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We study mappings obtained as s-periodic reductions of the lattice Korteweg—de Vries
equation. For small s € N, we establish upper bounds on the growth of the degree of
the numerator of their iterates. These upper bounds appear to be exact. Moreover, we
conjecture that for any sy, s, that are co-prime, the growth is ~ (2s15,) ! n2, except
when s; 4 s, = 4, where the growth is linear ~ n. Also, we conjecture the degree of the
nth iterate in projective space to be ~ (s; + $)(2s182) 2.
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1. Introduction

Integrable mappings are characterized by low complexity [2,19]. This idea culminated in
the notion of algebraic entropy, introduced by Viallet and collaborators [4,6,8]. Low
complexity means vanishing algebraic entropy which corresponds to polynomial growth
of degrees of iterates of the mapping. A first proof of such a polynomial bound on the
degrees was given in [5]. In [3] it was proven that foliation by invariant curves implies zero
algebraic entropy. Examples show that degree growth is a better indication of integrability
than singularity confinement [8,9], cf. the discussion in [13]. Recently, the notion has been
extended to lattice equations [16,17] and used to find new integrable models [10].

In practice, one calculates the growth of degrees d,, of the first n iterates of a mapping.
Then one guesses the pattern by fitting the generating function g(x) = > d,x" with a
rational function p(x)/q(x) = g(x), and the algebraic entropy lim,—log(d,)/n is obtained
as the logarithm of the inverse of the smallest zero of ¢g(x), see [17]. We present an
elementary method that enables one to derive upper bounds for the growth of degrees. Our
formulae exactly produce all degrees that we have been able to calculate.

2. Outline

We will perform s-periodic reductions of the lattice Korteweg—de Vries equation

Wi — Urpt 1)W1 m — Upms1) = Q. (D

This corresponds to studying solutions that satisfy the periodicity condition
Ulm = Ulfs, mts,- We choose 51 and s, = 51 to be co-prime natural numbers. Under this
assumption, the lattice equation reduces to a single ordinary difference equation (OAE) of
order g := 51 + 52 (or a g-dimensional mapping). For background on periodic reductions
we refer to [11,14]. There are ¢ initial values, which we denote by x, x», ..., x,. The OAE,
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or the mapping, can be used to generate a solution x,,cz, which are rational functions in the
initial values.

One aim is to find a formula for the degree of the numerator (or denominator) of x,,, as a
function of n. We set x,, = a, /b, and derive a system of two OAEs for a,, and b,,, which are
polynomials in the initial values. By choosing b, = 1 forn = 1,2, ..., g, the degree (i.e.
total degree in the variables x; = ay, ...,x, = a,) of the numerator of x, is given by
d; — ds. Here, d” denotes the degree of a polynomial p,, and g, is the greatest common
divisor g, = gcd(a,, by,). First, we obtain a recursive formula for d;, = dfl + 1. Then, we
look at the growth of g,,. After a number of iterates, a miracle occurs: any divisor of b, will
divide g,44(q # 4). This statement has been verified for a range of periodicities s, but
seems to be difficult to prove in general. Next, we find a recurrence formula for the growth
of the multiplicities of divisors: a divisor of g, divides g,; with multiplicity ¢;, where ¢
is an integer sequence satisfying a linear recurrence relation. We define a new set of
polynomials ¢, = b, /f, where f is the product of all divisors of b;~, with the right
multiplicities as given by the integer sequence ¢. Multiplying by f (which is a product
ci<ys) and taking the degree on both sides of ¢, f = b,, we find that d; + (d° *1), = dﬁ,
where * denotes discrete convolution

(d*t)n+l :dltn+d2tn*1 +"'+dntl- (2)

Using the recursive formulae for ¢ ” and ¢, we find a recursive formula for d ¢, which can be
solved to find polynomial growth of degree 2. Moreover, we obtain the coefficient of the
leading term: (2s152) L.

We also consider the projective analogues of these mappings. We introduce
homogeneous coordinates and derive a polynomial mapping in g-dimensional projective
space. Here, the aim is to find a formula for the degrees of the components of this mapping.
The strategy is similar as the above. Once one has a divisor c; of certain components of the
mapping, one can derive a recursive formula for the multiplicities at higher iterates of
the mapping. At a certain point these multiplicities are (miraculously) higher than expected,
after which the growth can be described recursively again. As before, a convolution
formula provides us with a recurrence for the degrees of the divisors. In this case the degree
of the nthiterate is givenby thesum 1 +d;_, +d,_, + -+ + d,_,. This growth can also be
described recursively and the leading term is found to be (s; + $2)(25152) " 'n2.

The case s = (3, 1) is exceptional. Here the growth is linear ~ n, and the mapping is
linearizable. We provide its explicit solution in terms of an interesting sequence of
polynomials, see Section 3.3 and the Appendix.

3. Growth of degrees of rational mappings

We first illustrate our approach by considering a low-dimensional example, taking
s=(2,1).

3.1 A low-dimensional example

We take initial values xi, x,, x3 on a staircase as shown in Figure 1. The x,, are rational
functions of x, x,, x3, @ which can be calculated recursively using

Xn = P(xn—17xn—27xn—3)7 (3)
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Figure 1. Staircase with (1,2) periodic initial values (x;, x,, x3) solved to the right.

where P solves equation (1) for 41,

o

Uperm = Py Uit mt 1, Uims1) = Um) +———————. 4)
Ulm — Ul+1m+1
We write x, = a,/b,. The recurrence (3) yields the following recurrences for a, b:
an = ap—3wy — aby—1by—2b,—3, (5a)
by = bp—3wn, (5b)
where w,, = a,-»b,—1 — a,—1b,—». We choose b; = b, = by = 1, so that a,, and b,, are

polynomials in the variables (initial values) a;, a, and as. Their total degree will be
denoted d” and d”, respectively. From (5) it follows that the degrees are at most

dY=max(d)_, +d'_,+d'_y,d_ +d,_,+d_ |, d_ +d_,+d_s),

n—1"%n—1

dy=max(d, | +dy_,+d, 5.dy +dy ,+d; ).
Given the initial degrees d* =d”+1=1 (n=1,2,3), we find that

dy=d,_ +d, ,+d, -1,

(6)
d=d_+d_,+d_,+1

are upper bounds for the degrees of a,, and b,,, and d;, = dﬁ + 1 (n € N). The sequence d”
comprises sums of tribonacci numbers, cf. [15, seq. AO08937]. Certainly, these sequences
grow exponentially. However, there will be a lot of cancellations in x, = a,/b, due to
common factors of a,,b,. We will prove that the degree of the greatest common divisor

g&n = ged(ay, by)

is sufficiently large to ensure that d;, — d grows polynomially.
Suppose that ' divides g; with k € {n — 1,n — 2,n — 3}. Then from (5) it follows
that /™ divides g,, where

Iy = ty—1 +ty—2 + 14—3. (7
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We define an integer sequence ¢ by r; = t, = 3 — 2 = 0 and the above recursion. Such
numbers ¢ are called tribonacci numbers, cf. [15, seq. A000073]. Thus, we have the
following:

Flen = flgnsi, iEN.

By direct calculation, using Maple and the recurrences (5), we find that the polynomial
wi divides g,+3 (n > 3). This implies that w)/ divides g,1;. We can now write symbolically

bl‘ =C; = 1, = 1,2,3,
b,‘ = Cj, i=4,5,6,

b7 = C7C42‘7

by = cscicg = Cgcf{‘c?,

_ 4.2 2 tg 17 e Is 14 13 1 1
by = cocyc5c = cocfcycycicscgccy,

n—1

b, = C".H e (8)

i=1

which defines polynomials c,. Taking the degree on both sides of equation (8), we find
dﬁ =d, + (d°*1), where * denotes discrete convolution, see (2). From this we infer,
using the recurrence for ¢ (7), that

d) —dS = dity g+ +dS_yts +d_st3
=d{(ty2+th3+t,a)+--+d,_,(t3+10+1)+d, ;3
= (dc * [)n—l + (dL * t)n—2 + (dc * t)n—3 + 2d273
= dzﬂ —d,_ + dzfz —d,_,+ dZ% +d,_s,

which, using the recursion for d&* (6), shows that
dy=d, +d,_,—d +1.

Together with di = d5 = d5 = 0, this gives a sequence of quarter squares, cf. [15, seq.
A033638],

(n —2)°

dS = .

n ==

Note that the ¢;<,s in (8) are divisors of g,. Thus the quantity d;, — d% is bounded from
above by dz + 1 — (d°*1), = d + 1, which grows asymptotically ~ n?/4.

3.2  More general periodic reductions

Next, we consider the mapping obtained from s-periodic reduction taking s; and s, to be
co-prime. Without loss of generality we may assume s; = s,. Remember we denote
s1 + s = g. Initial values x;,x,, ..., x, are given on a standard staircase [14], see also
[11] in which a general theory of periodic reductions for equations not necessarily defined
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on a square has been developed. The initial values are updated by a recurrence of order g:
Xn = P(Xn—s,5 Xn—s, > Xn—q), 9

cf. equation (4). For example, when s = (3, 2), we pose initial values as in Figure 2. These

are updated by shifting over (2, 1), e.g. x5 — xg = P(x4, X3, X1).
By setting x, = a,/b,, we derive for n > g as follows:

ap = Ap—gWn — abn*s.bn*szbnfqa (10)
by = bugWn, (11)
where w, = a,—5,b,—5, — ayp—5,bp—5,. We choose b; =1,i=1,2, ...,q, so that a, and b,
are polynomials in ay,as, ...,a,. As before, from initial degrees d, = dz +1=10n=

1,2, ...,q) we find that d;, :d2+1 (n € N), and that

di=di  +di_ +di — 1, di=d,_ +d, +d,_ +]

n—si n—sp n n—si n—s

are upper bounds for the degrees of a,, and b,,. If f'* divides g; with k < n, then f'» divides
g, Where

Iy = ty—y + In—s, + Ih—q. (12)

If initially 7, = 0,i=1,2, ...,q9 — 1, t, = 2, then

legn :>ftq+i|gn+i7 ieN.
CONJECTURE 1. The polynomial w? divides 8ntq (forn > q).

It turns out that this conjecture is more difficult to verify for s, << s;. We verified the
conjecture in the following ranges of values s, < sy: s, = 1, ..., 5 with s, <1 = 9s; and
s1=sy+ 1 withs, =6,7,...,25,50,100, 150,200, 250, 1000.

X X3 X5
(@] (@] (@] L ®
x2 X4 X, X
o o o o®
X1 'x3 X5 OX7 ox9 ox“
X4 o X6 oxs o X10 o X12 o X14

Figure 2. (3,2) periodic initial value problem updated in direction (2, 1).
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The conjecture would imply that w’ divides g,;. Assuming it, we can define
polynomials c; by

n—1
b,=c,l|c
i=1

Tn—i
i

which yields dfl =d; +(d¢ *1),. Using the recurrences for ¢ and d b we find
d; = d)clfsl + dzfsz - dfl*q + L.
In the case s = (3, 2), the sequence [15, seq. A001399]
0,0,0,0,0,1,1,2,3,4,5,7,8,10,12,14,16,19,21,24, ...

is given by

47 (=" &+t 1 L, 3
c 2/ CCn+— — 1.
h=pt st P LART I

In general, the quantity d;, — d% is bounded from above by d;, + 1, whose asymptotic
growth is

~ (25152) 2.

3.3 The exceptional case

The case s = (3, 1) is an exceptional case. Here the growth is linear, which resembles the
fact that the mapping can be linearized. Introducing & = (x; — x3)(x» — x4), the mapping

o
(x1,X2,X3,X4) — | X2,X3,X4,X] +
X4 — X2

reduces to 1 — « — h, which is an involution. Nevertheless, it is interesting to see what
cancellations cause the growth to become linear.
We set x, = a, /b, to find

a, = ap—4(ay—3by—1 — ay—1b,—3) — ab,—1b,—3b,—4, (13)
b, = bn—4(an—3bn—l - an—lbn—3)- (14)

Taking initial values (a;,a,a3,a4) = (x —w,y+2z,—w,z) and by = by, = b3 = by = 1,
we have found that (see Appendix)

an = y" 2 (a = xy)" "y, (15)

b, =y (a — xy)"™x* (16)
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where 1o =t =59 =51 = 0 and

n
Ing2 = tyy1 + 1, + |.*J7

1 (17)

n
Spt2 = Spy1 + S, + (_l)nl_ZJ

Define r, = s,+4 — ty,+1. One can show that r, = n(1 + (—1)")/4, which is non-negative.
It follows that the a,,/c, is a common divisor of a,, and b,,. Dividing out this factor we are
left with denominator growth (n = 4)

dﬁ _dz/c =rp—3+2r-4+r,-s =n—4

Note that in this case the common divisor of a, and b,, consists of three different factors
only, whereas for other values of s the number of common divisors grows linearly with n.
Here, the multiplicity grows faster than what can be expected from the form of the
recurrence. In other words, a ‘miracle’ happens at every iterate: from (17) one can derive

n
tiya =ty + o 1+ lijﬂ

which should be compared to (12), taking s; = 1,5, = 3, ¢ = 4.

4. Growth of degrees of projective mappings

The entropy of a rational mapping has also been defined in terms of the growth of the
degree of its equivalent in projective space [4]. Again we first consider the case s = (2, 1).

4.1 A low-dimensional example

The 3D mapping is

o
(x1,X2,x3) — (xz,x3,xl + )
X3 — Xp

We set x; = a;/aq, i = 1,2,3. If we denote the image by b;/bs, then the homogenized
mapping is a +— b:

a by ax(az — az)
a, b, az(az — az)
az H b3 - aj(az —ax) + aaj |’ (13)
as by as(az — az)

Note that the first, second and fourth components of the image share a common divisor.
We are interested in the growth of the multiplicities of such a divisor. Suppose that ¢
divides a;, a, and a4. From (18) it follows that ¢ is a common divisor of by, bz and b;,.
We continue the argument

c|(a1,a3,a4) = Cl(bZa b37b4)7
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and
Cl(aZa 613,614) = Czl(bbea b4)a C|b3'

However, if we denote the common divisor of by, b,, b4 by ¢, then miraculously ¢ divides
all four components of the fourth iterate of a — b. At the next iterates the multiplicities
double. Denoting the multiplicity of ¢ in the fourth component of the ith iterate by #;, we
have ty =t, =t; = 1, t4, = 3 and (at least) t,~4 = 2t,—1. We now introduce two sets of
polynomials c¢;, d; as follows:

a arc azcicy dicrcs
a ascy dicy drcics
— — — —
as dy dacy dycicy
ag ayCq asCi1Cr asC102C3
dzc?6364 d3C?C%C4C5
dgc?CZC4 d4c?c§C3C5
5 — 6.3 e
dscicrcs dscicicacy
3 6.3
a4C1C2C3C4 a4C1C5C3C4C5
d n—3 Inp1—i
n*2H, 16 Cn—1Cn
n—2 Int1— x
Vl 11_[1 lC
— (19)
14
d Hﬂ n+l i

a4H:‘:lC;n+l*i
As an ordinary polynomial map, the degree of the nth iterate is
2" =1+ (d 1),y

Subtracting 2" = 2 4 2(d€ *1),, from this equation, and using the recursion for ¢, we find
that

d,=d, +d,_,—d +1.
Projectively, the nth iterate (with n > 2) is
(dp—2Cn—1Cny dpy—1Cn—2Cp, dyCr—2Cy—1,A4C1—2Cn—1Cp),
after division by the common factor H:':_fcf"*"" . We define

n—1
pma ] o
i=max (1,n—3)
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The projective degree is
dZ>3 =1 + d;_] + d;_z + dfl—?)

The recursion for d° yields &/ = d!,_, +d_, — d',_; + 3. Together with initial values

d? =271 i=1,2,3, this gives the sequence [15, seq. A084684]
1,2,4,8,13,20,28,38,49,62, ...,

which agrees with computations in projective space. The growth

15 (=" 3 3,

P = _— S e

dr 3 g ok + 1"

is the same as for a mapping connected to the discrete Painlevé I equation [4,9].

4.2 More general periodic reductions

Now we consider the projective mapping that corresponds to s-periodic reduction with
s1 and s, co-prime. We take s; = 55, and ¢ = 51 + 5. It is convenient to take initial
values xo,x2, ...,x,—1. They are updated using the recurrence (9), or equivalently, the
g-dimensional mapping

('xo’xl? A ’xq_l) = (xl) A ’xq_17P(xsl’x52’x0))'

Denoting the image of x; = a;/a, by b;/b,, we find a mapping a — b in g-dimensional
projective space

ao ai(as, — as,)
aj 112(as1 - asz)
—
g1 ap(as, — ay,) + aé
a, ay(as, — ay,)

As in the case s = (2, 1), there is a common factor dividing all components but 1. When
s; > 1, we have

02|(b0,blv ey bq*3a bq*hbq)
cl(ag,ay, ... ,a4-2,ay) =

Clbq_z.
When s; > 2, we have
2 4
c*l(ag, ar, ... a4-3,a4-1,a,), c*|(bo, by, ..., bg—4,by2,by1,by)
= 3
clag—» c’lby—3.

This doubling in most components continues until after s; — 1 iterations we are led to
(ifs, >s514+ 1

2s1*1 S —
c |(ao,a1,...,aS2_1,aS2+1,...,aq), CZI ll(b(),bh""bsz*%bsza "~7bq)

=
si—1_ 251 -2
' ay, c |bg,—1.
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Then we have doubling again, until after s, — 1 iterations where the growth is similar to
the above. Doubling continues until . ..

CONJECTURE 2. The ‘miracle’ happens after q iterations where suddenly the multiplicity is
one higher than double the previous one.

Thus, we have only verified for a couple of small values of s, s,. Conjecture 2 is harder
to verify, using direct calculation, than Conjecture 1. We will assume it in the sequel. We
define integer sequences by #; = 1 and

Ztn_L n=sy,s2,
oyl = 2t, +1, n=s1+ 57,
2ty, otherwise.

We now introduce two sets of polynomials ¢;, d; as follows:

t It
aop aycy acyc,
t 1t
ap axcy ascyc,
— — — - —
t -1 t
ag—2 aq_lcl‘ d]C l
Hn—1 t t—1
aq-1 dic} drcicy
1 I 1
dq aqC g€ &y
-1 fg—1 1 tq+l -1 51
dlcl C2 ...cq d2 ...Cq
lq ’q 1—1 t lgt1 tg Tq—171 t
dsc, ey dic)" ¢y c3 ey
—
ly ., 271 Ig+1 =11
dg-1cy ey ¢l dyc, g Capy
d,c - c -1 dyiic c’zc )
q¢1 Co—1 q+1 1 q+1
lg . I lg+1 fh
agey -y lcq a,cy cch+1
Int1—
dy— q+lH,—1cn l/cn*qul
Tnt1—
dp— q+2Hz_1C" fen—q+2
— - (20)
n Tnt1—i
dp—1 ][y fen
n Tnt1—i
dnlel Cin+ ‘/Cn
n Int1-i
ag[[i=ic;
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As an ordinary polynomial map, the degree of the nth iterate is
2" =1+ (d 1)

Subtracting 2" = 2 4 2(d° *t),, from this equation and using the recursion for ¢, we find

1, l=n=ys,
d,_, +1, 51 <n= s,

4, = d,_, +d,_, +1, s <n=gq,
dy, +d_, —d,_,+1, g<n,

ordy =d;_ +d, . —d,_ +1foralln, taking d;_, = 0.

n—sp n—sp
Projectively, the last component of the (n — 1)st iterate is

n—1

Pn = aq H Ci,
i=max(l,n—q)
which has degree
n—1
=1+ Y d
i=max(l,n—q)
We find
n, l=n=s +1,
d_ +n—1, si+H1<n=s+1,
P —
di‘l dﬁ—sl + dfl—SZ + n-— 2’ S2 + 1 < n = Qa (21)
dg—Sl + df‘l’—s‘z B dl}z—q + q7 q < n.

For example, in the case s = (2, 3) the sequence of degrees
1,2,3,5,8,12,16,22,28,35,43,52,61,72,83,95,108, 122,136, ...
is given by

127 (=" ' 55,
=== ~ —Zh4+=— =1.
A I 9 o't ¢

In general, the recursion (21) yields asymptotic growth

~ (51 + 52)(25152) 'n?.

5. Conclusion

In [18] Viallet discussed two approaches: the heuristic method, where no proofs are
obtained, and serious singularity analysis, which is limited to 2D maps, or some exceptional
higher dimensional cases. The question was raised, how can we go further, in particular
to high dimensions? The arithmetical approach was given as one suggestion, cf. [1,7].
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In this paper, we have presented a different approach and showed that it works for high
dimensions, at least for (most) mappings obtained as reductions from an integrable lattice
equation. The only condition on the dimension is that one has to be able to iterate the g-
dimensional map ¢ times to verify Conjecture 1 or 2. The scope of this approach is left open
for future research, e.g. to consider other reductions, other lattice equations and non-
integrable or almost integrable maps.
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Note

1. The function & is a 2-integral of the mapping. In [12] k-symmetries are used to perform explicit
dimensional reduction of mappings related to (s1, 1) periodic reductions of lattice Korteweg—de
Vries. The dimension s; + 1 is reduced to s; or s; — 2, when s; is even or odd, respectively.
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Appendix: Solution of the (3,1)-map
We prove that the recurrences (13,14) yield expressions (15,16), with

Cont1 = Y& = W) 2 = Puy Conrn = (2 — y)a — xp)" ' — yP,, (22)

where

with

that is [15, seq. A112468],
T; =i§nkj<—1>“<n+i:i_ 1)

Proof. Substituting (15,16) in (14) yields

Con = (& = xy)Con—2 = Y& %, Cong1 = Xycap-1 — (@ — xy)' " (23)
Substituting (22) in (23) yields

Py = (& = xp)Pui + )" Py= )Pyt + (@ =),
which can be verified using the definition of P and 7. Substituting (15,16) in (13) yields
@) yeair = (@ = )77 = —exsen = (@ = xy)ezi-2)
and
(a—xy) " *car — a(xy) 7 y) = —cai-alcai1 — xycai-3),

which follows as a consequence of (23). ]

Remark 1. The expressions for x,, = a, /b, can be simplified as follows. Let

o
(X] 7-x27-x3>x4) = (x - w,y + Z, _W7Z)> Xp>4 = Xp—4 +— (24)
n—1 — Xn—3
Then
Kol =X WX =y y—— (25)
(xy)" (a = xy)"



