, s2) ∈ Z2

which, by periodicity, corresponds to v0
0.

• Go one step up to the point (s1, s2 + 1). This point corresponds to via.

• Next go to the left as many steps as possible without getting negative subscripts

on the n-index of vpn. The last point will be vi
s1mod s2

.

• Then go one step up to vi
s1+(s1mod s2)

and repeat the procedure of going left. The

last point will be vi
2s1mod s2

.

• The whole procedure of going one step up and to the left is then repeated |s2| times,

after which we arrive at the point vi0.

• To complete the staircase the steps described above are repeated q times. The value

of i at each site is given by the modular variable i = dl − εcm mod q.

A geometric approach to describe the standard staircase can be found in [18].

From the above description, it is apparent that a more general way of constructing

the staircase is needed. Before stating our algebraic procedure, we show some typical

examples of reductions, with their corresponding standard staircases, below. Of course,

these staircases are repeated periodically.

The staircase for the (q,q)-reduction was first given in [11]. A description of the

standard staircase for the case q = 1 can be found in [12]. The latter of course includes

the case s2 = −1, which was studied in more detail in [13, 19].

Our description of the standard staircase for arbitrary s1, s2 is an algebraic version

and generalization of the description given in [12]. It allows to express the standard

staircase as a set of reduced variables.

Consider a, b, c, d, q, s1,−s2 ∈ N as defined in Section 3. For all 0 ≤ i ≤ b let xi be

the smallest integer such that xib − ia ≥ 0 and define yi := xib − ia, wi := xid − ic.
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Clearly we have x0 = y0 = w0 = 0 and xb = a, yb = 0, wb = −1.

We have the following

Proposition 1 The standard staircase is the path from the point u0,0 to the point us1,s2,

defined in terms of the set of reduced variables

Γs1,s2 := {vji : i ∈ Na+b, j ∈ Nq} (19)

Proposition 2 The following equalities between sets hold:

(i) {y0, . . . , yb−1} = Nb,

(ii)
⋃b−1
i=0{xib− ia, (xi + 1)b− ia, . . . , xi+1b− ia} = Na+b.

Proof:

(i) First of all we have yi < b because otherwise xi would not be the smallest

integer such that yi ∈ N. Secondly, suppose yi ≡ yj mod b. This implies that

(j − i)a ≡ 0 mod b and hence i = j, since we have gcd(a, b) = 1.

(ii) The set on the left consists of
∑b

k=0(xk − xk−1 + 1) = a + b numbers of the form

rji = jb − ia, xi ≤ j ≤ xi+1. We know that that yi+1 < b. Adding a to both sides

shows that rji ≤ xi+1b− ia < a + b. Suppose rji = rlk. Then rji ≡ rlk mod b, which,

using the previous equality, implies that i = k. And clearly rji = rli implies j = l.

�

5. Factorization of the monodromy matrix

The monodromy matrix Lpn is defined to be the ordered product (from the right to

the left) of Lax-matrices along the standard staircase. For example, see figure ??, the

monodromy matrix for the (5,−3)-reduction is

Ln = M−1
n Ln+2M

−1
n+2Ln+4Ln+1M

−1
n+1Ln+3Ln, (20)

where, as with the traveling wave reduction of the P∆E, we have adopted the notation

Ll,m ; Ln for the matrices depending on the reduced variables, in this case omitting

the redundant variable p = 0. The crucial property of the monodromy matrix is that

its trace is invariant under all translations on the lattice.

In [13] the (a,−1)-staircase is given as the path from the point u1,0 ; v1 to the

point ua+1,−1 ; v1, and the following factorization property was given:

Ln = LnM
−1
n AnLn+1, An = Ln+a−1Ln+a−2 · · ·Ln+2. (21)

It was shown that the shifted monodromy matrix can be expressed as Ln+1 =

Ln+1M
−1
n+1Ln+aAn and therefore, cf. (3),

LnL−1
n+1 − L−1

n+1Ln+1 = (LnM
−1
n −M−1

n+1Ln+a)An = fnNnAn, (22)

which is equivalent to a Lax-representation for the O∆E fn = 0, cf. equation (6). Now

it immediately follows that the trace of powers of Ln is an integral of the equation.
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−1 3 4 5 6 7 l

−4

−3

−2

−1

m

v0 v3 v6

v1 v4 v7

v2 v5

v0 v3 v6

v1

Figure 1. (5,−3)-reduction. The product M0L0 corresponds to the solid path from
u0,0 to u7,−4. The product L1M0 corresponds to the dashed path from u2,−1 to u7,−4.
Their difference consists of one elementary square. We have omitted the redundant
upper-index p = 0.

A similar idea applies to general (s1, s2)-reductions. The monodromy matrix

coincides with the Lax-matrix L, whereas the first part of the staircase, up to the

point vpn+1, will provide the auxiliary Lax-matrix M. Before proving the general result

we first work out two simple examples, one with q = 1 and one with q > 1:

• The case of (5,−3)-reduction. The auxiliary matrix Mn is given by the following

factor of the monodromy matrix: Mn = M−1
n+1Ln+3Ln. Indeed, as one easily verifies,

MnLn − Ln+1Mn = M−1
n+1Ln+3(LnM

−1
n −M−1

n+3Ln+5)MnLn (23)

= fnM
−1
n+1Ln+3NnMnLn. (24)

• The case of (4,−2)-reduction. We have

Lpn = (Mp
n)−1Lp+1

n+1L
p+1
n (Mp+1

n )−1Lpn+1L
p
n, Mp

n = Lpn (25)

and can be verified that

Mp
nLpn − Lpn+1Mp

n = fpnN
p
nL

p+1
n+1L

p+1
n (Mp+1

n )−1Lpn+1L
p
n (26)

+ fp+1
n (Mp

n+1)
−1Lp+1

n+2L
p+1
n+1N

p+1
n Lpn+1L

p
n. (27)

In general, taking n = p = 0, the product M0
0L0

0 corresponds to a path from

u0,0 ; v0
0 via us1,s2 ; v0

0 to us1+c,s2+εd = v0
1, whereas the product L0

1M0
0 corresponds to

a path from u0,0 ; v0
0 to us1+c,s2+εd = v0

1 via uc,εd ; v0
1. The two paths are almost the

same, their difference is illustrated for the (4,−2)-reduction in Figure 2. Clearly, due

to the compatibility condition (3), this difference vanishes for solutions of the system of

O∆Es (16).

Now we present our main result, explicit formulae for the Lax matrices of a (s1, s2)-

travelling wave reduction in terms of the Lax pair of the P∆E from which the integrable

map was obtained. The advantage of having a formula for the Lax representation of

the mapping, is that one can compute the integrals directly from the reduction, without

having to construct first the corresponding staircase. Before stating the theorem, we

give the following
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−1 3 4 5 l

−2

−1

m

v0
0 v0

1 v0
2

v1
0 v1

1 v1
2

v0
0 v0

1

Figure 2. (4,−2)-reduction. The product M0
0L0

0 corresponds to the solid path from
u0,0 to u4,−2. The product L0

1M0
0 corresponds to the dashed path from u1,0 to u5,−2.

Their difference consists of q = 2 elementary squares.

Definition 3 Given i, j, xj, yj, wj, b, p ∈ N, with xj, yj, wj defined in Section 4, let Qj,i
n

be a matrix such that

Qj,i
n := (

x
xj+1−xj−1∏

k=0

L
p+i+wj+kd
n+yj+kb

) · (Mp+i+wj
n+yj )−1, (28)

where
x
β∏

k=α

fk = fβ · · · fα. (29)

Now we state our main result.

Theorem 4 The following matrices form Lax pairs for the system (16). The

monodromy matrix Lpn for the (s1, s2)-reduction, with a, b, c, d, q, xi, yi, wi defined in

sections 3 and 4, is given by

Lpn = (Mp
n)−1 · (

x
q∏
i=1

x
b−1∏
j=0

Qj,i
n ) ·Mp

n (30)

and the auxiliary matrix is Mp
n = Lpn if b = 1, and

Mp
n = (Mp

n+1)
−1 · (

x
d−1∏
j=0

Qj,i) ·Mp
n, (31)

otherwise.

In order to prove the above theorem, we will need the following two lemmas.

Lemma 1 Qj,i =

{
Qj+a−c,i+1

1 when 0 < j < c,

Qj−c,i
1 when c ≤ j < a− 1,

As a corollary, Theorem (4) implies that, for solutions of the system (8), the trace

of the monodromy matrix Tr(Lpn) is invariant under shifts in n. But clearly, from the

explicit formula, this trace is also invariant under shifts in p. Therefore, Tr(Lpn) is in

fact an integral of any mapping which corresponds to a shift on the lattice.
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6. A new four-dimensional integrable map

In this section, we provide the integrals for the (4,-2)-reduction of the sine-Gordon P∆E,

which is a 6-dimensional mapping that can be reduced to a 4-dimensional mapping. The

two functionally independent integrals survive this reduction and we show they are in

involution with respect to a symplectic structure, from what follows that the mapping

is LAV-completely integrable.

Consider the sine-Gordon equation defined on the Z2-lattice:

α1(ul,mul+1,m+1−ul+1,mul,m+1) +α2ul,mul+1,mul,m+1ul+1,m+1−α3 = 0.(32)

Solving the above equation for ul+1,m+1 yields

ul+1,m+1 = g(ul,m, ul+1,m, ul,m+1) =
1

ul,m

α1ul+1,mul,m+1 + α3

α1 + α2ul+1,mul,m+1

. (33)

Equation (32) arises as the compatibility condition Ll,mM
−1
l,m−M−1

l+1,mLl,m+1 = fl,mNl,m

of the Lax representation given by the matrices

M−1
l,m =

(
α1

ul,m
ul,m+1

−α3k
−2 1

ul,m+1

−α2ul,m α1

)
, Ll,m =

(
1 −ul+1,m

−k2 1
ul,m

ul+1,m

ul,m

)
.(34)

and

Nl,m =

(
1

ul,m+1ul+1,m+1
0

0 − 1
ul,mul,m+1

)
. (35)

Performing a (4,−2)-travelling wave reduction, as explained in section 3, a system of

2 O∆Es of order 3 can be obtained from equation (32). The periodicity condition

ul,m = ul+4,m−2 on the initial value problem allows for the coupled system to be written

as a six-dimensional map. We have that q = 2, a = 2, b = 1. Thus, the smallest integers

c, d such that 2d− c = 1 are c = −1, d = 0. The travelling wave reduction is ul,m 7→ vpn,

where n = l + 2m and p ≡ −m mod 2. In this way, the mapping

∆0 : (v0
0, v

0
1, v

0
2, v

1
0, v

1
1, v

1
2) 7→ (v0

0, v
0
1, v

0
2, v

1
0, v

1
1, v

1
2)′ (36)

is given by

v0′

0 = v0
1 (37)

v0′

1 = v0
2 (38)

v0′

2 = g(v1
0, v

1
1, v

0
2) (39)

v1′

0 = v1
1 (40)

v1′

1 = v1
2 (41)

v1′

2 = g(v0
0, v

0
1, v

1
2) (42)

where

g(vpn, v
p+c
n+a, v

p+d
n+b) =

1

vpn

α1v
p+c
n+av

p+d
n+b + α3

α2v
p+c
n+av

p+d
n+b + α1

(43)
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A convenient relabeling of the variables vpn = vn+(a+b)p allows for the map to be written

∆0 : (v0, v1, v2, v3, v4, v5) 7→ (v0, v1, v2, v3, v4, v5)
′ (44)

where

v′0 = v1 (45)

v′1 = v2 (46)

v′2 = g(v3, v4, v2) (47)

v′3 = v4 (48)

v′4 = v5 (49)

v′5 = g(v0, v1, v5) (50)

Right-multiplying (26) at n = p = 0 by −M0
0 and taking the trace leads to

Tr(L0
1)− Tr(L0

0) = f 0
0 Λ0 + f 1

0 Λ1 (51)

where the Λi integrating factors are

Λ0 := −Tr(L0N0L4L3M
−1
3 L1L0) (52)

Λ1 := −Tr(L0M
−1
1 L5L4N3L1L0). (53)

The integrals of the map (45) are the coefficients of the Laurent expansion of the trace

of the monodromy matrix

TrL0 = Tr
(
M−1

0 L4L3M
−1
3 L1L0

)
= 2α2α3k

−2 + I + Jk2 + 2α2
1 (54)

where, for v = (v0, v1, v2, v3, v4, v5), the two independent integrals I := I(v) and

J := J(v) are in involution {I(v), J(v)} = 0 with respect to the symplectic matrix

Ω(v) :=



0 v0v1 0 v0v3 0 v0v5

−v0v1 0 v1v2 0 v1v4 0

0 −v1v2 0 v2v3 0 v2v5

−v0v3 0 −v2v3 0 v3v4 0

0 −v1v4 0 −v3v4 0 v4v5

−v0v5 0 −v2v5 0 −v4v5 0


(55)

As we saw in section ??, one may perform different travelling wave reductions

leading to maps that are conjugate to the translated map ∆0. A different set of solutions

to the equation d − 2c = 1 is (c1, d1) := (c, d) + (1, 2) = (1, 3) that corresponds to the

mapping ul,m 7→ ul+3,m−1 on the lattice. We denote by vp1n the variables under this new

reduction and therefore n = l + 2m and p1 ≡ l + 3m mod 2. A mapping obtained from

this reduction is ∆1 : (v0
0, v

0
1, v

0
2, v

1
0, v

1
1, v

1
2) 7→ (v0

0, v
0
1, v

0
2, v

1
0, v

1
1, v

1
2)′ given by

v0′

0 = v0
1 (56)

v0′

1 = v0
2 (57)

v0′

2 = g(v0
0, v

1
1, v

1
2) (58)

v1′

0 = v1
1 (59)

v1′

1 = v1
2 (60)

v1′

2 = g(v1
0, v

0
1, v

0
2) (61)
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To show the relationship between the maps ∆1 and ∆0 we start by defining some

transformations. Let ul,m ∈ U , (vp0, v
p
1, . . . , v

p
5) ∈ V0 and (vp10 , v

p1
1 , . . . , v

p1
5 ) ∈ V1 where

U, V0, V1 ⊂ R6, and we have set vp0n = vpn. Thus, let δ0 : ul,m 7→ ul+1,m, δ1 : ul,m 7→
ul+3,m−1 and σ : ul,m 7→ ul+2,m−1. Furthermore, let S : (v0

0, v
0
1, v

0
2, v

1
0, v

1
1, v

1
2) 7→

(v1
0, v

1
1, v

1
2, v

0
0, v

0
1, v

0
2) and T : (v0

0, v
0
1, v

0
2, v

1
0, v

1
1, v

1
2) 7→ (v0

0, v
1
1, v

0
2, v

1
0, v

0
1, v

1
2). Therefore,

system (56) can be obtained from (45) from the relationship ∆1 = T−1
1 ◦ S0 ◦ ∆0 ◦ T1

since



v0
0

v0
1

v0
2

v1
0

v1
1

v1
2


T1



v0
0

v1
1

v0
2

v1
0

v0
1

v1
2


∆0



v1
1

v0
2

g(v1
0, v

0
1, v

0
2)

v0
1

v1
2

g(v0
0, v

1
1, v

1
2)


S0



v0
1

v1
2

g(v0
0, v

1
1, v

1
2)

v1
1

v0
2

g(v1
0, v

0
1, v

0
2)


T−1

1



v0
1

v0
2

g(v0
0, v

1
1, v

1
2)

v1
1

v1
2

g(v1
0, v

0
1, v

0
2)


The integrals of (56) can be obtained from the integrals of (45) performing the

transformation I1 = I ◦ T and J1 = J ◦ T .

In any case, we have two independent integrals in involution for a six dimensional

map, which is not enough to prove integrability of the map in the Liouville-Arnold

sense. However, it is possible to reduce the dimension of the map by two, performing

the following change of variable. Let w0 = v0v4, w1 = v1v5, w2 = v1v3, w3 = v2v4. Then

the system (45) is brought to the four dimensional map

τ : (w0, w1, w2, w3) 7→ (w′0, w
′
1, w

′
2, w

′
3) where

w′0 = w1 (62)

w′1 =
w3

w0

α1w1 + α3

α2w1 + α1

(63)

w′2 = w3 (64)

w′3 =
w1

w2

α1w3 + α3

α2w3 + α1

(65)

and the independent integrals are expressed in terms of the new variables as

I(w):=
(
w0w2

w1w3
+ w1w3

w0w2

)
α2

1

+
(
w0 + w1 + w2 + w3 + w1w3

w0
+ w0w2

w1
+ w1w3

w2
+ w0w2

w3

)
α1α2

+
(

1
w0

+ 1
w1

+ 1
w2

+ 1
w3

+ w0

w1w3
+ w1

w0w2
+ w2

w1w3
+ w3

w0w2

)
α1α3

+
(
w0

w3
+ w3

w0
+ w2

w1
+ w1

w2

)
α2α3

+ (w0w2 + w0w1 + w1w3 + w2w3)α
2
2

+
(

1
w0w2

+ 1
w0w1

+ 1
w2w3

+ 1
w1w3

)
α2

3

and
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J(w):=
(
w0

w1
+ w1

w0
+ w2

w3
+ w3

w2
+ w0

w2
+ w2

w0
+ w1

w2
+ w2

w1
+ w1

w3
+ w3

w1
+ w0

w3
+ w3

w0

)
α2

1

+
(
w0 + w1 + w2 + w3 + w2w3

w0
+ w0w1

w3
+ w0w1

w2
+ w2w3

w1

)
α1α2

+
(

1
w0

+ 1
w1

+ 1
w2

+ 1
w3

+ w0

w2w3
+ w3

w0w1
+ w2

w0w1
+ w1

w2w3

)
α1α3

+
(
w2w3

w0w1
+ w0w1

w2w3

)
α2α3.

where w = (w0, w1, w2, w3). From the Poisson bracket {vi, vj} = Ωij given in (55)

between the vi-variables we obtain the symplectic structure of the map (62), leading to

Ω(w) =


0 2w0w1 0 0

−2w0w1 0 0 0

0 0 0 2w2w3

0 0 −2w2w3 0

 . (66)

System (62) is a symplectomorphism since (dτ(w))Ω(w)(dτ(w))T = Ω(w′). It is

measure-preserving since the determinant of the Jacobian matrix is

det (dτ(w)) = µ(w′)/µ(w) with measure µ(w) = w0w1w2w3. The mapping (62) is

reversible since it can be written as the composition τ = i1 ◦ i2 of the involutions

i1 : (w0, w1, w2, w3) 7→
(
w2,

w0

w3

α1w2 + α3

α2w2 + α1

, w3,
w2

w1

α1w0 + α3

α2w0 + α1

)
(67)

i2 : (w0, w1, w2, w3) 7→ (w3, w2, w1, w0). (68)

The integrals of the map are in involution {I(w), J(w)} = (dI(w))Ω(w)(dJ(w))T = 0

with respect to (66). Therefore, we conclude that the four dimensional map (62) is

integrable in the Liouville-Arnold sense.
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