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Abstract. The discrete-time Toda equation arises as a universal equation
for the relevant Hankel determinants associated with one-variable orthogonal
polynomials through the mechanism of adjacency, which amounts to the inclu-
sion of shifted weight functions in the orthogonality condition. In this paper we
extend this mechanism to a new class of two-variable orthogonal polynomials
where the variables are related via an elliptic curve. This leads to a ‘Higher or-
der Analogue of the Discrete-time Toda’ (HADT) equation for the associated
Hankel determinants, together with its Lax pair, which is derived from the
relevant recurrence relations for the orthogonal polynomials. In a similar way
as the quotient-difference (QD) algorithm is related to the discrete-time Toda
equation, a novel quotient-quotient-difference (QQD) scheme is presented for
the HADT equation. We show that for both the HADT equation and the QQD
scheme, there exists well-posed s-periodic initial value problems, for almost all
s ∈ Z2. From the Lax-pairs we furthermore derive invariants for corresponding
reductions to dynamical mappings for some explicit examples.

1. Introduction

The discrete-time Toda equation, i.e. the time-discretized version of the usual
Toda chain, which is given by the following partial difference equation (P∆E)

τl−1,m−1τl+1,m+1 = τl+1,m−1τl−1,m+1 − τ2
l,m, (1.1)

plays an important role in many areas of mathematical physics. It is probably the
first integrable fully discrete equation that can be found in the literature: it ap-
pears, albeit in slightly different form, for the first time in the paper by Frobenius
[13] as an identity for certain determinants used in the determination of rational
approximations of functions given by power series. The latter are nowadays known
as Padé approximants, which, in fact, were introduced by Frobenius 10 years prior
to Padé’s work, (cf. [14] for a more modern account). The discrete-time Toda
equation re-entered the modern era through the literature of integrable systems
[18]. Hirota in [18] introduced the equation as a natural time-discretization of the
famous Toda chain equation, generalizing the latter to a partial difference equation
on the space-time lattice (here the lattice sites are labelled by the discrete indepen-
dent variables (l,m) ∈ Z2). Eq. (1.1) exhibits the prominent integrability features,
such as the existence of multi-soliton type solutions and the existence of an under-
lying linear problem (Lax pair). This P∆E has also appeared in physics, namely
as the nonlinear equation governing the spin-spin correlation functions of the two-
dimensional Ising model, cf. [26, 31]. The connection we investigate and generalize
in this paper, is the emergence of (1.1) in the theory of formal orthogonal polyno-
mials, where the equation (1.1) is connected to the well known quotient-difference
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(QD) algorithm of Rutishauser, [33], cf.[30],

el,m+1 + ql+1,m+1 = ql+1,m + el+1,m,

el,m+1ql,m+1 = ql+1,mel,m. (1.2)

The theory of formal orthogonal polynomials is a subject central to modern
numerical analysis, in which orthogonalities are investigated on their general prop-
erties regarding the recurrence structure from a formal point of view (i.e., without
specifying particular classes of weight functions), with a sight on the construction
of numerical algorithms, rather that on the analytic properties (such as the moment
problem, or the problem of the behaviour of the zeroes of the polynomial) arising
from the particular properties of the weight functions. In this area of research gen-
eral constructions such as those of vector Padé approximants, adjacent orthogonal
families (where connected sequences of orthogonality functionals are postulated),
and associated convergence acceleration algorithms, and factorisation methods have
been developed, cf. e.g. [5, 12]. In this context, the QD algorithm emerges as a
prominent method to locate the zeroes of analytic functions or to compute con-
vergence factors for asymptotic expansions through formal power series, using a
finite-difference scheme and continued fractions, cf. [17]. It was pointed out in [30]
that both the QD algorithm and certain convergence algorithms, [15], are intimately
related to integrable discrete systems. In fact, the famous ε-algorithm of Wynn,
[41], surprisingly turns out to be identical to the lattice potential Korteweg-de Vries
(KdV) equation, a well-known exactly integrable P∆E, thus allowing us to inter-
pret this numerical algorithm as a symplectic dynamical system with a rich solution
structure. Similarly, the famous “missing identity of Frobenius” appearing as the
rhombus rule in the Padé tables and governing the stability of the ε-algorithm, cf.
[42], can be identified as an exactly solvable P∆E closely related to the Toda lattice
and discretisations of the KdV equation.

In this paper we introduce a novel integrable P∆E:

σl+1,m−2σl−1,m+1 (σl,m+2σl,m−1 − σl,mσl,m+1)
= σl,m−1σl−1,m+2 (σl−1,m+1σl+2,m−2 − σl,mσl+1,m−1) (1.3)
+ σl,m+1σl+1,m−1 (σl,m−2σl−1,m+2 − σl+1,m−2σl−2,m+2) ,

which we argue can be regarded as a Higher order Analogue of the Discrete-time
Toda equation and therefore name it the HADT equation. It is defined on a stencil
of 11 points in the lattice as depicted in Figure 1.

Figure 1. The stencil of the HADT equation (1.3)

The derivation of the HADT equation is parallel to the way in which the discrete-
time Toda equation emerges in the theory of orthogonal polynomials: in fact, we
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introduce a family of two-variable orthogonal polynomials restricted by an elliptic
curve and exploit the recurrence structure for the relevant Hankel determinants.
The general problem of orthogonal polynomials on algebraic curves was discussed
in the monograph by Suetin, [35, Chapter 7], and has also been addressed in the
context of the study of formal orthogonalities, cf. e.g. [8]. The construction
of the associated two-variable orthogonal polynomials on elliptic curve is pursued
in [34], whereas in this paper we will concentrate on the HADT equation (1.3)
itself and its reductions. Nevertheless, we will present the derivation from the
adjacency structure of elliptic two-variable orthogonal polynomials, as it produces
not only the nonlinear equation itself but also its Lax pair. Furthermore, the
recurrence structure of the relevant Hankel determinants also yields a novel type of
QD formalism, namely the following so-called quotient-quotient-difference (QQD)
scheme:

ul+2,m + vl+1,m + wl+1,m+1 = ul,m+3 + vl+1,m+1 + wl+1,m,

ul,m+3vl,m+1 = vl+1,mul+1,m, (1.4)
ul,m+3wl,m+1 = wl+1,m+1ul+1,m+1,

which we believe may have future applications in numerical analysis.
Once we have obtained the HADT equation, the QQD scheme and their Lax

pairs, we address the issue of periodic reductions. A periodic solution of a (system
of) lattice equation(s) is a solution which satisfies ul,m = ul+s1,m+s2 for some
s1, s2 ∈ Z. By imposing periodicity a lattice equation reduces to a system of
ordinary difference equations, or, equivalently, a mapping. The so-called staircase
method utilizes the Lax-pair of the lattice equation to construct integrals for the
mapping. The method was introduced in [29], where it was applied to the KdV
equation and to a mixed modified KdV-Toda equation, taking s1 = s2 and s1 =
s2 + 1. In [32] a two-parameter family of periodic reductions was studied, with s1

and s2 being co-prime integers. Recently, in [37] a unified and geometric picture
for periodic reductions, with nonzero s = (s1, s2) ∈ Z2 has been provided. In
[37] it was shown, for any given scalar lattice equation on some arbitrary stencil
of lattice points, there exists a well-posed, or nearly well-posed, s-periodic initial
value problem, for all nonzero s ∈ Z2. Therefore, the trace of the monodromy
matrix provides integrals for any periodic reduction of any integrable scalar lattice
equation, and it is expected that the same is true for systems of lattice equations, see
[37, 38]. In this paper we generalize the approach of [37] and develop a systematic
method to construct well-posed periodic initial value problems for systems of lattice
equations. This method is applied to the QQD scheme as well as to an intermediate
system of P∆Es, cf. equation (3.19).

On general principles, one expects periodic reductions of integrable lattice equa-
tions to lead to integrable maps in a precise sense, namely to complete integrability
in the sense of Liouville-Arnold [9, 39]. This requires, in addition to the existence
of a sufficient number of integrals, some global properties as well the existence of
a symplectic structure which is preserved by the discrete dynamics, and with re-
spect to which the integrals are in involution. The latter are issues which we are
not addressing in the current paper, where we have developed the basic structures
and classified the consistent reductions from the lattice equation together with the
explicit form of the integrals.
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Furthermore, there is the problem of counting the number of independent inte-
grals to ensure that in principle a 1-1 map to the relevant number of degrees of free-
doms exist for the mappings concerned. In fact, typically some reduced variables,
i.e. suitable combinations of the variables on the vertices, need to be introduced,
leading to a dimensional reduction of the mappings. This issue is addressed in the
section 5. For the reductions we obtained from the HADT equation, as well as those
from the QQD scheme, we are able to find a sufficient number of independent inte-
grals, that is, equal to at least half the dimensionality (i.e. number of components)
of the mapping. For the reductions obtained from the intermediate system (3.19)
this, however, is not the case. In [38] a systematic method was presented, which
exploits symmetries of the (system of) lattice equation(s) to reduce the dimension
of the mappings. For all cases that were considered in [38], the staircase method
provides a sufficient number of integrals for the dimensionally reduced mappings to
be in principle completely integrable. We arrive at a similar conclusion, however,
in certain cases the staircase method provides a product of 2-integrals JJ �, from
which a missing integral can be obtained.1

2. The discrete-time Toda equation and the QD algorithm from

orthogonal polynomials

We present here the derivation of the bilinear discrete-time Toda equation us-
ing formal orthogonal polynomials. Recurrence relations for adjacent one-variable
orthogonal polynomials provide a Lax-pair for this equation, as well as for the as-
sociated QD algorithm. The results presented here are known, see for example [30],
however they outline the main idea which we employ in the setting of two-variable
elliptic orthogonal polynomials in the next section.

Let Pn = Pn(x) be a family of polynomials of a variable x orthogonal with respect
to a weight function w(x) on a curve Γ in the complex plane. The weight function
defines a linear functional L with respect to which we can define the moments cn

as
cn = L(en) =

�

Γ
xnw(x)dx i = 0, 1, . . . (2.1)

where en are the monomials. The Pn’s, which are assumed to be monic, satisfy a
three term recurrence relation of the form

xPn = Pn+1 + SnPn + RnPn−1 (2.2)

(where Sn and Rn are finite) and in order to insure their existence we assume that
the corresponding Hankel determinants are non-zero.

We introduce a family of adjacent orthogonal polynomials (which are orthogonal
with respect to a shifted weight xmw(x)) [3]:

P (m)
n (x) ≡ 1

∆(m)
n−1

���������

cm . . . . . . cn+m
...

...
cn+m−1 c2n+m−1

1 . . . . . . xn

���������

, (2.3a)

1Recall, a function J is an k-integral, or k-symmetry, of a mapping if it is an integral, or
symmetry, of the kth power of that mapping [16]. If one has one k-integral, then one can construct
k of them, or, even better, k integrals. For example, it is easy to see that J �� = J implies that
both JJ � and J + J � are integrals.
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with the corresponding Hankel determinant:

∆(m)
n (x) ≡

����������

cm . . . . . . cn+m
...

...
...

...
cn+m . . . . . . c2n+m

����������

, (2.3b)

and the two row/column Sylvester identity2 [4, 27],
���������

���������

×

���������

���������

=

���������

���������

×

���������

���������

−

���������

���������

×

���������

���������

.

(2.4)
Applying two different forms of the Sylvester identity to the determinant for P (m)

n

leads to the derivation of two xP (m)
n recurrence relations

P (m)
n+1 = xP (m+1)

n − V (m)
n P (m)

n , (2.5a)

P (m)
n+1 = xP (m+2)

n −W (m)
n P (m+1)

n , (2.5b)

with

V (m)
n =

∆(m+1)
n ∆(m)

n−1

∆(m+1)
n−1 ∆(m)

n

, W (m)
n =

∆(m+1)
n ∆(m+1)

n−1

∆(m)
n ∆(m+2)

n−1

. (2.6)

The combination of these relations leads to the monic recurrence relation, of the
form (2.2),

xP (m)
n = P (m)

n+1 + (V (m)
n + V (m+1)

n−1 −W (m)
n )P (m)

n + (V (m+1)
n−1 −W (m)

n−1)V
(m)
n−1P (m)

n−1.

From this approach the coefficients Sn and Rn can be further simplified (in terms
of the Hankel determinants):

Sn =
∆(m+1)

n ∆(m)
n−1

∆(m)
n ∆(m+1)

n−1

+
∆(m+1)

n−2 ∆(m)
n

∆(m+1)
n−1 ∆(m)

n−1

, (2.7a)

Rn =
∆(m)

n ∆(m)
n−2

∆(m)
n−1∆

(m)
n−1

, (2.7b)

where we have suppressed the m-dependence in the symbols Rn and Sn. We achieve
this simplification by making use of a bilinear relation that exists between the
Hankel determinants ∆(m)

n . This bilinear relation is found by applying the Sylvester
identity to ∆(m)

n :
���������

∆(m)
n

���������

⇒ ∆(m)
n ∆(m+2)

n−2 = ∆(m+2)
n−1 ∆(m)

n−1 −∆(m+1)
n−1 ∆(m+1)

n−1 . (2.8)

2This identity has many different names including the Jacobi identity, Lewis Carroll’s identity
and the window-pane identity, however we will just refer to it as the Sylvester identity.
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We will refer to equation (2.8) as the discrete-time Toda equation. Indeed,
substituting ∆(m)

n = τ−2n−m−1,m−1 and taking l = −2n −m as new independent
variable yields the more standard form of this equation (1.1). The continuum limit
leading to the usual Toda chain is most easily seen starting from equation (1.1),
multiplying with 4pq and applying a point transformation τl,m �→ τl,mαl2βlm with

α =

�
p2 − q2

4pq
, β =

�
p− q

p + q

leads to

(p− q)2τl−1,m−1τl+1,m+1 − (p + q)2τl−1,m+1τl+1,m−1 + 4pqτ2
l,m = 0, (2.9)

in which p, q are lattice parameters (associated with shifts on the lattice in l- and m
directions respectively). Performing a changes of variables, (l,m) �→ (n = l+m, m)
and taking a limit l → ∞, m → ∞, n fixed, q − p = � → 0, �m → t, Taylor
expansion yields τl,m = τn(t0 + �m) ⇒ τl,m+1 = τn+1 + �τ̇n+1 + . . . and we get
the semi-discrete bilinear equation:

4p2
�
τnτ̈n − τ̇2

n

�
= τn+2τn−2,

which is related to the usual Toda chain equation by setting φn = log(τn/τn−2).
Thus the shadows of integrability already appear in the underlying structure of

the standard theory of orthogonal polynomials.

2.1. A Lax pair for the QD algorithm and the discrete-time Toda equa-
tion. We now view equation (2.8) as an integrable lattice equation, as opposed to
an identity for Hankel determinants (2.3b). To this end we write ∆(m)

n = τn,m,
and similarly V (m)

n = vn,m, W (m)
n = wn,m. The variable x will play the role of

spectral parameter and will be denoted x = λ.
The relations (2.5) constitute a Lax-pair for equation (2.8). Working with

the fields v, w we first derive a related quotient-difference system. Let Ψn,m =
(P (m)

n , P (m+1)
n ), then using the recurrence relations we derive

Ψn+1,m = Ln,mΨn,m and Ψn,m+1 = Mn,mΨn,m,

with

Ln,m =
�
−vn,m λ
−vn,m λ + wn,m − vn,m+1

�
, (2.10a)

Mn,m =
�

0 1
−λ−1vn,m 1 + λ−1wn,m

�
. (2.10b)

The compatibility of the two linear systems is then equivalent to the discrete Lax
equation:

0 = Ln,m+1Mn,m −Mn+1,mLn,m

=
�

0 0
−λ−1vn,mE E + λ−1(wn,m(vn+1,m + E)− vn,m+1wn+1,m)

�
,

where
E = vn,m+2 − vn+1,m + wn+1,m − wn,m+1.
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Thus L,M provide a Lax pair for the quotient-difference scheme

vn,m+2 + wn+1,m = vn+1,m + wn,m+1, (2.11a)
wn,mvn+1,m = vn,m+1wn+1,m. (2.11b)

This scheme is related to the (more standard) QD algorithm (1.2), by qn,m = vn,m,
en,m = vn,m+1 − wn,m.

Upon substitution of (2.6) into (2.11a) this equation is a consequence of (2.8),
whereas substitution of (2.6) into (2.11b) turns into an identity. To find a good Lax-
pair for equation (2.8), one substitutes equations (2.6) into the above Lax matrices,
and one uses (2.8) to simplify

en,m = vn,m+1 − wn,m =
τn−1,m+1τn+1,m

τn−1,m+1τn,m
.

Using the same simplification, equation (2.11a) can be written

0 = en,m+1 + wn+1,m − vn+1,m

=
τn+1,m+1

τn,m+2τn,m+1τn+1,m

�
τn+1,mτn−1,m+2 − τn,m+2τn,m + (τn,m+1)2

�
,

where one recognizes the discrete-time Toda equation (2.8).

3. The HADT equation and a QQD scheme from elliptic orthogonal

polynomials

In this section we derive the HADT equation. We follow a similar route as in the
previous section, except that here we consider two-variable orthogonal polynomials,
where the variables are restricted by the condition that they form the coordinates of
an elliptic curve. The recurrence relations for these elliptic orthogonal polynomials
yield both a Lax pair and the QQD scheme.

3.1. Two-variable elliptic orthogonal polynomials. As a starting point for our
construction we introduce the sequence of elementary monomials [34], associated
with a class of two variable orthogonal polynomials. We consider a sequence of
monomials where the x and y are given different weight, namely x ∼ 2 and y ∼ 3:

e0 = 1, e2 = x, e3 = y, e4 = x2, e5 = xy, e6 = x3, · · ·

or, in general:

e0(x, y) = 1, e2k(x, y) = xk, e2k+1(x, y) = xk−1y, k = 1, 2, . . . .

In comparison with the polynomials of Krall and Scheffer [21], their two-variable
orthogonal polynomials consist of x ∼ 1 and y ∼ 1 of equal weight. The reason for
choosing different weights is the variables x and y are related through a Weierstrass
elliptic curve. We use this sequence as our basis for the expansion of a new class of
two-variable orthogonal polynomials taking the form:

Pk(x, y) =
k�

j=0

p(k)
j ej(x, y) , (3.1)

which are monic if the leading coefficient p(k)
k = 1.
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In the spirit of the formal approach to orthogonal polynomials, cf. e.g. [7, 5], we
assume that a bilinear form �, � exists and can be derived from a linear functional
L and consequently we can define the associated moments by

ck = L(ek) . (3.2)

The assumption of the existence of an inner product �, � on the space V spanned by
the monomials ek, is such that

�xP,Q� = �P, xQ� ,

for any two elements P,Q ∈ V.
Under the assumption of orthogonality and using the standard Gram-Schmidt

orthogonalisation (through the use of Cramer’s rule), leads to the following expres-
sion for the adjacent elliptic orthogonal polynomials:

P (l)
k (x, y) ≡

��������������

�el, e0� �el, e2� · · · · · · �el,ek�
�el+1,e0� �el+1, e2� · · · · · · �el+1, ek�

...
...

...
...

...
...

�el+k−2, e0� �el+k−2,e2� · · · · · · �el+k−2, ek�
e0 e2 · · · · · · ek

��������������

�
∆(l)

k−1 , l �= 0 ,

(3.3)
together with the corresponding Hankel determinant:

∆(l)
k =

������������

�el, e0� �el, e2� · · · · · · �el,ek�
�el+1,e0� �el+1, e2� · · · · · · �el+1, ek�

...
...

...
...

...
...

�el+k−1, e0� �el+k−1,e2� · · · · · · �el+k−1, ek�

������������

, l �= 0 ,

(3.4)
where for l = 0:

P (0)
k (x, y) ≡

��������������

�e0,e0� �e0, e2� · · · · · · �e0, ek�
�e2,e0� �e2, e2� · · · · · · �e2, ek�

...
...

...
...

...
...

�ek−1, e0� �ek−1, e2� · · · · · · �ek−1,ek�
e0 e2 · · · · · · ek

��������������

�
∆(0)

k−1 , (3.5)

with

∆(0)
k =

������������

�e0, e0� �e0, e2� · · · · · · �e0,ek�
�e2, e0� �e2, e2� · · · · · · �e2,ek�

...
...

...
...

...
...

�ek,e0� �ek,e2� · · · · · · �ek, ek�

������������

, (3.6)
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In addition to the polynomials (3.3), we also need to introduce the polynomials:

Q(l)
k (x, y) ≡

��������������

�el, e0� �el, e2� · · · · · · �el,ek�
�el+2, e0� �el+2, e2� · · · · · · �el+2, ek�

...
...

...
...

...
...

�el+k−1,e0� �el+k−1,e2� · · · · · · �el+k−1, ek�
e0 e2 · · · · · · ek

��������������

�
Θ(l)

k−1 ,

(3.7)
together with its corresponding Hankel determinant:

Θ(l)
k =

������������

�el, e0� �el, e2� · · · · · · �el, ek�
�el+2, e0� �el+2, e2� · · · · · · �el+2,ek�

...
...

...
...

...
...

�el+k,e0� �el+k, e2� · · · · · · �el+k, ek�

������������

, (3.8)

noting that

Q(0)
k = P (0)

k , Θ(0)
k = ∆(0)

k .

Remark: We note that for l �= 0, 1 the polynomials P (l)
k do not form an orthogonal

family. In fact, from the determinantal definition (3.3) we immediately observe that

�el, P
(l)
k � = �el+1, P

(l)
k � = · · · = �el+k−2, P

(l)
k � = 0 , �el+k−1, P

(l)
k � =

∆(l)
k

∆(l)
k−1

,

whereas

�el−1, P
(l)
k � = (−1)k−1 ∆(l−1)

k

∆(l)
k−1

.

We now proceed using determinantal identities of Sylvester type (Appendix A)
to derive relations between the polynomials P (l)

k and the Hankel determinants.

3.2. Recurrence relations in P (l)
k and Q(l)

k . Using a 3 row/column Sylvester
identity we find it is possible to find x-recurrence relations and linear relations in
P (l)

k and Q(l)
k . To achieve the former it is necessary to fix the columns, so that

e0 = 1 and e3 = y are removed from the determinant and the position of the
row removal is dependent on restricting the introduction of new objects. Hence we
apply the following cutting of three rows and columns (A.6) to the determinant for
P (l)

k :
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����������������

����������������

×

����������������

����������������

=

����������������

����������������

×

����������������

����������������

−

����������������

����������������

×

����������������

����������������

+

����������������

����������������

×

����������������

����������������

(where the small red line indicates a space between the first column and the third).
We are led to the recurrence relation

P (l)
k = xP (l+3)

k−2 − V (l)
k−2P

(l)
k−1 + W (l)

k−2P
(l+1)
k−1 , l �= 0, 1, (3.9)

where

V (l)
k =

∆(l)
k ∆(l+3)

k

∆(l)
k+1∆

(l+3)
k−1

, W (l)
k =

∆(l+1)
k ∆(l+2)

k

∆(l)
k+1∆

(l+3)
k−1

. (3.10)

For l = 0 we have

P (0)
k = xP (4)

k−2 −
∆(0)

k−2∆
(4)
k−2

∆(0)
k−1∆

(4)
k−3

P (0)
k−1 +

∆(2)
k−2Θ

(2)
k−2

∆(0)
k−1∆

(4)
k−3

P (2)
k−1, (3.11)

whilst obviously, since P (1)
k is not defined, there is no relation for l = 1.

By making use of intermediate determinant expressions (Appendix B) we can
derive additional relations in terms of P (l)

k and Q(l)
k . Thus in addition to the

recurrence relation (3.9) we have also derived the following relation in terms of P (l)
k

(equation B.1):

P (l)
k = P (l+1)

k + U (l)
k−1P

(l+1)
k−1 , (3.12)

with

U (l)
k =

∆(l)
k+1∆

(l+1)
k−1

∆(l)
k ∆(l+1)

k

. (3.13)

Similarly, we derived recurrence formulae for the set {P (l)
k , Q(l)

k } (Appendix B.3,
equations (B.9),(B.11) and (B.15) respectively),

P (l)
k = xQ(l+2)

k−2 −
∆(l)

k−2Θ
(l+2)
k−2

∆(l)
k−1Θ

(l+2)
k−3

P (l)
k−1 +

Θ(l)
k−2∆

(l+2)
k−2

∆(l)
k−1Θ

(l+2)
k−3

Q(l)
k−1, l �= 0, 1

(3.14)

Q(l)
k = P (l+1)

k +
∆(l)

k ∆(l+2)
k−2

Θ(l)
k−1∆

(l+1)
k−1

P (l+2)
k−1 , (3.15)

Q(l)
k = P (l)

k −
∆(l)

k Θ(l)
k−2

∆(l)
k−1Θ

(l)
k−1

Q(l)
k−1. (3.16)
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3.3. Bilinear Hankel identities. In appendix B.2 we construct a pair of bilin-
ear relations: a four term bilinear relation (derived by applying a 3 row/column
Sylvester identity to the determinant ∆(l)

k ), and a three term bilinear relation (re-
sulting from the combination of other Hankel identities):

���������

���������

⇒ ∆(l)
k ∆(l+4)

k−3 = ∆(l)
k−1∆

(l+4)
k−2 −Θ(l)

k−1∆
(l+3)
k−2 + ∆(l+1)

k−1 Θ(l+2)
k−2 ,

(3.17a)

∆(l)
k ∆(l+2)

k−1 = Θ(l)
k ∆(l+1)

k−1 −Θ(l)
k−1∆

(l+1)
k . (3.17b)

3.4. The HADT equation. The system (3.17) can be rearranged to eliminate
the Θ(l)

k . Thus we have

∆(l)
k ∆(l+4)

k−3

∆(l+1)
k−1 ∆(l+3)

k−2

−
∆(l)

k−1∆
(l+4)
k−2

∆(l+1)
k−1 ∆(l+3)

k−2

=
Θ(l+2)

k−2

∆(l+3)
k−2

−
Θ(l)

k−1

∆(l+1)
k−1

,

∆(l)
k ∆(l+2)

k−1

∆(l+1)
k ∆(l+1)

k−1

=
Θ(l)

k

∆(l+1)
k

−
Θ(l)

k−1

∆(l+1)
k−1

,

which can be expressed in a simpler way using

X(l)
k = Γ(l)

k − Γ(l)
k−1,

Y (l)
k = Γ(l+2)

k−2 − Γ(l)
k−1,

where Γ(l)
k = Θ(l)

k /∆(l+1)
k . From these two expressions we have

Y (l)
k+3 + X(l)

k+2 + X(l)
k+1 = Γ(l+2)

k+1 − Γ(l)
k

X(l+2)
k+1 + Y (l)

k+2 + X(l)
k+1 = Γ(l+2)

k+1 − Γ(l)
k

and by rearranging, we find a quadrilinear relation in terms of ∆(l)
k on an 11-point

stencil, the HADT equation:

∆(l)
k+1

�
∆(l+4)

k ∆(l+1)
k ∆(l+3)

k−1 −∆(l+2)
k ∆(l+3)

k ∆(l+3)
k−1 + ∆(l+4)

k−2 ∆(l+3)
k ∆(l+1)

k+1

�

= ∆(l+4)
k−1

�
∆(l)

k+2∆
(l+1)
k ∆(l+3)

k−1 −∆(l+2)
k ∆(l+1)

k ∆(l+1)
k+1 + ∆(l)

k ∆(l+3)
k ∆(l+1)

k+1

�
.

(3.18)

The HADT equation bears its name as a Higher order Analogue of the Discrete-
time Toda equation, due to the similarities between how both equations arise in
the theory of formal orthogonal polynomials. We expect the HADT equation to
also be integrable and derive a Lax pair for it in the next section. Also note the
similarity between the stencils of the two equations (2.8) and (3.18), as displayed
in Figure 2.

It would be interesting to know how to enter lattice parameters (i.e., parameters
associated with the grid steps) into the HADT equation, as we did for the discrete-
time Toda equation, see equation (2.9), and then to study its continuum limit.
However, there is a lot of freedom here to enter lattice parameters through point
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Figure 2. The stencils of the discrete-time Toda equation (2.8)
and the HADT equation (3.18)

transformations, and this should be properly investigated. We leave that issue to
a future work.

Next we follow a similar approach as in section 2.1 and derive Lax pairs for
the several Hankel identities viewed as integrable systems, using the recurrence
relations for the two-variable elliptic orthogonal polynomials. As before the fields
will carry two sub-indices; we denote x = λ, ∆(m)

l = σl,m, Θ(m)
l = ρl,m, U (l)

k = uk,l,
etc. By not evaluating the coefficients in the recurrences (3.12) and (3.9), we will
find a novel quotient-quotient-difference scheme.

3.5. A Lax pair for the system of lattice equations (3.17). We derive a Lax
pair for the system of equations (3.17) which in terms of σ, ρ reads

σl+1,m−2σl−2,m+2 + ρl,m−2σl−1,m+1 = σl,m−2σl−1,m+2 + σl,m−1ρl−1,m,

(3.19a)
σl,m−1σl−1,m+1 + ρl−1,m−1σl,m = ρl,m−1σl−1,m. (3.19b)

Taking Ψl,m = (Q(m+1)
l , P (m+1)

l+1 , Q(m)
l+1 , P (m)

l+2 ) we derive Ψl+1,m = Ll,mΨl,m, and
Ψl+1,m = Ml,mΨl,m, with

Ll,m =





−σl+1,m+1ρl−1,m+1
σl,m+1ρl,m+1

1 0 0

0
−σl+2,mσl,m+1
σl+1,mσl+1,m+1

0 1

0 0
−σl+2,mρl,m
σl+1,mρl+1,m

1

0
−σl+1,m+2σl,m+1

σl+3,mσl+1,m
0

σl+1,m+2σl+1,m+1−σl+1,mσl+1,m+3
σl,m+3σl+2,m





+ λ





0 0 0 0
0 0 0 0
0 0 0 0

σl+1,m+2ρl−1,m+1
σl,m+1σl,m+3

1 +
ρl+1,m+1ρl,m
σl,m+3σl+1,m

−ρl+1,m+1ρl,m
σl,m+3σl+1,m

0




,
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and

Ml,m =





−ρl,m+2σl,m+2ρl−1,m+1
ρl−1,m+2σl,m+1σl,m+3

−ρl,m+2ρl,m+1ρl,m

ρl−1,m+2σl+1,mσl,m+3

ρl,m+2ρl,m+1ρl,m

ρl−1,m+2σl+1,mσl,m+3
0

0 ρl+1,mσl,m+1
σl+1,mσl,m+2

−σl+1,m+1ρl,m

σl+1,mσl,m+2
0

−σl+1,m+1ρl−1,m+1
σl,m+1ρl,m+1

1 0 0
0 −σl+2,mσl,m+1

σl+1,mσl+1,m+1
0 1





+ λ−1





0 σl,m+1ρl,m+2σl,m+2
ρl−1,m+2σl+1,mσl,m+3

−ρl,mσl,m+2
ρl−1,m+2σl+1,m

1− ρl,m+2σl−1,m+3
ρl−1,m+2σl,m+3

0 0 0 0
0 0 0 0
0 0 0 0



 .

Here we have used the equations (3.19) to reduce the number of terms in the entries
of the Lax matrices as much as possible. The compatibility condition Ll,m+1Ml,m−
Ml+1,mLl,m = 0 is equivalent to the system (3.19). However, to verify that the left
hand side vanishes modulo the system, some work has to be done. The equations
do not factor out as nicely as in section 2.1.

3.6. A Lax pair for the HADT equation, and the QQD scheme. We first
derive a Lax-pair for the following QQD scheme, satisfied by the coefficients (U (m)

l =
ul,m etc.) in the recurrence equations (3.9) and (3.12):

ul+2,m + vl+1,m + wl+1,m+1 = ul,m+3 + vl+1,m+1 + wl+1,m, (3.20a)
ul,m+3vl,m+1 = vl+1,mul+1,m, (3.20b)

ul,m+2wl,m = wl+1,mul+1,m. (3.20c)

Let Ψl,m = (P (m+3)
l , P (m+2)

l+1 , P (m+1)
l+2 , P (m)

l+3 ). We use (3.9) and (3.12) to find
Ψl+1,m = Ll,mΨl,m, and Ψl,m+1 = Ml,mΨl,m, where L and M are given

Ll,m =





−ul,m+2 1 0 0
0 −ul+1,m+1 1 0
0 0 −ul+2,m 1
0 0 −wl+2,mul+2,m −vl+2,m + wl+2,m





+ λ





0 0 0 0
0 0 0 0
0 0 0 0

ul+1,m+2ul,m+2 −ul+1,m+1 − ul+1,m+2 1 0



 ,

and

Ml,m =





−ul,m+2
ul,m+3

1
ul,m+3

0 0
−ul,m+2 1 0 0

0 −ul+1,m+1 1 0
0 0 −ul+2,m 1





+ λ−1





0 −wl,m+1 1 + wl+1,m−vl+1,m

ul,m+3
− 1

ul,m+3

0 0 0 0
0 0 0 0
0 0 0 0



 .

Here we have used the scheme (3.20) to simplify the λ−1-part of Ml,m. The com-
patibility of these linear systems is equivalent to the QQD scheme (3.20). Note, by
substituting the expressions (3.13), (3.10) for u, v, w in terms of σ into the QQD
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scheme, the first equation is equivalent to the HADT equation, whereas the later
two are satisfied identically. Therefore, after the same substitution, the matrices
L,M provide a good Lax pair for the HADT equation (3.18). The stencils of the
Lax matrices L(∆),M(∆) are depicted in Figures 3, 4.

l m

Figure 3.

The stencil of Ll,m

l m

Figure 4.

The stencil of Ml,m

4. Periodic reduction

In [37] a method was given to obtain initial value problems for scalar equations
on arbitrary stencils. The question was raised whether a similar construction can
be done for systems, and one example was given (the quotient-difference algorithm)
where this is the case indeed. Here we will present a systematic approach towards
constructing initial value problems for systems of partial difference equations.

Using the method of [37] it is easily shown that the dimension of the s-periodic
initial value problem for the HADT equation is given by the piecewise linear func-
tion

4max{|s1 + s2|, |s1|}. (4.1)
We will show that the s-periodic straight band initial value problems for the in-
termediate system (3.19) as well as those for the QQD scheme are of the same
dimension as the initial value problems for the HADT equation, namely (4.1).

Although we do give a method to construct s-periodic initial value problems for
systems, the question remains whether this can be done algorithmically. As we will
see, one can not easily determine the dimensionality of the reductions, nor which
regions for s should be distinguished, by simply looking at the stencils on which
the equations of the system are defined.

4.1. Initial value problems for the HADT equation. To pose initial value
problems for equation (1.3) we use the method developed in [37]. By the S-polygon

of the equation we mean the boundary of the convex hull of the stencil S of the
equation (the dotted parallelogram in Figure 5). The S-directions are the directions
in the S-polygon of the equation: (1, 0) and (1,−2). Therefore, we distinguish two
regions in the plane

R1 = {s ∈ Z2 : a ≥ 0, b > 0, � = 1 or b > 2a, � = −1},
R2 = {s ∈ Z2 : 0 < b < 2a, � = −1},

as in Figure 5. If s ∈ R1 or s ∈ R2, then performing an s-periodic reduction yields a
well-posed initial value problem, i.e. the s-periodic solution is obtained by iteration
of a single valued mapping. If on the other hand s is on a boundary between R1

and R2 one needs to impose periodicity on the solution, and then one gets a multi-
valued mapping, or correspondence. To each of the regions Ri we associate a vector
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R2

R1

R1

R2

Figure 5. The 11-point stencil of the HADT equation, its convex
hull, and two regions in the plane

di which is a difference between the two points of S, where a line with direction
s ∈ Ri intersects the S-polygon in a single point. For the HADT equation we have

d1 = (0, 4), d2 = (4,−4). (4.2)

Hence the dimension of the s-periodic initial value problem is, cf. [37, Equation 8],

maxi=1,2{|Det
�

s
di

�
|} = 4max{|s1 + s2|, |s1|}.

We give two examples before we present the general s-periodic initial value problem
in terms of s-reduced variables.

4.1.1. (2,-1)-reduction of the HADT equation. We specify initial values between
two parallel lines that squeeze the stencil as in Figure 6. Clearly, given the 8

x3

x3

x3

x5

x5

x5

x7

x7

x7

x9

x9

x2

x2x4

x4x6

x6x8

x8

x1

x1

Figure 6. (2,-1)-periodic initial values

values x1, x2, . . . , x8 at the black dots one is able to determine the value x9 at the
white dots on the fat-dotted line, using the HADT equation. Thus we get an eight
dimensional mapping:

xi �→ xi+1, 1 ≤ i < 8,

x8 �→
x1x4x7x8

x2x3x6
+

x5x7

x3
+

x3x8

x2
− x4x5x8

x2x6
− x4x2

7

x3x6
.

(4.3)

We can calculate integrals for this mapping by constructing a so called mon-
odromy matrix, which is a product of Lax matrices along a staircase over a one
period long distance. Taking the point at the bottom left corner to be the origin
(l,m) = (0, 0), we define the monodromy matrix to be the inversely ordered product
of Lax matrices along a staircase from (l,m) = (1, 0) to (l,m) = (3,−1),

L = M−1
3,−1L2,0L1,0.
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Using the stencils of the Lax matrices, see Figures 3 and 4, the reader can verify
that the matrices in L depend on initial values only. The characteristic polynomial
of L is

Det(µI− L) = µ2((µ− λ)2 + 1) + µI1(µ2 − λµ− λ)− λ(I2µ
2 + I3µ + 1),

where

I1 =
x3x6

x2x7
+

x2x7

x6x3
− x1x8

x6x3
+

x1x4

x2x3
+

x8x5

x6x7
− x5x4

x2x7
,

I2 =
�

x2
5

x4x6
+

x2
3

x2x4
+

x1x7

x2x6
− x3x5

x2x6

��
x2

6

x5x7
+

x2
4

x3x5
+

x2x8

x3x7
− x4x6

x3x7

�
,

I3 =
x2x5

x3x4
+

x6x3

x4x5
+

x4x7

x5x6
+

x1x8

x3x6
− x2x7

x3x6
.

Because we subtracted I1 from the coefficient of µ2λ in the definition of I2 it
factorizes nicely as JJ �, where J is a 2-integral of the map and J � is the image of J
under the map. Remember a k-integral is an integral of the kth power of the map
[16]. Indeed, given that J �� = J , we find that the product JJ � = J ��J � = (JJ �)�
is an invariant. But now, we can write down another (functionally independent)
invariant, namely J + J �. Moreover, the integrals I1, I2, I3, I4, with

I4 =
x2

5

x4x6
+

x2
3

x2x4
+

x1x7

x2x6
− x3x5

x2x6
+

x2
6

x5x7
+

x2
4

x3x5
+

x2x8

x3x7
− x4x6

x3x7
,

are functionally independent.

4.1.2. (2,-3)-reduction of the HADT equation. We specify initial values between
two parallel lines that squeeze the stencil as in Figure 7.

x1

x1

x2

x3

x3

x4

x4

x5

x6

x6

x7

x7

x8

x9

x9

x10

Figure 7. (2,-3)-periodic initial values

Clearly, given the 8 values x1, x2, . . . , x8 at the black dots one is able to determine
the value x9 at the white dots on the fat-dotted line, using the HADT equation.
Thus we get an eight dimensional mapping:

xi �→ xi+1, 1 ≤ i < 8,

x8 �→
x2

6

x2
4

�
x1x7

x3
− x5

�
+

x7x5

x3
.

(4.4)

To be able to evaluate monodromy matrix

L = M−1
1,0L0,1M

−1
0,1M−1

0,2L−1,3,

we first have to determine the value x10. Using the stencils of the Lax matrices,
see Figures 3 and 4, it seems we also need to to determine the value x0, as both
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L0,1 and M−1
0,1 depend on x0. However, their product does not depend on x0. The

characteristic polynomial is given by

Det(µI− L) = µ2((µ− λ)2 + (µ− λ)I2 − µJJ � + 1) + (µ− λ)3 − µ(µ− λ)2I1

where

I1 =
x4x5

x3x6
+

x3x8

x5x6
+

x1x6

x3x4
+

x2x7

x4x5
,

I2 =
x2x7

x3x6

�
x1x2

6

x2
4x5

+
x2

3x8

x4x2
5

+ 1
�

+
x1x8

x4x5
− x6x2

x2
4

− x3x7

x2
5

,

J =
x1x7 − x5x3

x2
4

,

where J is a 2-integral of the mapping. The four integrals I1, I2, JJ � and J + J �

are functionally independent.

4.1.3. General s-reduction. By imposing s-periodicity, that is,

σl,m = σl+s1,m+s2 .

our P∆E reduces to a system of r = gcd(s1, s2) O∆Es. We perform so-called
s-reduction, which is basically a change of variables (l,m) → (n, p).

Definition 1. We define a, b, c, d ∈ N and � = ±1 by a/b = |s1/s2| = �s1/s2;

gcd(a, b) = 1; b = 0 ⇒ c = 0, d = 1; b = 1 ⇒ c = 1, d = 0; b > 1 ⇒ c is the smallest

positive integer such that bc− ad = 1. Now we specify

nl,m := bl − �am, pl,m := −dl + �cm mod r, (4.5)

The variable n tells us on which line with direction (a, �b) the point is and p
distinguishes the r inequivalent points on each line, see also [37]. The important
properties are

(n, p)l+a,m+�b = (n, p + 1)l,m, (n, p)l+c,m+�d = (n + 1, p)l,m

where the latter shift is the standard way to update the initial values.
We adopt the notation of [37], where reduced variables carry one upper and one

lower index, that is, the reduction will be denoted σl,m � σp
n. When specifying

(periodic) initial value problems in terms of reduced variables we specify sets of
variables σp

n where n runs over a specific range and p runs over the full range
p ∈ Nr := {0, 1, . . . , r − 1}, cf. [37].

The range of n is determined by the differences associated to each region. For the
HADT equation, when s ∈ R1 (where � = −1, see Figure 5) the range of n will be
from 0 to n(d1)−1 = b ·0+a ·4−1, and when s ∈ R2 we take 0 ≤ n < 4(b+ �a)−1,
using the differences (4.2).

Thus we obtain

Proposition 2. The HADT equation admits a well-posed s-periodic initial value

problem if (a, b) is not equal to (1, 0) or (1,−2).
• For s ∈ R1

the set {σp
n : n ∈ N4a, p ∈ Nr} provides a well-posed initial value

problem of dimension 4| s1 |.
• For s ∈ R2

the set {σp
n : n ∈ N4(b+�a), p ∈ Nr} provides a well-posed initial

value problem of dimension 4| s1 + s2 |.
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Remark: In section 4.1.1 the initial values {σ0
0 , . . . , σ0

7} are conveniently denoted
σ0

n = x8−n and the mapping is the backward shift n �→ n−1, or (l,m) �→ (l−1,m).
In section 4.1.2 the initial values {σ0

0 , . . . ,σ0
7} are denoted σ0

n = xn+1 and the
mapping is the standard one n �→ n + 1, that is (l,m) �→ (l + 1,m− 1).

4.2. Initial value problems for the system of lattice equations (3.19). The
stencils of the system (3.19) are depicted in Figure 8. The S-directions in the
S-polygons of the equations are (0, 1), (1, 0), (1,−1), and (1,−2). Therefore, we
distinguish four regions in the plane, as in Figure 9.

(b)
(a)

σ

σ

ρ

σ

ρ
σ

σ σ

σ

ρ

σ

σ
ρ

σ

Figure 8. The 5-
point and 7-point sten-
cils of system (3.19),
and their convex hulls

R1

R2

R3R4

R1

R2

R3 R4

Figure 9. Distin-
guished regions for sys-
tem (3.19)

For each of the distinguished regions Ri we will project each stencil of the system
onto a line with direction s ∈ Ri. On these lines we will indicate (schematically)
the ranges of n-values for both field variables σ, ρ (our ranges start at 0). This
procedure is similar to the scalar case, where the difference di is equivalent to a
range for n. For every equation in a system we need a range (and hence a difference)
for every field, and also their relative positions. Moreover, once we have this data,
there is still some freedom left how to position the equations with respect to each
other. In fact, as we will show in Appendix C, we have to split region R4 into
two regions where the two equations are positioned differently with respect to each
other. Also we will see that for regions R2 and R3 we may take the same initial
values. However, updating the initial values is done differently in those regions.

For s ∈ R1 the ranges are given in Figure 10.

0 2a 2a + b 4a + 2b 4a + 3b

σ

σ ρ

ρ

σ ρ

ρ σ

Figure 10. s-Reduction for system (3.19), with s ∈ N2

We now have to find a range of n for each variable σ, ρ such that each equation
can be used to update one of the variables. Moreover, we want to minimise the
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number of field values that have to be calculated to update both fields. Therefore,
we move the first equation in Figure 10 over a distance b with respect to the other,
see Figure 11.

0 b 2a + b 2a + 2b 4a + 2b 4a + 3b

σ

σ ρ

ρ

σ ρ

ρ σ

Figure 11. Alternative s-Reduction for system (3.19), with s ∈ N2

For system (3.19) with s ∈ R1 one can see that if we take the range 0 ≤ n <
4a + 3b for σ and the range 2a + b ≤ n < 2a + 2b for ρ, then using the equation
(3.19a) we can determine the values of ρ at 2a + 2b ≤ n ≤ 4a + 2b. Subsequently,
the equation (3.19b) can be used to calculate the values of σ at n = 4a + 3b. We
have obtained the first item in the following proposition, whose complete proof is
given in Appendix C.

Proposition 3. Let s ∈ Z2
be such that (a, b) is not equal to (1, 0) or (1,−2), and

let Ri
be as in Figure 9. Then system (3.19) admits a well-posed s-periodic initial

value problem.

• For s ∈ R1
the set

{σp
n, ρp

m : n ∈ N4a+3b,m− 2a− b ∈ Nb, p ∈ Nr}

provides a well-posed initial value problem of dimension 4| s1 + s2 |.
• For s ∈ R2 ∪R3

(including the boundary between R2
and R3

) the set

{σp
n, ρp

m : n ∈ N4a−b,m ∈ Nb, p ∈ Nr}

provides a well-posed initial value problem of dimension 4| s1 |.
• For s ∈ R4

, b ≤ 3a, the set

{σp
n, ρp

m : n ∈ N3b−4a,m + 5a− 2b ∈ Nb, p ∈ Nr}

provides a well-posed initial value problem of dimension 4| s1 + s2 |.
• For s ∈ R4

, b ≥ 3a, the set

{σp
n, ρp

m : n ∈ N3b−4a,m + 4a− b ∈ Nb, p ∈ Nr}

provides a well-posed initial value problem of dimension 4| s1 + s2 |.

4.2.1. (2,-1)-reduction of system (3.19). We specify initial values between two par-
allel lines that squeeze the σ-stencil, as in Figure 12. The initial values are denoted
σ0

n = xn+1 and ρ0
n = yn+1. Clearly, from these initial values we can calculate the

values y4 and y2, y1, using equation (3.19b). Then we know enough ρ-values to
be able to calculate, using equation (3.19a), x8, which (to our surprise) does not
depend on y3. Therefore, the σ-field is determined by a 7-dimensional mapping,
namely

xi �→ xi+1, 1 ≤ i < 7,

x7 �→
x2x7

x1
− x2x5x6

x1x4
− x3x4x7

x1x5
− x2

3x
2
6

x1x4x5
.

(4.6)
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x1

x1

x2

x2

x3

x3

x3

x4

x4

x5

x5

x5

x6

x6

x7

x7

x7

x8

x8

y3

y3

y3

Figure 12. (2,-1)-periodic initial values

We know enough values to determine the monodromy matrix L = L1
0(M1

0 )−1L1
0.

Its characteristic polynomial is given by

Det(µI− L) = µ2((µ− λ)2 + (µ− λ)I1 + 1)− λ(µ2JJ � + µI1 + 1),

where

I1 = −x3x4

x1x6
+

x3x6

x4x5
− x4x5

x7x2
+

x1x4

x2x3
+

x5x2

x3x4
+

x4x7

x5x6
+

x5x2

x1x6

+
x6x3

x7x2
− x2

5x2

x7x1x4
− x6x2

3

x7x1x4

J =
x1x7 − x5x3

x2x6
+

x2
3

x2x4
+

x2
5

x4x6
.

The integrals I1, JJ �, J + J � are functionally independent.

4.2.2. (2,-3)-reduction of system (3.19). We specify initial values between two par-
allel lines that squeeze the σ-stencil, as in Figure 13. From these initial values we

x1

x1

x3

x3

x4

x4

x2 x5

y1

y1

y3

y3

y2

Figure 13. (2,-3)-periodic initial values

can calculate the σ-value (x6) on the dashed line. And once we have done that we
can calculate y4. We find an 8-dimensional mapping, namely

xi �→ xi+1, 1 ≤ i < 5,

x5 �→ x�5 =
x4x3 + y1x4 − x3y2

x1
,

yi �→ yi+1, i = 1, 2,

y3 �→
x4x5 + y1x�5

x3
.

(4.7)
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One has to calculate quite a few other points to be able to evaluate the mon-
odromy matrix, whose characteristic polynomial is given by3

Det(µI− L) = µ2((µ− λ)2 + µI1 + λ(JJ � − I1 − 1) + 1)− λ3,

where

I1 = −x3x2

x1x4
+

y3y1

x5x3
+

y3y2

x5x4
+

y2y1

x3x4
− y2

2

x2
4

− x5x1

x2
3

+
x3x2y2

x1x2
4

−x3x4

x5x2
− x2y1

x1x4
− x3y2

x5x2
+

x3x4y3

x2
5x2

− y2
1

x2
3

− y2
3

x2
5

J =
x1x5y2

x2
4x2

− y3x1

x4x2
+

x5x1

x4x2
− x5x3

x2
4

.

The integrals I1, JJ �, J + J � are functionally independent.

4.3. Initial value problems for the QQD scheme. We define regions in the
plane as follows

R1 = {s ∈ Z2 : a ≥ 0, b > 0, � = 1},
R2 = {s ∈ Z2 : 0 < b ≤ a, � = −1},
R3 = {s ∈ Z2 : a ≤ b < 2a, � = −1},
R4 = {s ∈ Z2 : 2a < b ≤ 3a, � = −1},
R5 = {s ∈ Z2 : 3a ≤ b, � = −1},

see Figure 14. We prove Proposition 4 in Appendix D.

R1

R2

R3R4R5

R1

R2

R3 R4 R5

Figure 14. Distinguished regions for the QQD scheme

Proposition 4. The QQD scheme (3.20) admits a well-posed s-periodic initial

value problem if (a, b) is not equal to (1, 0) or (1,−2).

3The factorization of I2 + I1 +1 where I2 is the coefficient of µ2λ is due to Claude Viallet [40].
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• For s ∈ R1
the set

{up
n, vp

m, wp
l : n ∈ N3a+2b,m− 2a ∈ Na+b, l − 2a− b ∈ Nb, p ∈ Nr}

provides a well-posed initial value problem of dimension 4| s1 + s2 |.
• For s ∈ R2

the set

{up
n, vp

m, wp
l : n− b ∈ N3a−b,m ∈ Na, l ∈ Nb, p ∈ Nr}

provides a well-posed initial value problem of dimension 4| s1 |.
• For s ∈ R3

the set

{up
n, vp

m, wp
l : n + a− b ∈ N3a−b,m ∈ Na, l ∈ Nb, p ∈ Nr}

provides a well-posed initial value problem of dimension 4| s1 |.
• For s ∈ R4

the set

{up
n, vp

m, wp
l : n− 3a + b ∈ N2b−3a,m ∈ Nb−a, l ∈ Nb, p ∈ Nr}

provides a well-posed initial value problem of dimension 4| s1 + s2 |.
• For s ∈ R5

the set

{up
n, vp

m, wp
l : n− 2a ∈ N2b−3a,m− a ∈ Nb−a, l ∈ Nb, p ∈ Nr}

provides a well-posed initial value problem of dimension 4| s1 + s2 |.

In the following reductions we adopt the notation u0
n = xn, v0

n = yn, w0
n = zn.

4.3.1. (2,-1)-reduction of the QQD scheme. Updating the initial values as described
in Appendix D yields the following mapping

xi �→ xi+1, 1 ≤ i < 5,

x5 �→
x1y1

y�1
,

y0 �→ y1,

y1 �→ y�1 = x1 + y0 − x5 − z0 +
x5x4z0

x1x2
,

z0 �→
x4z0

x1
.

(4.8)

The characteristic polynomial of the monodromy matrix is given by

Det(µI− L) = µ2((µ− λ)2 + (µ− λ)I1 − λJJ � + I2) + λ(µI3 − I4),

where

I1 = (y0 − z0 + x1)
z0x4

x1
+ y1(z0 + x5 − y0),

I2 = z0x4x5y1,

I3 = (z0x2 − x5y1 − x2x1 − y0x2)x3x4 − x1y1(x5x4 + x2x5 + x2x3),
I4 = x1x2x3x4x5y1,

J = x1 + x3 + y0 − z0.

The integrals I1, I2, I3, I4, I5 = JJ �, I6 = J + J � are functionally independent.
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4.3.2. (2,-3)-reduction of the QQD scheme. Updating the initial values as described
in Appendix D yields the following mapping

xi �→ xi+1, i = 1, 2,

x3 �→ x�3 =
y1x1

y0
,

y0 �→ y1

y1 �→ y0 + z2 − z0,

zi �→ zi+1, i = 0, 1,

z2 �→
x�3z0

x3
.

(4.9)

The characteristic polynomial of the monodromy matrix is given by

Det(µI− L) =µ2((µ− λ)2 + µ((I4 − I2 + 1)I1 − I3 − JJ �) + λ(I3 + (2I2 − 3)I1))

+ λ2(µ(3− I2)− λ)I1,

where

I1 =
x2x1x3

y0
,

I2 =
z2

x3
+

y0

x3
+

y0

x1
+

y1

x2
,

I3 = x2z0 − x2y0 − x2z2 + z1x3 − x3y1 − y1x1,

I4 =
z0z1z2

x3
,

J = y0 − z0

5. Dimensional reduction

In this section we present the explicit formulae for the reduced variables, required
to implement the dimensional reduction of the mappings obtained in section 4 from
periodic reduction from the HADT equation and from the system (3.19). These
formulae arise from the symmetries of the partial difference equations. In certain
cases an extra scaling symmetry of the integrals has to be used to obtain the
dimensional reduction.

Whereas the dimensions of the s-reductions from the HADT equation, of the
intermediate system, and of the QQD scheme all coincide, these reductions differ
both with regard to the number of integrals we found in the previous section and
with regard to the number of symmetries we will encounter in the present section.
The question whether the s-reductions of the various equations are related, e.g.
through a change of variables, is left open.

5.1. The HADT equation. Equation (3.18) is invariant under the following con-
tinuous symmetries: u �→ u� and u �→ u�(−1)l

. The first yields a symmetry of
the mappings, whereas the second gives us a 2-symmetry of the mappings. Their
generators are

8�

i=1

xi
∂

∂xi
,

8�

i=1

(−1)ixi
∂

∂xi
.
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A set of joint invariants of these vector fields is given by

{w1 =
x1x4

x2x3
, w2 =

x2x5

x3x4
, w3 =

x3x6

x4x5
, w4 =

x4x7

x5x6
, w5 =

x5x8

x6x7
, w6 =

x6x1

x7x8
}.

In these variables the s = (2,−1) mapping (4.3) reads
wi �→ wi+1, 1 ≤ i < 5,

w5 �→
f

w2w3w4w5
, f = w2 − w5 + (w3 − w2)w4 + w1w2w3w4w5,

w6 �→
w2w4w6

w1f
.

(5.1)

which has three functionally independent invariants

I1 = w1 + w5 + w2w4(1− w1w3w5) +
w3 − 1
w2w3w4

, (5.2a)

I2 =
(w1w2w3w4 + w2 + w3 − 1)(w2w3w4w5 + w3 + w4 − 1)

w2w3w4
, (5.2b)

I3 = w2 + w3 + w4 − w4w2 + w1w2w3w4w5. (5.2c)

The 2-integral J is scaled by the generator of the second symmetry and so it does not
survive the reduction. The s = (2,−3) mapping (4.4) reduces to the six dimensional
mapping

wi �→ wi+1, 1 ≤ i < 5,

w5 �→
g

w4w5
, g = w1w2w3 +

1
w3

− 1
w4

w6 �→
w4w6

w1w3g

(5.3)

and has three functionally independent invariants

I1 = w3(w1w2 + w2w4 + w4w5) +
1
w3

,

I2 = w2w
2
3w4(w1w2 + w1w5 + w4w5)− w2w3 − w3w4 + w2w4,

JJ � = w3(w1w2w3w4 − 1)(w2w3w4w5 − 1).

5.2. The lattice system (3.19). For the case s = (2,−1) the mapping has a
symmetry and a 2-symmetry, which arise from scaling symmetries of the system.
Their generators are given by

7�

i=1

xi
∂

∂xi
,

7�

i=1

(−1)ixi
∂

∂xi
.

The integrals admit an extra scaling, which is neither a symmetry, nor a k-symmetry,
of the mapping, namely

x1
∂

∂x1
+ x2

∂

∂x2
− x5

∂

∂x5
− x6

∂

∂x6
− 2x7

∂

∂x7
.

Still, we can use joint invariants of these three vector fields,

w1 =
x1x4

x2x3
, w2 =

x5x2

x3x4
, w3 =

x3x6

x5x4
, w4 =

x4x7

x5x6
,

to reduce the dimension of the mapping by 3 dimensions. This is due to the fact
that if we reduce the third vector field by the first two the resulting vector field is a
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symmetry of the reduced mapping. The mapping (4.6) reduces to a four dimensional
mapping

wi �→ wi+1, 1 ≤ i < 4,

w4 �→
w2w4 − w2 − w3 − w4

w1w2w3w4
,

(5.4)

which admits two functionally independent integrals

I1 = w1 + w2 + w3 + w4 +
w1w3 + w2w4 − w1 − w2 − w3 − w4

w1w2w3w4
,

JJ � = (w1 + w2 + w3 + w4 − w1w3 − w1w4 − w2w4)
w1w2w3w4 + w2 + w3 − 1

w1w2w3w4
.

Similarly we find three reductions for the s = (2,−3) case. Here choosing vari-
ables

w1 =
y1

x3
, w2 =

y2

x4
, w3 =

y3

x5
, w4 =

x2x3

x1x4
, w5 =

x3x4

x2x5

reduces the mapping (4.7) to the five dimensional mapping

wi �→ wi+1, i = 1, 2, 4,

w3 �→ w1 + w�
5,

w5 �→ w�
5 =

1
(1 + w1 − w2)w4w5

.

(5.5)

This mapping admits the two integrals

I1 = w1(w2 − w1) + w2(w3 − w2) + w3(w1 − w3) + w4(w2 − w1 − 1)

+w5(w3 − w2 − 1)− 1
w4w5

,

JJ � = (1 + w2 − w3 − w4)
�
1− w2 + w3 − w5 − (w1 − w3 + w5)(w1 − w2)

− 1
w4w5

�
.

We note that in both cases the function J is no longer a 2-integral of the reduced
mapping, and that J + J � can not be expression in the reduced variables. Also,
in the s = (2,−3) case we have only two integrals for a five dimensional mapping
which is not enough for complete integrability. The reduction was done using 3
(scaling) symmetries of the integrals, but the function J is only invariant under one
of them. It turns out it is also invariant under a linear combination of the other
two. Using this, we can then perform 2-reduction for mapping (4.7), retaining all
three integrals. Choosing variables

z1 =
x2

2

x3x1
, z2 =

x2
3

x4x2
, z3 =

x2
4

x5x3
, z4 =

y2

x4
, z5 =

y3

x5
, z6 =

y1x5

y2
2

,

the mapping reads
zi �→ zi+1, i = 1, 2, 4

z3 �→ z�3 = z1z
2
2z2

3(1 + z6z
2
4z3 − z4)

z5 �→ z3(z�3 + z2
4z6)

z6 �→
z4

z�3z
2
5

,

(5.6)
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which has three invariants:

z6z3z
2
4(z6z

2
4z3+z1z2−z4−z5)+z2

4+z2
5−z4z5+

1
z1z2

2z3
−(z4−1)z1z2−(z5−z4−1)z3z2,

and J + J � and JJ �, where J = (1 + z4 − z5 − z1z2)(z1z2z3)−1.
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Appendix A. Some determinantal identities

In the establishment of the recursive structure we need a number of determinantal
identities, which we derive using the Sylvester Identity. So we present a proof of
the Sylvester identity, which was first presented by Kowalewski [20], Bareiss [2] and
Malaschonok [24, 25] and these seven proofs are presented together in [1].

We consider an (n + m)× (n + m) matrix R with elements rij and determinant
|R|, also written Det(R). Then we partition R and factor by block triangularization
such that

R =
�

A B
C D

�
=

�
A 0
C 1

�
.

�
1 A−1B
0 D − CA−1B

�
(A.1)

where A is a nonsingular square matrix of order n, then

|R| = |A|.|D − CA−1B|. (A.2)

If we multiply both sides by |A|m−1, this becomes

|A|m−1|R| = ||A|(D − CA−1B)|

because the determinant on the right side of (A.2) is of order m. We can reduce
this equation further to

|A|m−1|R| = ||A|D − C �AB|, (A.3)

since A−1 = �A
|A| (where �A represents the adjugate matrix of the inverse matrix

A−1), and the determinant of A is assumed to be �= 0. Specifying some entries in
(A.1), taking A to be an n × n block and D to be an m ×m block, we have the
formula:

(Det(A))m−1

�����������

A | b1 . . . bm

− + − − −
ct
1 |
... | D

ct
m |

�����������

= Detm×m

�
Detn×n(A)Dij − (ct

i
�Abj)

�

i,j=1,··· ,m

(A.4)
in which the full matrix is supplemented with m n-component column vectors bi

and m n-component row-vectors ct
i. If we consider the case m = 2 ie. the removal

of two rows and columns, then we get then determinant identity

(Det(A))

��������

A | b1 b2

− + − −
ct
1 | d11 d12

ct
2 | d21 d22

��������
= Det2×2

�
(Det(A))

�
d11 d12

d21 d22

�
−

�
ct
1

�Ab1 ct
1

�Ab2

ct
2

�Ab1 ct
2

�Ab2

��

= [Det(A)d11 − ct
1

�Ab1] [Det(A)d22 − ct
2

�Ab2]

−[Det(A)d21 − ct
2

�Ab1] [Det(A)d12 − ct
1

�Ab2],
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which can be symbolically written as:
���������

���������

���������

���������

=

���������

���������

×

���������

���������

−

���������

���������

×

���������

���������

(A.5)

(where the red lines denote rows and columns omitted from the original determi-
nant). It is then necessary to reorder the position of the row and column to tailor
the identity to our requirements.

While (A.5) is the key identity by which the recurrence structure for ordinary
one-variable orthogonal polynomials is obtained, for the elliptic two-variable orthog-
onal polynomials we need (in addition to (A.5)), determinantal identities involving
the simultaneous removal of more than two rows and columns. Thus, the main
identity we use from the general formula (A.4) will be the case m = 3, leading
to the different recurrence relations for (3.3) and (3.7). So considering m = 3 we
obtain from (A.4) the following 3-row/column Sylvester type identity:

���������

���������

×

���������

���������

=

���������

���������

×

���������

���������

−

���������

���������

×

���������

���������

+

���������

���������

×

���������

���������

,

(A.6)

which is obtained from the expansion of (A.4) for m = 3 after recombination of
terms using the earlier 2-row/column Sylvester identity (A.5).
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Appendix B. Intermediate determinants

Previously we have chosen to apply a 3 row/column Sylvester identity to the P (l)
k

and Q(l)
k polynomials since this identity (A.6) does not introduce new determinants.

However for some 2 row/column Sylvester identities it is possible to control new
determinants, which can be removed to still give equations in term P (l)

k and Q(l)
k

only. These “ intermediate” determinants are introduced here.

B.1. The linear P (l)
k equation. By considering the P (l)

k with the first column and
penultimate row removed we get the intermediate quantity:

T (l)
k−1(x, y) ≡

��������������

�el, e2� �el,e3� · · · · · · �el,ek�
�el+1, e2� �el+1, e3� · · · · · · �el+1,ek�

...
...

...
...

...
...

�el+k−3,e2� �el+k−3, e3� · · · · · · �el+k−3, ek�
e2 e3 · · · · · · ek

��������������

�
Π(l)

k−2 ,

(B.1)
together with a corresponding Hankel determinant:

Π(l)
k−1 ≡

������������

�el,e2� �el,e3� · · · · · · �el, ek�
�el+1, e2� �el+1,e3� · · · · · · �el+1,ek�

...
...

...
...

...
...

�el+k−2, e2� �el+k−2, e3� · · · · · · �el+k−2, ek�

������������

. (B.2)

Using the usual Sylvester identity we can now derive the following two equations
���������

P (l)
k

���������

⇒ P (l)
k = T (l+1)

k−1 −
∆(l+1)

k−2 Π(l)
k−1

∆(l)
k−1Π

(l+1)
k−2

P (l+1)
k−1 , (B.3a)

���������

P (l)
k

���������

⇒ P (l)
k = T (l)

k−1 −
∆(l)

k−2Π
(l)
k−1

∆(l)
k−1Π

(l)
k−2

P (l)
k−1 . (B.3b)

Eliminating the T (l)
k polynomials in favor of the P (l)

k polynomials and using a Hankel
identity

���������

Π(l)
k

���������

⇒ Π(l)
k ∆(l+3)

k−2 = Π(l)
k−1∆

(l+3)
k−1 −Π(l+1)

k−1 ∆(l+2)
k−1 (B.4)

allows the derivation of the linear relation in P (l)
k (3.12).
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B.2. The bilinear relation in ∆(l)
k ,Θ(l)

k . It is possible to combine some three-
term bilinear Hankel relations, to give a three-term relation in terms of ∆(l)

k , Θ(l)
k .

This particular identity is achieved with the introduction of a new intermediate

determinant Ξ which is essentially Θ with the first column and last row removed.

���������

∆(l)
k

���������

⇒ ∆(l)
k Π(l+2)

k−2 = Θ(l)
k−1Π

(l+1)
k−1 −∆(l+1)

k−1 Ξ(l)
k−1 (B.5a)

���������

Θ(l)
k

���������

⇒ Θ(l)
k Π(l+2)

k−2 = Θ(l)
k−1Π

(l+2)
k−1 −∆(l+2)

k−1 Ξ(l)
k−1 (B.5b)

where

Ξ(l)
k−1 ≡

������������

�el, e2� �el, e3� · · · · · · �el,ek�
�el+2,e2� �el+2, e3� · · · · · · �el+2, ek�

...
...

...
...

...
...

�el+k−1, e2� �el+k−1,e3� · · · · · · �el+k−1, ek�

������������

. (B.6)

Ξ is then eliminated in the combination of the two bilinear relations (B.5).

∆(l+1)
k−1 (Θ(l)

k−1Π
(l+2)
k−1 −Θ(l)

k Π(l+2)
k−2 ) = ∆(l+2)

k−1 (Θ(l)
k−1Π

(l+1)
k−1 −∆(l)

k Π(l+2)
k−2 ) (B.7)

This equation can be expanded (in the third term) using a third bilinear equation

���������

∆(l)
k

���������

⇒ ∆(l)
k Π(l+1)

k−2 = ∆(l)
k−1Π

(l+1)
k−1 −∆(l+1)

k−1 Π(l)
k−1 . (B.8)

Thus we are left with an equation in terms of ∆ and Θ only.

∆(l+1)
k−1 (Θ(l)

k−1Π
(l+2)
k−1 −Θ(l)

k Π(l+2)
k−2 ) = Θ(l)

k−1(∆
(l+1)
k−1 Π(l+2)

k−1 −∆(l+1)
k Π(l+2)

k−2 )

−∆(l+2)
k−1 ∆(l)

k Π(l+2)
k−2

After we have canceled the necessary terms, we are left with (3.17b).

B.3. Relations in P (l)
k and Q(l)

k . For relations involving the Hankel determinants
P (l)

k and Q(l)
k we can derive a recurrence relation xQ(l)

k and two linear relations. By
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implementing a cutting of rows and columns on the matrix for P (l)
k according to:

����������������

����������������

×

����������������

����������������

=

����������������

����������������

×

����������������

����������������

−

����������������

����������������

×

����������������

����������������

+

����������������

����������������

×

����������������

����������������

and applying the 3-row/column Sylvester identity in that situation, we obtain:

P (l)
k = xQ(l+2)

k−2 −
∆(l)

k−2Θ
(l+2)
k−2

∆(l)
k−1Θ

(l+2)
k−3

P (l)
k−1 +

Θ(l)
k−2∆

(l+2)
k−2

∆(l)
k−1Θ

(l+2)
k−3

Q(l)
k−1 , l �= 0, 1 . (B.9)

For the linear relations we first obtain

���������

Q(l)
k

���������

⇒ Q(l)
k = T (l+2)

k−1 −
∆(l+2)

k−2 Γ(l)
k−1

Θ(l)
k−1Π

(l+2)
k−2

P (l+2)
k−1 , (B.10)

which by eliminating the T (l)
k using (B.3a) together with the Hankel identity (B.5a)

leads to

Q(l)
k = P (l+1)

k +
∆(l)

k ∆(l+2)
k−2

Θ(l)
k−1∆

(l+1)
k−1

P (l+2)
k−1 . (B.11)

This three term equation in terms of Q(l)
k and P (l)

k is similar to (3.12). To find an-
other of this type of equation we must first introduce the intermediate polynomials
S(l)

k−1 :

S(l)
k−1(x, y) ≡

��������������

�el,e2� �el, e3� · · · · · · �el, ek�
�el+2, e2� �el+2,e3� · · · · · · �el+2, ek�

...
...

...
...

...
...

�el+k−2, e2� �el+k−2, e3� · · · · · · �el+k−2,ek�
e2 e3 · · · · · · ek

��������������

�
Γ(l)

k−2 .

(B.12)
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Then applying the following Sylvester identities to P (l)
k and Q(l)

k , we subsequently
obtain the relations:

���������

Q(l)
k

���������

⇒ Q(l)
k = S(l)

k−1 −
Γ(l)

k−1Θ
(l)
k−2

Γ(l)
k−2Θ

(l)
k−1

Q(l)
k−1 , (B.13a)

���������

P (l)
k

���������

⇒ P (l)
k = S(l)

k−1 −
Π(l)

k−1Θ
(l)
k−2

Γ(l)
k−2∆

(l)
k−1

Q(l)
k−1 . (B.13b)

We eliminate S(l)
k−1 and making use of the Hankel determinant identity

���������

∆(l)
k

���������

⇒ ∆(l)
k Ξ(l)

k−2 = ∆(l)
k−1Ξ

(l)
k−1 −Θ(l)

k−1Π
(l)
k−1 (B.14)

which leaves:

Q(l)
k = P (l)

k −
∆(l)

k Θ(l)
k−2

∆(l)
k−1Θ

(l)
k−1

Q(l)
k−1 . (B.15)
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Appendix C. s-Periodic initial value problems for system (3.19)

Proposition 3 is obtained by considering the ranges of the n-values for the equa-
tions with periods taken in the remaining regions. When s ∈ R2 (see Figure 9) we
get the following reduction.

0 b 2a− b 2a 4a− b

ρ

σ ρ

σ ρ

ρ

σ

σ

Figure 15. s-Reduction for system (3.19), with s ∈ R2

So we first need to calculate the values of ρ for b ≤ n ≤ 2a− b. This can be done
using equation (3.17a) because the values of σ at n smaller than 2a+(2a− b− b) =
4a − 2b are given initially. Then the values of σ at n = 4a − b are determined by
(3.17b). When s ∈ R3 we get

0 2a− b a b a + b 4a− b

ρ

σ ρ ρ

σ ρ σ

σ

Figure 16. s-Reduction for the system (3.19), with s ∈ R3

In Figure 16 the dashed line indicates that a + b can either be to the left, or to
the right of 4a− b. We have a+ b < 4a− b in the region 3a > 2b > 2a. Here it does
not matter whether one first calculates the values of ρ at n = b, using equation
(3.17a), or the values of σ at n = 4a − b, using equation (3.17b). In the region
3a ≤ 2b < 4a we have a + b ≥ 4a− b. Here we need first calculate the values of σ
for 4a − b ≤ n ≤ a + b, using equation (3.17b). This can be done indeed, because
the values of ρ with n ≤ 2a − b + (a + b) − (4a − b) = b − a are given initially.
Subsequently the values of ρ at n = b can be obtained.

When s ∈ R4 we also need to distinguish two cases, but here this leads to
different initial value problems. When 2a > b ≤ 3a we can first calculate the values
of σ at n = 3b− 4a, and then the values of ρ at n = 3b− 5a, see Figure 17.

0 2b− 5a b− 2a 2b− 4a 3b− 5a 3b− 4a

σ

ρ

ρ ρ

σ ρ

σ

σ

Figure 17. s-Reduction for the system (3.19), with s ∈ R4, b ≤ 3a

When b ≥ 3a we need first calculate the values of ρ at n = 2b− 4a, and then the
values of σ at n = 3b− 4a, see Figure 18.
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0 b− 4a b− 3a b− 2a 2b− 4a 2b− 3a 3b− 4a

σ

ρ σ

ρ ρ

ρ σ

σ

Figure 18. s-Reduction for the system (3.19), with s ∈ R4, b ≥ 3a

We leave it to the reader to check that the given initial value problems can also be
updated in the negative n-direction. In Appendix E we illustrate with an example
that this is not necessarily the case, and thus has to be verified separately.
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Appendix D. s-Periodic initial value problems for the QQD scheme

The stencils of the QQD scheme (3.20) are depicted in Figure 19.

u

v
w

v
w u

u

v

u
v

u

w
u w

Figure 19. Graphical representation of the QQD scheme

To describe initial value problems for the QQD scheme we follow the following
procedure. We project the stencils of the three equations onto lines with directions
in different regions and translate them in such a way that, given the values of the
fields for certain ranges of n, each equation determines a value for an update of one
of the fields. The proof of Proposition consists of 5 pictures, one for each region.
For every picture one has to check the following:

(1) that the ranges of n-values for u, v, w correspond to each equation in the
system, for any chosen direction s in the particular region, this includes
checking the order of the linear expressions in a, b.

(2) that, given the initial values for u, v, w, every equation can be used to
update one of the fields (in both directions).

0 b 2a 2a + b 2a + 2b 3a + b 3a + 2b

u

u

u

v

w

v w

u w

u v

v w u

Figure 20. s-Reduction of the QQD scheme, s ∈ R1

We will perform check (1) and check (2, positive direction) for the first picture,
and check (2, positive direction) for the other pictures. This enables one to perform
s-reduction for any given s ∈ ∪iRi. The rest of the proof is left to the reader.

When � = 1, as in region R1, with one step to the right (downwards) n increases
by b (by a). Let n be equal to 0 on a line with direction s ∈ R1 through the first
point u in the first equation of the system (the upper-left point in Figure 19). We
let the upper-left point from the second equation coincide with the one of the first
equation and we let the upper-left point from the third equation be one step to the
right, so that it is at distance b from the others, as in Figure 21. Moving the line
over the Figure 21 in downward direction, depending on the direction s, the line
will either first cross this point at distance b, or the point in the second equation
at distance 2a. This is indicated in Figure 20 by the dashed line between b and 2a.
Next the line moves over the point with distance 2a + b, and then it depends on s
whether 2a + 2b or 3a + b is encountered first. This is again indicated by a dashed
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u

v
w

v
w u

u

v

u

u

u w

Figure 21. The equations of the QQD scheme on top of each
other, and a line with direction (2, 1) ∈ R1.

line. Thus, Figure 20 represents the ranges of the n-values of the three fields of the
three equations in the QQD scheme and their relative positions, for s ∈ R1.

Next, suppose initially we are given the values of u at 0 ≤ n < 3a + 2b, of v at
2a ≤ n < 3a + b, and of w at 2a + b ≤ n < 2a + 2b. Then, for all s ∈ R1, we can
use the second equation to determine the value of v at n = 3a + b. If a < b, then
we know all values of w at 2a + b ≤ n < 3a + b, and hence we can use the first
equation to calculate the value of u at n = 3a + 2b. Then, we can calculate the
value of w at n = 2a + 2b. However, if a ≥ b, then we first have to use the last
equation to calculate all values of w at 2a + 2b ≤ n ≤ 3a + b, before we can use the
first equation to calculate the value of u at n = 3a + 2b. In both cases, the initial
value problem is well-posed.

0 b a 2a 3a− b 3a

v w

w

u

u

v

u w

v

v w

u

u

u

Figure 22. s-Reduction of the QQD scheme, s ∈ R2

In R2 we first use the third equation to determine the values of w at b ≤ n ≤ a,
then the first equation to determine the values of v at n = a, and finally the second
equation to determine the values of u at n = 3a.

0 b− a a 3a− b b 2a

v w

v

w

u v

u

w

w

v u u

u

u

Figure 23. s-Reduction of the QQD scheme, s ∈ R3
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In R3 the values of u at n = 2a and the values of v at n = a can be determined
independently, using the second and first equation, respectively. After having de-
termined the values of u at n = 2a we are able to find the w at n = b, using the
third equation.

0 3a− b a b− a 2a b

v

v

w

w u v w

u v

u

u

u

u w

Figure 24. s-Reduction of the QQD scheme, s ∈ R4

In R4 the values of u at n = b and the values of v at n = b−a can be determined
independently, using the first and second equation, respectively. After having de-
termined the values of u at n = b we are able to find the w at n = b, using the
third equation.

0 a 2a 3a b− a b 2b− a

w

v

u

u

u

v w

u

u

v

w

v

w u

Figure 25. s-Reduction of the QQD scheme, s ∈ R5

In R5 the values of v and w at n = b can be determined independently, using
the second and third equation, respectively. Next the values of u at n = 2b− a can
be determined using the first equation.
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Appendix E. A non-invertible reduction of the QQD scheme

Using the same notation as in section 4.3, consider initial values {x0, x1, x2, x3, x4,
y0, y1, z0, z1} for the (2,−1) reduction of the QQD scheme. We use equation (3.20b)
to determine x5, equation (3.20c) to determine z2 and equation (3.20a) to determine
y2. Thus we find the nine dimensional mapping

xi �→ xi+1, 0 ≤ i < 5,

x4 �→ x5 =
y0x0

y0
,

y0 �→ y1,

y1 �→ x1 + y0 − z0 + z2 − x5,

z0 �→ z1,

z1 �→ z2 =
x5

x2
z1.

(D.1)

for which the staircase method does yield five functionally independent integrals.
However, the mapping is not invertible and so the initial value problem is not well-
posed. This example illustrates that in order to prove the well-posedness of an
initial value problem one has to show the initial values can be updated in both
directions.
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