
Chapter 1

Introduction

In this introduction we describe the rise of the field of integrable equations. The
intention is not to give a survey of the whole field. Instead we point out the develop-
ments that influenced this thesis in one way or another. Furthermore, we list what
we consider to be the highlights in this thesis and give an overview of the various
chapters.

1.1 Historical motivation

1.1.1 The soliton

Stena Line’s ‘HSS Discovery’, which sails in three hours and forty minutes from Hoek
van Holland to Harwich, was forced to slow down its speed [vK99]. This ultrafast
ferry initiated a freak of nature that killed an innocent fisherman in the summer of
1999. Shortly after the start of the ferry service ‘Big Waves’, as they were called
by the press, attacked the shore of Felixstowe. These waves were about four meters
high and could rise from a smooth sea.

A smaller variant of such a Big Wave was already observed in August 1834 by
the Scottish engineer J.S. Russell [Rus44]. He was touched by the beauty of the
phenomenon, which he called the ‘Wave of Translation’. His extensive wave-tank
experiments established remarkable properties as stability and locality. At the time
of publication these observations appeared to contradict the nonlinear shallow wa-
ter wave theory of G.B. Airy [Air45]. The controversy arose because in the theory
dispersion was neglected and this generally tends to prevent wave steepening. The
problem was resolved by J. Boussinesq [Bou71] and, independently, by Lord Rayleigh
[Ray76]. In 1895 D.J. Korteweg and G. de Vries derived a model equation, incorpo-
rating the effects of surface tension, which describes the unidirectional propagation
of long waves in water of relatively shallow depth [KdV95]. This equation first
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appeared in [Bou] and is written:

ut = u3 + uu1 (KDV),

where ui is the i-th x-derivative of u(x, t). It is probably the most celebrated evo-
lution equation. Korteweg and De Vries showed that periodic solutions, which they
called ‘cnoidal waves’, could be found in closed form and without further approxi-
mations. Moreover, in the limit of infinite wavelength or spatial period, they found
a localised solution representing Russell’s Wave of Translation.

For a long time the solitary wave was considered a rather unimportant curiosity
in the mathematical structure of nonlinear wave theory. The appearance of the
computer changed the situation. It was in 1955 that E. Fermi, J.R. Pasta, and S.M.
Ulam undertook a numerical study of the monoatomic anharmonic chain model
[FPU55]. They expected the nonlinear interactions to result in energy equipartition
or thermal equilibrium. However, much to their surprise, the system returned almost
periodically to its originally excited state and a few nearby modes. Fortunately, this
curious result was not ignored. In 1965, M.D. Kruskal and N.J. Zabusky approached
the FPU problem from the continuum point of view [KZ65]. Quite amazingly they
rederived the KDV equation and found its stable pulse-like wave with computer
simulations. They named the reborn wave ‘soliton’ because it survives interaction,
a feature that already had been observed by Russell.

It is interesting to note that around this time the KDV equation emerged every-
where, in fluid dynamical applications, in plasma physics, in a study of dispersive
waves in elastic rods and, more generally, in wide classes of nonlinear Galilean-
invariant systems where dispersion is dominant and the long wave length approxima-
tion is used [GGKM74]. There were also other equations that attracted attention for
allowing solitary solutions. We mention A. Seeger, H. Donth, and A. Kochendörfer
who, in a study of dislocations in solids [SDK53], obtained analytic expressions de-
scribing collision events between solitary wave solutions of what is now called the
sine-Gordon equation utt − uxx = sin(u) or

uxt = sin(u).

Furthermore, J.K. Perring and T.H.R. Skyrme were interested in the kink solu-
tions of the sine-Gordon equation as a simple model of elementary particles [PS62].
Their computer experiments and analytic solutions showed that these solitary waves
preserved their kink shape and velocity after having collided.

1.1.2 Conservation laws and inverse scattering

It was a most intriguing challenge to analytically describe and understand the
strange behaviour of solitons. C.S. Gardner, J.M. Green, M.D. Kruskal and R.M.
Miura (GGKM) presented a method for solving the KDV equation, by which any
finite number of solitons can be expressed in closed form. They started with the
Sturm-Liouville equation for ψ with eigenvalue λ:

∂2
xψ +

1

6
(u− λ)ψ = 0 (SL).
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In quantum mechanics, this is the time-independent one-dimensional Schrödinger
equation for potential scattering, u being the potential and ψ the wave function.
The standard problem of scattering theory is to solve SL for ψ, with appropriate
boundary conditions and a given potential u. In the usual application, all that can
be observed is the asymptotic behaviour of ψ for large |x|. This, taken for the whole
spectrum, comprises the scattering data for u. The inverse scattering problem is to
determine u from knowledge of its scattering data.

Fortunately, the inverse problem had been dealt with by many people [KM56,
Lev55, Lev53, Mar55]. It was shown that u = −2∂xK(x, x), where K satisfies the
Gel’fand-Levitan-Marchenko integral equation

K(x, y) + B(x + y) +

∫ ∞

x

B(y + z)K(x, z)dz = 0 (GLM).

The kernel B depends on the reflection and transmission coefficients, which in turn
depend on u. This seemingly vicious circle was broken in [GGKM74], where it was
proven that the discrete eigenvalues of SL are time independence when the potential
u evolves according to KDV. In this way the time evolution of the scattering data
could be obtained and the problem of finding exact solutions to KDV was reduced
to first solving the eigenvalue problem SL for the initial data u(x, 0) and secondly
to solving the linear integral equation GLM for K. By choosing appropriate initial
data, i.e., u(x, 0) should have zero reflection coefficient, the N -soliton solution can
be obtained.

A clear interpretation of the results by GGKM has been given by P. Lax [Lax68].
He introduced the so called L-A pair, which played an important role in extending
the applicability of the method. A second influential contribution to the inverse
scattering method was the paper by V.E. Zakharov and A.B. Shabat [ZS71], where
it was shown that inverse scattering is indeed a method and not a trick suitable for
a single solution. Shortly after its introduction the method was used to obtain exact
solutions of the nonlinear Schrödinger equation [ZS71]

{
ut = v2 ± v(u2 + v2)
vt = −u2 ∓ u(u2 + v2)

and to the sine-Gordon equation [Lam71, AKNS73]. An important understanding
emphasised in [AKNS74] is that the inverse scattering method can be viewed as
an extension into the nonlinear realm of the Fourier transform method. In the
Fourier transform method, sinusoids of various wavelengths and phase velocities
are employed as basic entities for constructing a solution. In the inverse scattering
method these sinusoidal components become elliptic functions.

The inverse scattering method was also applied in the theory of nonlinear lattices.
The Toda chain, cf. [Tod70], was integrated independently by H. Flaschka [Fla74]
and S.V. Manakov [Man74], see also [Tod81].

Exactly solvable equations are nowadays called ‘integrable’. Many integrable
equations were to be discovered and the ‘theory of integrable equations’ strongly
stimulated the interaction between various areas of physics and mathematics.
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Besides establishing the existence of solitons exhibiting remarkable stability, an
explanation was to be given. Such an explanation came in the form of conserva-
tion laws. For the KDV equation, the expressions for the conservation of energy
and momentum were classically known. G.B. Whitham found a third conserved
density, which corresponds to Boussinesq’s famous moment of instability [Whi65].
Three more conserved densities were found by Kruskal and Zabusky and four more
by Miura. After the discoveries of conserved densities for both the KDV and the
Modified KDV equation

vt = v3 + v2v1 (MKDV),

Miura discovered a transformation which takes any solution of MKDV into a solution
of KDV [Miu68]. Such transformations now bear his name. A generalisation of the
original Miura transformation,

u = v2 +
√−6v1,

is used by C.S. Gardner, R.M. Miura and M.D. Kruskal to prove the existence of
infinitely many conservation laws and constants of motion for KDV [MGK68].

The Miura transformation, viewed as a Riccati equation for v, can be linearised
by the change of variables v =

√−6ψ1/ψ. By taking advantage of the Galilean in-
variance of KDV, u may be shifted and SL is obtained. This started the development
of the inverse scattering method.

The crucial and most surprising result in the reduction of the KDV to a sequence
of linear equations is that the discrete eigenvalues of SL are constant when the
potential evolves according to KDV. One may now ask the question: Which other
equations for the potential u assure the discrete eigenvalues of SL to be constant in
time? Such equations necessarily possess the same conserved densities as KDV. An
infinite set related to the sequence of conserved densities was discovered by Gardner
and written down by P.D. Lax [Lax68]. An alternative recursive construction was
given by Lenard [GGKM74]. This construction, now called the Lenard chain, was
given a geometric meaning in terms of Hamiltonian and symplectic operators by
R.M. Magri who also recognised the significance of the equations as generalised
symmetries of KDV [Mag78]. He showed that KDV is in fact a bi-Hamiltonian
equation. The KdV equation can be written as

ut = Q(u) = P (u2 + u2/2),

where u and u2+u2/2 are gradients of conserved densities and P, Q the Hamiltonian,
or cosymplectic , operators given by

P = Dx and Q = D3
x +

2

3
uDx +

1

3
u1.

The space of gradients, or cosymmetries, is in some sense dual to the space of
symmetries. Infinitely many symmetries and cosymmetries can be constructed by
alternating application of the Hamiltonian operator Q and the symplectic opera-
tor P−1. Note that QP−1(u1) = u3 + uu1. For a good review on bi-Hamiltonian
structures, see [FG93].
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Around the same time P.J. Olver presented the theory of recursion operators.
Such an operator generates the hierarchy of generalised symmetries directly [Olv77].
Of course, for KDV we have the recursion operator R = QP−1 and the equations
are written

ut = Rnu1, n ∈ N.

Generalised symmetries first made their appearance in the fundamental paper of
E. Noether [Noe18], in which their role in the construction of conservation laws
was clearly enunciated. The difference with the classical Lie symmetries or contact
symmetries is their dependence on higher derivatives of u. Due to this dependence
they do not have a proper geometrical meaning. Somehow, they were neglected for
many years and rediscovered several times since. For example, in differential geom-
etry [Joh64a, Joh64b], in the calculus of variations [Ste62] and in the application to
differential equations [AKW72]. A good general reference is [Olv93b].

We would like to draw attention to another historical line that intersected the
KDV-line in [GD75]. This article describes results on the asymptotic behaviour
of the kernel of the resolvent of the Sturm-Liouville equation (SL) in powers of
λ−1. The motivation for this problem came from the desire to give a meaning to
traces of positive powers of differential operators and yet, the impetus for its study
came from other directions. As we saw, the problem acquired a new significance.
The connection between the integrability of KDV and the theory of traces was
pointed out by V.E Zakharov and L.D. Faddeev [ZF71]. It became clear that the
coefficients in the asymptotic expansion of the kernel of the resolvent can be taken as
Hamilton functions, after which a fully integrable Hamiltonian system is obtained.
In this respect we also like to mention the work of S.P. Novikov [Nov74], in which
periodic solutions for integrable equations appeared. To elucidate the algebraic
nature of the Hamiltonian structure, i.e., to clarify the independence of the boundary
conditions for SL and of the corresponding spectral methods, I.M. Gel’fand and L.A.
Dikĭı developed a special algebra of polynomials in a function u and its derivatives,
which includes elements of a formal calculus of variations and of formal Hamiltonian
mechanics in the ring of such polynomials, cf. [Gel71]. This is essentially the complex
of variational calculus we also describe in this thesis. It contains all the important
objects like symmetries, conservation laws, symplectic operators and so on. Also of
importance to the present thesis is the way Gel’fand and Dikĭı proved some of their
theorems: they introduced a symbolic calculus [GD75]. This cleared the path to
using techniques like generating functions, which they did, but also to use methods
and results from invariant theory, algebraic geometry, p-adic analysis and number
theory. However, it took almost 25 years before this was realised. J.P. Wang was the
first to use systematically this symbolic calculus in the classification of integrable
equations [SW98, Wan98].
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1.1.3 The symmetry approach to the classification of inte-
grable equations

Historically the existence of higher conservation laws attracted attention to the
equations that appeared to be integrable. The first attempts to recognise and classify
integrable equations were based on the requirement of one polynomial conserved
density of some fixed order n [Kul76]. In this way P.P. Kulish tried to classify the
Klein-Gordon models and therefore he missed the Tzetseika equation

uxt = eu + e−2u.

This equation has gaps in the sequence of conservation laws. Hence requesting
the existence of a conservation law of certain order n does not guarantee the com-
pleteness of the list since the result depends essentially on n. Progress began after
replacement of the conservation laws by symmetries of higher order. The notion of
a formal symmetry was introduced. This is a formal series in inverse powers of Dx.
It was proven for several classes of equations that the existence of a formal sym-
metry at sufficiently high order implies the existence of infinitely many generalised
symmetries. However, this has not been proven generally and there are no realistic
estimates of what ‘sufficiently high’ means.

The first complete list of nonlinear equations, the so-called Klein-Gordon models
uxt = f(u), was obtained in [ŽS79]. It consists of the three well known equations

uxt = eu, uxt = eu + e−u, uxt = eu + e−2u.

Among the many different approaches to recognition and classification of integrable
equations, this so-called symmetry approach has proven to be particularly successful
[MSS90, SS84, MSY87].

When classifying equations we always have to specify the class of equations that
are to be classified and the kind of transformations that are allowed. Initially,
the order of the equations to be classified was fixed. For example, in [Svi85], all
equations of the form ut = f(x, u, u1, u2) were classified. It was proven that any
such equation possessing a formal symmetry of order 5 is equivalent up to certain
invertible transformations to one of the equations

ut = u2 + q(x),

ut = u2 + 2uu1 + p(x),

ut = Dx(u
−2u1 + αxu + βu),

ut = Dx(u
−2u1 − 2x).

Similarly vector equations of second order are classified in [Svi89]. Given an equation
of a form that is classified in this way, one can check whether it is integrable by
verifying the integrability conditions. If these are satisfied the equation is equivalent
to an equation in the list, and this equation can be found explicitly. However, this
is not an easy task if one wants to avoid the use of the conditions.
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Another approach, which is also called a symmetry approach, is found in [Fok80].
A.S. Fokas argued as follows: if the equation of the form

ut = un + f(u, u1, . . . , un−1)

possesses a recursion operator, then it possesses a generalised symmetry of order
2n − 1. Subsequently all 2-nd and 3-rd order equations possessing respectively a
3-rd and 5-th order symmetry were found, together with their recursion operators
and linearising Bäcklund transformations [Fok80].

However, in the symmetry approaches as sketched above, it seems to be impos-
sible not to fix the order of the equations. Another (complementary) symmetry
approach is the following: classify all polynomial equations with respect to the exis-
tence of symmetries up to homogeneous linear transformations. Using the symbolic
calculus of Gel’fand and Dikĭı and results from diophantine approximation theory
this was performed by J.A. Sanders and J.P. Wang for the class of homogeneous
scalar equations

ut = un + f(u, u1, . . . , un−1), (1.1)

where u has positive weight [SW98]. Similar results of zero weight or noncommu-
tative equations can be found in [SW00] and [OW00]. For the class of equations
(1.1) an exhaustive list of ten known integrable equations was obtained and it was
proven that there are no other equations in the possession of symmetries. First of
all, this result explains why after the initial gold rush it was so difficult to find any
new integrable equations, i.e., equations not contained in the hierarchy of a known
equation. Secondly, it explains why once the first integrability conditions are satis-
fied the equation is integrable, i.e., the existence of one symmetry at certain order
implies the existence of infinitely many.

In this respect, an observation was made at least twice in 1980 by different
authors. In [Fok80] it is written:

Another interesting fact regarding the symmetry structure of evolution
equations is that in all known cases the existence of one generalised
symmetry implies the existence of infinitely many.

In [IS80] the same statement is made together with the footnote:

This is not true for systems of equations. For example, the system
ut = u2 + (v2/2), vt = 2v2 has a nontrivial algebra symmetry algebra,
but this algebra is exhausted by the one-parameter (with parameter τ)
algebra of transformations: uτ = u3 + 3vv1, vτ = 4v3.

However, although the remark in the footnote is true, the ‘counterexample’ presented
turned out to be an integrable equation [Bak91]. In spite of this fact A.S. Fokas
adapted his earlier remark and formulated the following important conjecture in
1987, cf. [Fok87].
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Conjecture (Fokas). If a scalar equation possesses at least one time-
independent non-Lie point symmetry, then it possesses infinitely many.
Similarly for N -component equations one needs N symmetries.

Note that for N = 1 the conjecture of Fokas is proven to be true for the class of
equations (1.1) by the classification result of Sanders and Wang [SW98].

Four years later I.M. Bakirov presented the first candidate of a non-integrable
equation in the possession of a generalised symmetry [Bak91]. This was the 4-th
order 2-component equation

{
ut = 5u4 + v2

vt = v4
.

It possesses a symmetry at order 6 and it was shown (by extensive computer algebra
computations) that there are no other symmetries of order n ≤ 53. In 1998 F.
Beukers, J.A. Sanders and J.P. Wang proved, using p-adic analysis, that the equation
of Bakirov does not possess another symmetry at any higher order, thereby proving
that indeed one symmetry does not imply integrability [BSW98]. The existence of
several other equations with finitely many symmetries, all of the form

{
ut = aun + v2

vt = vn
,

was mentioned in [BSW98]. Also, it was conjectured, based upon a theorem of
Lech and Mahler [Lec53], that this class of equations contains only finitely many
integrable equations. In [BSW01] these equations were classified with respect to
symmetry-integrability using an algorithm of C.J. Smyth [BS01].

In [TW99] it is stated that the Bakirov equation seems to be exceptional. This
turned out not to be the case since there are infinitely many families of non-
integrable 2-component equations in the possession of nontrivial generalised symme-
tries [vdKS02]. Therefore such equations are as common (or as rare) as integrable
equations. We propose to call them ‘almost integrable’. This terminology somehow
reflects the idea of the conjecture of Fokas.

Definition 1.1. An equation is called (symmetry-)integrable if it possesses in-
finitely many generalised symmetries and almost integrable of depth (at least, at
most) n if there are exactly (at least, at most) n generalised symmetries. When an
equation is almost integrable but not integrable we say that it is almost integrable of
finite depth.

This definition is certainly not an answer to the philosophical question ‘What is
integrability?’, but it makes it possible to state clearly what is proven and what is
not! In this respect we bring up that for some authors the conjecture has served
as a motivation to classify evolution equations with respect to almost integrability.
However, these authors did not use the word ‘almost’ in their statements, cf. [OS98].

At present quite a lot of work has been devoted to the recognition and classifi-
cation problems of integrable equations. From the ‘big results’ that were obtained,
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among which the classification of all integrable scalar equations at any order, one
might get the impression that it should be no problem to find the symmetries of a
given evolution equation. Surprisingly this is not that easy, as an equation found
by Foursov has made clear. In [Fou00] a classification of third order symmetri-
cally coupled KDV–like equations with respect to the existence of two symmetries
is presented. One equation in the list appeared to be quite special:{

ut = 1
2
u3 + 1

2
v3 + (2− α)uu1 + (6− α)vu1 + αuv1 + (4− α)vv1

vt = 1
2
v3 + 1

2
u3 + (2− α)vv1 + (6− α)uv1 + αvu1 + (4− α)uu1

. (1.2)

For all values of α odd order symmetries were found. Symmetries at even order
were found as well, but only for some particular values of α. Foursov calculated all
equations that possess symmetries of weight 2, 4, 6, 8 and 10 with the help of a
computer and formulated the following conjecture.

Conjecture (Foursov). The equation (1.2) has symmetries of order
2k and weight 2k + 2n when α = 2(1− k

n
) for any nonnegative integer k

and any positive integer n.

Answering the relatively simple question ‘What are all the symmetries of a given
evolution equation?’ is quite difficult in this case.

1.2 Highlights and overview

The central goal we have in mind is to classify all x- and t-independent homogeneous
integrable evolution equations where the dynamical variables have positive weight.
We aim for a classification of equations at any order and with any number of com-
ponents. The latter seems to be possible, at least for equations with diagonal linear
part, since no new number theoretical problems need to be solved if the number of
components exceeds 4. So far, we have been working on 2-component equations.
We started to work around what we have called B-equations, cf. equation 1.3. How-
ever, the number theoretical tools that were developed in the context of B-equations
apply equally well to other kinds of equations as we will show in Chapter 5 and 7.
Here are what we consider to be the highlights in this thesis.

? The classification of integrable B-equations (Theorems 6.19, 6.20 and 6.21)
and the recognition of integrable B-equations (Theorem 6.15 and Section 6.5).

? The method to obtain almost integrable B-equations (Lemma 8.8) and the
counterexample to Fokas’ conjecture (Theorem 8.10).

? The determination of the spectrum of integrable equations and the possible
orders of their symmetries (Theorems 7.7, 7.8, 7.10, 7.11 and Propositions
7.15, 7.17, 7.19, 7.21).

? The calculation of nonpolynomial symmetries of equation (1.2) and the verifi-
cation of the statement in the conjecture of Foursov (Chapter 9).

We end our introduction with an the overview of the various chapters.
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Chapter 2

We introduce the notion of a generalised symmetry of an evolution equation by
deriving the condition for a formal transformation to leave the equation invariant.
This transformation corresponds to a vertical vector field which is in the kernel of
the Lie derivative with respect to time derivation. More abstractly this vector field
is viewed as an invariant of the equation. Similarly a conserved density is seen
as an invariant in the space of densities which is a representation space of the Lie
algebra of vector fields. This Lie, or actually Leibniz , algebraic structure is used to
introduce the notions of scaling and homogeneity.

Chapter 3

We consider equations that can be expressed in a formal power series and show
the existence of gradings on the algebra. In a graded algebra the condition for an
object to be an invariant of the equation is equivalent to a (possibly infinite) set of
smaller conditions. By the implicit function theorem of Sanders and Wang, the first
l conditions of this set provide a sufficient condition once one symmetry is found.
To apply the theorem one has to check that the equation is nonlinear injective and
relatively l-prime with this symmetry. We also show that the property of being
nonlinear injective together with the nonexistence of terms of certain grading in the
equation implies the vanishing of the terms of the same grading in any invariant.

Chapter 4

We describe the symbolic calculus of Gel’fand and Dikĭı. Together with the implicit
function theorem this calculus provides a very powerful tool in classifying evolution
equations with respect to the existence of symmetries. It is based on a one-to-
one correspondence between differential polynomials in the dependent variables and
symmetrised polynomials in a number of symbols. We show how to prove nonlinear
injectivity and relative l-primeness. In the symbolic calculus the first nontrivial
invariant-conditions become divisibility conditions of certain polynomials. Much of
the analysis is concerned with finding common divisors of certain polynomials which
are called G-functions. We introduce biunit coordinates to describe points in the
complex plane as follows: suppose that r ∈ C \ R is of the form aψ and also of the
form bφ− 1 with |ψ| = |φ| = 1 and a, b ∈ R. Then

r = P(ψ, φ) = ψ2 (φ + 1)(φ− 1)

(ψ + φ)(ψ − φ)
.

Biunit coordinates are used in chapter 6, 7 and 8.
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Chapter 5

We describe the symmetry-classification of equations of the form

ut = un + f(u, u1, . . . , un−1)

using the implicit function theorem and the symbolic calculus. Geometric argu-
ments, using Bézout’s theorem, show that if an equation without quadratic terms
possesses a symmetry, it does have cubic terms and it is in a hierarchy of third or-
der. For equations with quadratic terms we will treat the matter a little differently
from how it was originally done by distinguishing the classification of integrable
equations and the classification of almost integrable equations. This separates the
difficult part from the easy part. The easy part is to obtain all integrable equations.
The use of the Lech-Mahler theorem is crucial (and new) here. The difficult part is
to show that there are no equations with finitely many symmetries. This was done
using on modern techniques from diophantine approximation theory.

Chapter 6

We classify all integrable B-equations, i.e., equations of the form{
ut = a1un + K(v, v1, . . .)
vt = a2vn

(1.3)

where K is quadratic in derivatives of v. We first show that all equations of order
n < 4 are integrable, which was known. We give a new method, based on resultants,
to determine whether a given B-equation of order m is in a hierarchy of order 1, 2 or
3. The main result, the classification of the integrable B-equations of order n > 4,
is based on the use of biunit coordinates and on the Lech-Mahler theorem. Let Φn

be the set of all n-th roots of unity not equal to ±1. To any point

? r ∈ Φn−1,

? r ∈ Φ2n such that rn = −1,

? r ∈ P(Φ2n, Φ2n) such that |r| 6= 1.

corresponds an integrable n-th order B-equation which is not in a hierarchy of order
m < 4. There are exactly

n(n− 2)/4 if n even,

(n + 1)(n− 3)/4 if n odd,

4 if n = 5

such equations. It is proven that together with the symmetries of equations of
order 1, 2 and 3 these are all integrable B-equations. Furthermore we prove that all
integrable nondegenerate B-equations, i.e., equations with nonzero eigenvalues, are
real (up to a complex scaling). We also describe all integrable n-th order B-equations
that are not in a hierarchy of order m < n.
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Chapter 7

The classification of integrable B-equations has immediate implications for any equa-
tion containing a term that is quadratic in v. In other words, we have obtained a
condition on the spectrum of such equations and on the order of their symmetries.
Another condition on the spectrum is obtained by requiring the existence of a term
in the first component of the equation that is linear in both u and v. It turns out that
all other conditions that can be obtained from the existence of a certain quadratic
term follow from the two cases mentioned above. More stringent conditions can be
obtained by requiring several different types of quadratic terms to be nonzero. All
possible combinations are treated and in several cases we obtain a finite number of
eigenvalues. Also we classify the cubic version of the class of B-equations.

Chapter 8

This chapter is devoted to almost integrable B-equations of finite depth, of which
the Bakirov equation was the first and simplest. We give a short introduction to
p-adic numbers and treat the method of Skolem which allows us to conclude that
only a finite number of symmetries exist for a given equation. We introduce a method
by which all B-equations of order n with symmetries of order m can be obtained.
We have performed extensive computer calculations and obtained all B-equations
at order 3 < n < 11 with symmetries at order n < m < n + 151. By adding some
refinements to the method of Skolem we were able to prove that all the nonintegrable
B-equations obtained in this way are almost integrable of depth 1 with the exception
of three seventh order equations which possess generalised symmetries of order 11
and 29. These exceptions provide counterexamples to the conjecture of Fokas. We
conjecture that the only integer N > 2 such that:

? there exist r, s ∈ C for which the diophantine equation

(1 + rm)(1 + s)m = (1 + sm)(1 + r)m

has exactly N solutions m > 1,

is N = 3. Moreover, if N = 3 the solutions m > 1 are given by

m = 7, 11, 29.
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Chapter 9

We prove that the following generalisation of the KDV equation

{
ut = u3 + 3uu1

vt = αu1v + uv1

has infinitely many polynomial symmetries of even weight only if α is a negative
and rational number. Moreover we prove that, allowing multiplication with vc where
c ∈ C, this equation possesses several mutually noncommuting hierarchies of non-
polynomial symmetries for any value of α ∈ C. Since the equation is related to the
equation of Foursov by a linear transformation, we have proven his conjecture to be
true. However, the symmetry structure of his equation is bigger than that.

Chapter 10

We describe the complex of variational calculus. This consists of spaces of n-forms
together with a coboundary operator between successive spaces. A general rule
is given and used to construct the Lie derivative on all spaces. The coboundary
operator is defined in terms of the Lie derivative and commutes with it. In this
formalism we describe conserved densities, symmetries, cosymmetries, symplectic
operators, cosymplectic operators and recursion operators, and how they are related.
We present an interesting example in which symplectic operators are obtained from
cosymmetries by the action of the coboundary operator.

Appendices

Here we have included: some words on imposing homogeneity; the proof of the im-
plicit function theorem of Sanders and Wang; the definition of the resultant; some
consequences of the Lech-Mahler theorem; and results on certain diophantine equa-
tions obtained in co-operation with F. Beukers.
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Chapter 2

Evolution equations, symmetries
and conservation laws

Many processes in nature are described by evolution equations. The characteristic
feature of an evolution equation is that the state of the process can be calculated,
in principle, if the state is given at an earlier moment in time. In all known cases
where this can be done exactly, the equation has infinitely many symmetries. In
some cases there are infinitely many conservation laws as well.

2.1 Evolution equations

We consider evolution equations in one spatial and one temporal variable. Let M
be a two-dimensional space with coordinates x, t and let C be the space of smooth
functions of x and t. To each point of M we attach a vector u with N components
uα ∈ C. These functions uα are differentiated by applying the operators ∂x and ∂t.
We write uα

i for the i-th x-derivative of uα(x, t) and consider the uα
i as independent

variables. They are called dynamical variables.

Notation 2.1. The ring of smooth functions of x, t and a finite number of dynamical
variables is denoted A. We write H for the N-dimensional A-module with basis

∂u1 , ∂u2 , . . . , ∂uN .

A differential operator acts on a vector by acting on all its components, i.e., we
have (ut)

α = uα
t . Here ut is the t-derivative of the vector u ∈ H and uα

t is the
t-derivative of the function uα ∈ C.

Definition 2.2. A partial differential equation on M is an N-component evolu-
tion equation if it can be written as a system of equations:

uα
t = Kα, α = 1, . . . N.

15



2.1. Evolution equations

Shortly we write

ut = K, (2.1)

where u,K ∈ H. The order of this equation, or of K, is the highest number n ∈ N
such that for some α we have ∂uα

n
K 6= 0.

To be able to differentiate elements of A with respect to x, the differential oper-
ator ∂x : C → C is prolonged to Dx : A → A.

Definition 2.3. For f ∈ A we define the total (x-)differentiation operator Dx

by:

Dx(f) = ∂xf +
N∑

α=1

∞∑
i=0

uα
i+1∂uα

i
f.

Multiple differentiation is defined by Dn
x(f) = Dn−1

x (Dx(f)).

Observe that, although we take the summation from 0 to infinity, the sum is
finite since f ∈ A. The dynamical variables satisfy the rule

uα
i+1 = Dx(u

α
i ).

Thus the n-th total x-derivative of the vector u is Dn
x(u) = un. When N = 2 we

adapt the convention to use u and v instead of u1 and u2. Then the components
satisfy Dn

x(u) = un and Dn
x(v) = vn.

Example 2.4 (KDV). The Korteweg-De Vries equation

ut = u3 + uu1

is a 1-component (or scalar) evolution equation of order 3.

Example 2.5 (Boussinesq). Sometimes it is not immediately clear that an equation
is an evolution equation. The Boussinesq equation, cf. [Olv93a, Example 7.28],

utt = u4 + 4(uu2 + u2
1),

arose in a model for unidirectional propagation of long waves in shallow water. The
equation can be written as utt = D2

x(u2 +2u2). By introducing a new function v such
that D2

x(v) = ut and integrating twice, the equation is converted into the 2-component
evolution equation

ut = v2

vt = u2 + 2u2 .

We will use the KDV and the Boussinesq equations frequently in our examples.
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Chapter 2. Evolution equations, symmetries and conservation laws

2.2 Symmetries of evolution equations

The use of symmetries in the study of differential equations was initiated by S.
Lie. The concept of Lie point symmetries is connected with one parameter groups
of transformations on the space of dependent and independent variables that leave
the solution set invariant. Such a transformation is given by a set of new variables
x̃, t̃, ũ1, . . . ũN which depend on the old variables and an additional parameter ε. Its
(infinitesimal) generator is

T∂t + X∂x +
N∑

α=1

Uα∂uα ,

where (T, X, Uα) are the coefficients of the first order expansion around ε = 0. This
generator is a Lie point or classical symmetry of the equation if the transformation
maps any solution of the equation to a invariant solution. This solution then contains
the parameter ε. To be able to calculate the action of the generator on derivatives of
the dependent variables, it has to be prolonged just like we did with ∂x. The general
formula can be found in [Olv93a, Theorem 2.36]. Since Lie point symmetries are
not our main subject we give a small example only, cf [Olv93a, Example 2.44].

Example 2.6 (KDV). The vector field g = t∂x + ∂u generates the Galilean boost:

u(x, t) → eεgu(x, t) = u(x + εt, t) + ε, ε ∈ R.

which does not change the form of ut = u3 + uu1. Therefore it transforms any
solution of the KDV equation into a new solution.

The concept of symmetry was generalised by E. Noether. She allowed the sym-
metry to depend on derivatives of the dependent variables, cf. [Noe18]. In what
follows we will work out the details of infinitesimal transformations of u that may
depend on derivatives as well. After this we will turn to vector fields that generate
this kind of transformations.

2.2.1 Formal transformations

Abstract. We show which formal transformations of the dependent
variables leave an evolution equation invariant.

On the evolution equation (2.1) one can apply a formal transformation

ũ = u + εS, S ∈ H. (2.2)

Unless the order of S is zero such a transformation will lead to a higher order
equation. This prevents one from doing normal form theory, as one does for ordinary

17



2.2. Symmetries of evolution equations

differential equations. However, an interesting problem is to find all S such that the
equation is invariant up to first order in ε. Let us carry out the computation.

ũα
t = uα

t + ε

(
∂tS

α +
N∑

β=1

∞∑

k=0

∂uβ
k
SαDk

x(u
β
t )

)

= Kα + ε

(
∂tS

α +
N∑

β=1

∞∑

k=0

∂uβ
k
SαDk

x(K
β)

)
(2.3)

= K̃α + ε

(
∂tS

α +
N∑

β=1

∞∑

k=0

(Dk
x(K

β)∂uβ
k
Sα −Dk

x(S
β)∂uβ

k
Kα)

)
+ O(ε2).

We have used the equation, substituted ut = K, since we require the equation to be
invariant on the solution set of the equation. Compare the following definition with
[Olv93a, Definition 5.24, equation (5.32)].

Definition 2.7. We define

Df [S] =
N∑

α=1

∞∑

k=0

∂uα
k
fDk

x(S
α),

to be the Fréchet derivative of a function f ∈ A in the direction S ∈ H.

Observe that in the definition of Df [S] a differential operator acts on f . Therefore
we know how to take the Fréchet derivative of a vector K ∈ H, i.e.,

(DK [S])α = DKα [S]. (2.4)

Notice that we have

Dx[S] 6= Dx(S) = Du1 [S].

Using Fréchet derivatives the term of order ε in equation (2.3) vanishes if

∂tS + DS[K]−DK [S] = 0. (2.5)

We emphasise that there is an asymmetry between the vectors K, S ∈ H in this
equation. It should be realised that these vectors stand for different objects.

2.2.2 Vector fields

Abstract. We express the invariance condition in terms of the natural
Lie bracket on the space of vector fields.

Vector fields act on each other as differential operators. The advantage of this is
that there is a natural Lie bracket, defined by the commutator of two operators.

18



Chapter 2. Evolution equations, symmetries and conservation laws

Definition 2.8. Let X be the space of vector fields on A. The general form of v ∈ X
is

v = T∂t + X∂x +
N∑

α=1

∞∑

l=1

V α
l ∂uα

l
, T,X, V α

l ∈ A. (2.6)

For all v, w ∈ X we define the product

[, ] : X 2 → X , [v, w] = vw − wv,

called the Lie bracket on X .

We notice that since all multiple derivations in vw and wv cancel each other, the
commutator is indeed a vector field on A. The bracket makes X a Lie algebra, i.e
for all v, w, y ∈ X and a, b ∈ C the following axioms hold

1. [av + bw, y] = a[v, y] + b[w, y] (linearity).

2. [v, w] = −[w, v] (antisymmetry).

3. [y, [v, w]] = [[y, v], w] + [v, [y, w]] (Jacobi identity).

Notice that the first two properties imply

[v, aw + by] = a[v, w] + b[v, y].

The Lie bracket is bilinear because a differential operator acts linearly. Antisymme-
try follows directly from the definition of the bracket. The Jacobi identity follows
from the associativity of differential operators.

A special element in X is the vector field Dx, whose action on functions is the
act of total differentiation, cf. Definition 2.3.

Notation 2.9. We denote the kernel of Dx in A by Ker(Dx). With g we denote
the subspace of X that leaves Dx invariant, i.e., v ∈ X such that

[v, Dx] = −γ(v)Dx, γ : g → Ker(Dx).

The linear functional γ is a Lie algebra homomorphism, i.e., we have

γ([v, w]) = [γ(v), γ(w)]Ker(Dx) = 0,

where [, ]Ker(Dx) is the trivial Lie bracket on Ker(Dx). It follows that g is a Lie
subalgebra of X .

Remark 2.10. The function γ gets a nice interpretation in Section 2.5. If γ(v) is
nonzero, it is the weight of x, cf. Example 2.28.
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2.2. Symmetries of evolution equations

Let us see what the elements of g look like. The commutator of the general
element v ∈ X , see Definition 2.6, with Dx is

[v, Dx] = vDx −Dxv

=
N∑

α=1

∞∑

k=0

(V α
k+1∂uα

k
)−Dx(T )∂t −Dx(X)∂x −

N∑
α=1

∞∑

k=0

Dx(V
α
k )∂uα

k
.

By linearity [v,Dx] = Y Dx, Y 6= 0 implies [v/Y,Dx] = Dx. Therefore we study the
two cases γ(v) = 0, 1.

? γ(v) = 0; from [v, Dx] = 0 we obtain the homogeneous system

DxT = DxX = V α
k+1 −Dx(V

α
k ) = 0,

which implies that T, X ∈ Ker(Dx) and V α
k = Dk

xV
α.

? γ(v) = 1; from [v, Dx] = −Dx we obtain the nonhomogeneous system

DxT = 0, DxX = 1, V α
k+1 −Dx(V

α
k ) = −uα

k+1.

A particular solution is T = 0, X = x, V α
k = xuα

k+1. This gives us the vector
field xDx ∈ g. Indeed we have

xD2
x −DxxDx = −Dx.

Thus the general form of v ∈ g is

T∂t + X∂x + Y xDx +
N∑

α=1

∞∑

k=1

Dk
x(V

α)∂uα
k
, T, X, Y ∈ Ker(Dx), V ∈ H.

We will define two special subspaces of g.

Definition 2.11. With f we denote the space of scalings spanned by the N + 2
vector fields

σt = t∂t,

σx = x∂x −
N∑

α=1

∞∑

k=0

kuα
k∂uα

k
,

σuα =
∞∑

k=0

uα
k∂uα

k
, α = 1, . . . , N.

The action of these scalings on a single term is given by multiplication with
respectively: the degree in t; the degree in x minus the total number of x-derivatives;
and the number of variables uα.
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Chapter 2. Evolution equations, symmetries and conservation laws

Scalings play an important role in section 2.5. The space f is contained in g.
This follows from Definition 2.11 and the equality

σx = xDx −
N∑

α=1

∞∑

k=1

Dk
x(xuα

1 )∂uα
k
∈ g. (2.7)

In fact f is an abelian Lie subalgebra of g. This is most easily seen by observing
that for all three operators the degree in t, the degree in x, the number of variables
uα and the number of x-derivatives vanish.

Definition 2.12. A vertical vector field has the form

w = δ(W ) =
N∑

α=1

∞∑

k=1

Dk
x(W

α)∂uα
k
, W ∈ H.

Its characteristic is W = δ−1(w). The subspace of g of all vertical vector fields is
denoted h.

Compare the form of our vector fields in Definitions 2.8 and 2.12 with the one in
[Olv93a, Definitions 5.1, 5.4 and equations (2.22),(5.6)]. In the language of P.J. Olver
the generalised vector field W is an evolutionary vector field and its prolongation
δ(W ) takes a particularly simple form. What he calls the characteristic (of W ) is
its corresponding element in AN . This has the disadvantage that the weight of an
object differs from the weight of its characteristic, cf. Remark 2.29.

All δ(v) ∈ h commute with Dx. Therefore we have

δ(v)(Dk
x(f)) = Dk

x(δ(v)(f)), f ∈ A.

This makes h a Lie subalgebra since for δ(V ), δ(W ) ∈ h we have

[δ(V ), δ(W )] =
N∑

α=1

∞∑

k=1

Dk
x(δ(V )(Wα)− δ(w)(V α))∂uα

k

= δ(δ(V )(W )− δ(W )(V )) ∈ h.

Moreover, h is an ideal in g, i.e., [v, w] ∈ h if v ∈ g and w ∈ h. This follows from
the fact that any v ∈ g \ h can be written as

v = T∂t + X∂x + Y xDx, T, X, Y ∈ Ker(Dx)

and the fact that

[T∂t + X∂x + xDx, δ(W )] = δ(T∂tW + X∂xW ) ∈ h.

Note that δ(S) is the generator of the formal transformation (2.2) and that

δ(S)(K) = DK [S].

The invariance of ut = K under the formal transformation should hold only for
solutions. Therefore ũ is differentiated along the equation. This is done by the
operator Dt ∈ g, which is, in analogy with Dx = ∂x + δ(u1), given by
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2.2. Symmetries of evolution equations

Definition 2.13. The total t-derivative is

Dt = ∂t + δ(ut) = ∂t + δ(K).

We are now able to express the invariance condition in terms of vector fields.
Compare the following definition with [Olv93a, Definition 1.64].

Definition 2.14. The Lie derivative of w ∈ g with respect to v ∈ g is defined by

L(v)w = [v, w],

and w ∈ h is a generalised symmetry, or symmetry for short, of ut = K if

L(Dt)w = 0.

Notation 2.15. In the sequel we adapt the short notations

L(v)K = δ−1(L(v)δ(K)), v ∈ g, K ∈ H,

L(K)S = δ−1(L(δ(K))δ(S)), K, S ∈ H.

Also S ∈ H is called a symmetry if the characteristic condition L(Dt)S = 0 holds.

The characteristic condition is written in terms of the Fréchet derivative as:

L(Dt)S = ∂tS + DS[K]−DK [S] = 0, (2.8)

which coincides with equation (2.5). To give the reader some impression of the
kind of computations involved, we present the check for some symmetries of KDV.
Although this may not be particularly enlightening, it may help in appreciating the
symbolic method which will be introduced in chapter 4.

Example 2.16 (KDV). The symmetries of the KDV equation of order 1, 3, 5 are

S1 = u1,

S3 = u3 + uu1,

S5 = u5 +
5

3
uu3 +

10

3
u1u2 +

5

6
u2u1.

The Fréchet derivative of K = u3 + uu1 is

DK = D3
x + uDx + u1.

The Fréchet derivatives of the symmetries are

DS1 = Dx,

DS2 = D3
x + uDx + u1,

DS3 = D5
x +

5

3
uD3

x +
5

3
u3 +

10

3
u1D

2
x +

10

3
u2Dx +

5

6
u2Dx +

5

3
uu1.
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Chapter 2. Evolution equations, symmetries and conservation laws

Since these symmetries are time-independent we have L(Dt)S = L(K)S. Straight-
forward calculation gives:

L(K)S1 = DS1 [K]−DK [S1]

= (u4 + u2
1 + uu2)− (u4 + uu2 + u2

1)

= 0,

L(K)S3 = DS3 [K]−DK [S3]

= 0,

L(K)S5 = DS5 [K]−DK [S5]

= u8 + uu6 + 6u1u5 + 15u2u4 + 10u2
3 +

5

3
u(u6 + uu4 + 4u1u3

+3u2
2) +

5

3
u3(u3 + uu1) +

10

3
u1(u5 + uu3 + 3u1u2) +

10

3
u2(u4

+uu2 + u2
1) +

5

6
u2(u4 + uu2 + u2

1) +
5

3
uu1(u3 + uu1)− u8

−5

3
(uu6 + 3u1u5 + 3u2u3 + u2

3)−
10

3
(u1u5 + 4u2u4 + 3u2

3)

−5

6
(u2u4 + 12uu1u3 + 24u2

1u2 + 6uu2
2)− u1(u5 +

5

3
uu3

+
10

3
u1u2 +

5

6
u2u1)− u(u6 +

5

3
(uu4 + u1u3) +

10

3
(u1u3 + u2

2)

+
5

6
(u2u2 + 2uu2

1))

= 0.

For any x-independent K ∈ H we have DK [u1] = Du1 [K] = Dx(K). Hence
in this case u1 is a symmetry of the evolution equation ut = K. Obviously any
time-independent K is a symmetry of ut = K. These symmetries u1, K are called
trivial symmetries.

2.3 Modules, representations and invariants

Abstract. We introduce the more abstract concepts Leibniz algebra
module, representation and invariant. The Lie derivative is a represen-
tation of the Leibniz algebra g on the g-module g. Also A is a g-module.
A symmetry is an invariant of an evolution equation.

Notation 2.17. The space of all linear transformations from V to W (vector space
homomorphisms) is denoted Hom(V, W ). The space of vector space endomorphisms
Hom(V, V ) is denoted End(V ).

Definition 2.18. A Leibniz algebra is a pair (U, P ) in which U is a vector space
and P : U → End(U) a linear map, satisfying

P (P (x)y) = P (x)P (y)− P (y)P (x).
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2.3. Modules, representations and invariants

Note that the relation for P in Definition 2.18 coincides with the Jacobi identity if
we take P (x)y = [x, y]. A Leibniz algebra differs from a Lie algebra by the axiom
of antisymmetry.

Example 2.19. An example of a Leibniz algebra is (U, P ), where U is a two-dimen-
sional vector space with basis {x, y} and

P (x)x = P (x)y = 0, P (y)y = ax, P (y)x = bx

with a, b ∈ C. This is a trivial Lie algebra if a = b = 0.

We do not need the antisymmetry property of the Lie derivative L for our con-
siderations, so we can equally well consider (g,L) as a Leibniz algebra. By doing so
the construction of the complex of variational calculus is simplified, cf. Chapter 10.
Instead of (g,L) we just write g.

Definition 2.20. Let (U, P ) be a Leibniz algebra. A (U, P )-module is a pair (V,Q)
in which V is a vector space and Q : U → End(V ) is a linear map, satisfying

Q(P (x)y) = Q(x)Q(y)−Q(y)Q(x).

We call Q a representation of (U, P ) on V if (V, Q) is a (U, P )-module.

Because h is an ideal of g the Lie algebra h is a g-module. Also A is a g-module.

Definition 2.21. The Lie derivative L : g → End(A) is given by the natural
action of vector fields on functions, i.e.,

L(v)f = v(f).

We see that for all v, w ∈ g and f ∈ A we have

L(L(v)w)f = v(w(f))− w(v(f)) = (L(v)L(w)− L(w)L(v))f.

Therefore L is a representation of g on A. We used the same symbol for the product
on g and the representation on the g-module A. No confusion needs to arise; which
operator is meant can be seen from its argument.

Definition 2.22. Let (V, Q) be a (U, P )-module. We call y ∈ V an invariant of
x ∈ U if Q(x)y = 0.

According to this definition a symmetry is an invariant of Dt. In the present
context we also call the symmetry an invariant of the evolution equation.
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Chapter 2. Evolution equations, symmetries and conservation laws

2.4 Conservation laws

Abstract. We introduce the space of densities which is a g-module. Its
invariants are called conserved densities. These correspond to conserva-
tion laws.

Given an evolution equation, one is interested in functions that do not change in
time along the flow of the equation, so-called conservation laws. These are given as
one-forms on the underlying x, t space M

ω = ρdx + φdt, ρ, φ ∈ A.

Definition 2.23. The one-form ω is a conservation law of the evolution equation
(2.1) if its divergence vanishes, i.e., if

dω = (Dt(ρ)−Dx(φ))dt ∧ dx = 0.

When ρdx + φdt is a conservation law we call ρ a conserved density and φ a
conserved flux.

When ω = dα, i.e., ρ = Dx(α) and φ = Dt(α) this is automatically true, and
such conservation laws are called trivial.

Consider now a time-independent domain X in x-space such that
∫

∂X
φdx = 0,

i.e., there is no flow through the boundary of X. Then, if ω is a conservation law,
we have

Dt

∫

X

ρdx =

∫

X

Dt(ρ)dx =

∫

X

Dx(φ)dx =

∫

∂X

φdx = 0,

Thus, we see that the quantity
∫

X
ρdx is a constant of motion.

We took ρ ∈ A, but adding an expression of the form Dx(α), α ∈ A to ρ does
not change the value of the integral

∫
X

ρdx.

Notation 2.24. We define Ω0 to be A/Im(Dx) and denote the equivalence class
of ρ by

∫
ρ. We call ρ a representative of

∫
ρ.

The advantage of working with Ω0 is that if
∫

ρ ∈ Ω0 is a nonzero conserved
density it is nontrivial.

Example 2.25 (KDV). We give the three lowest order conservation laws of the
KDV equation.

? Conservation of momentum.

Take ρ(1) = u. Then ρ(1) 6= 0 in Ω0 and

Dtρ
(1) = ut

= u3 + uu1

= Dx(u2 +
1

2
u2)

= Dxφ
(1).

Therefore ω(1) = ρ(1)dx + φ(1)dt is a (nontrivial) conservation law.
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2.4. Conservation laws

? Conservation of energy.

Take ρ(2) = 1
2
u2. Then, with ρ(2) 6= 0 in Ω0,

Dtρ
(2) = uut

= uu3 + u2u1

= Dx(uu2 − 1

2
u2

1 +
1

3
u3)

= Dxφ
(2).

Therefore ω(2) = ρ(2)dx + φ(2)dt is a (nontrivial) conservation law.

? Conservation of moment of instability

Take ρ(3) = 1
6
u3 − 1

2
u2

1. Then, with ρ(3) 6= 0 in Ω0,

Dtρ
(3) =

1

2
u2ut − u1Dxut

=
1

2
(u2u3 + u3u1)− u1u4 − uu1u2 − u3

1

= Dx(
1

8
u4 +

1

2
u2u

2 − u2
1u− u3u1 +

1

2
u2

2)

= Dxφ
(3).

Therefore ω(3) = ρ(3)dx + φ(3)dt is a (nontrivial) conservation law.

We will consider Ω0 as a g-module by defining a representation.

Definition 2.26.

L(v)

∫
ρ :=

∫
L(v)ρ =

∫
v(ρ)

is the Lie derivative of
∫

ρ with respect to v ∈ g.

Since g consists of elements that scale Dx, the expression does not depend on
the choice of the representative in Ω0, i.e., if [v,Dx] = cDx we have

L(v)

∫
Dx(ρ) =

∫
v(Dx(ρ)) =

∫
(Dx(v(ρ)) + cDx(ρ)) = 0.

The Lie derivative is a representation of g on Ω0 since for all v, w ∈ g and
∫

ρ ∈ Ω0

we have

L(L(v)w)

∫
ρ =

∫
(v(w(ρ))− w(v(ρ))) = (L(v)L(w)− L(w)L(v))

∫
ρ.

The Lie derivative of
∫

ρ ∈ Ω0 with respect to Dt is written in terms of the Fréchet
derivative as:

L(Dt)

∫
ρ =

∫
(∂tρ + Dρ[K]). (2.9)

We see that a conserved density is an element in Ω0 which is in the kernel of L(Dt).
In other words, it is an invariant of the evolution equation.
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Chapter 2. Evolution equations, symmetries and conservation laws

2.5 Scalings and homogeneity

Abstract. We introduce weights and use a special scaling to define the
notion of homogeneity. The distinction between AN andH is made clear.

To each variable z ∈ {x, t, uα} we assign a weight λ(z) ∈ R. Furthermore, we define
a special scaling σ ∈ f:

σ = λ(t)σt + λ(x)σx +
N∑

α=1

λ(uα)σuα ,

Definition 2.27. An expression h in a g-module is homogeneous of weight λ(h)
if

L(σ)h = λ(h)h

with λ(h) ∈ R.

We have the following in mind: the weight of a product p is the sum of the
weights of its factors and the weight of a fraction is the weight of the numerator
minus the weight of the denominator. In this way, an expression e is homogeneous
if all terms have the weight λ(e).

Example 2.28 (Dx). Consider the total differentiation operator

Dx = ∂x +
N∑

α=1

∞∑
i=0

uα
i+1∂uα

i
.

We have λ(uα
i ) = λ(uα) − iλ(x). Therefore each term has weight −λ(x) and Dx

is homogeneous of weight −λ(x). Indeed we have L(σ)Dx = −λ(x)Dx, cf. remark
2.10.

Remark 2.29. Here the difference between H and AN becomes apparent. The ele-
ment

K =
N∑

α=1

Kα∂uα ∈ H

is homogeneous of weight w if

λ(Kα)− λ(uα) = w, 1 ≤ α ≤ N,

while

K =
N∑

α=1

Kαeα ∈ AN

is homogeneous of weight w if

λ(Kα) = w, 1 ≤ α ≤ N.

Observe that with K ∈ H we have λ(K) = λ(δ(K)).
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2.5. Scalings and homogeneity

Example 2.30 (KDV). The differential operator associated to the KDV equation is

Dt = ∂t + δ(u3 + uu1).

Take λ(u) = 2, λ(t) = −3 and λ(x) = −1. The vector field Dt ∈ g is homogeneous
with weight 3 since

L(σ)Dt = 3Dt.

However, the element u3 + uu1 ∈ A is homogeneous with weight 5 since

L(σ)K = 5K.

We say that the weight of the KDV equation is 3.

Lemma 2.31. Take f ∈ f, g ∈ g and h in a g-module. Suppose that

L(f)g = ag, L(f)h = bh, a, b ∈ R.

Then
L(f)L(g)h = (a + b)L(g)h.

Proof. Using that L is a representation we obtain

L(f)L(g)h = L(L(f)g)h + L(g)L(f)h = (a + b)L(g)h.

Thus we have, for example, that the Lie derivative of a homogeneous element
with respect to a homogeneous vector field is homogeneous.

In Appendix A we will show that the problem of finding homogeneous equations
with homogeneous invariants is part of the problem of finding nonhomogeneous
equations with nonhomogeneous invariants. Also, we show it suffices to find all
homogeneous invariants of a homogeneous equation.

However, homogeneity need not be imposed from the start; much of the analysis
can be done without! In the classification of B-equations, cf. Chapter 6, and the
determination of the spectrum of eigenvalues, cf. Chapter 7, homogeneity was not
imposed at all. Having determined the linear part of the integrable equations and
of its first nontrivial symmetry equations, one may want to work with homogeneous
equations when writing down candidate equations possessing candidate symmetries,
cf. Chapter 5.
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Chapter 3

Polynomial evolution equations

We restrict ourselves to polynomial evolution equations and invariants as follows:
first we change the basic space A to formal power series. Then, we assume that the
equation is homogeneous and that the weights of the variables uα are positive. In
another case we assume that the linear part is homogeneous and that the nonlinear
part is polynomial.

Notation 3.1. With A we denote the space of formal power series in finitely many
uα

n with coefficients in C where f ∈ C implies f 6∈ A, i.e., for all f ∈ A we have
f(0, 0, . . .) = 0. The space g is the space of vector fields on A that leave Dx invariant.
Compare this with notations 2.1 and 2.9. Similarly we change the meaning of the
symbols we use to denote the spaces of vertical vector fields and densities.

3.1 An implicit function theorem

Abstract. We introduce the notion of a graded module. This is used
to divide the condition for the existence of an invariant into a number
of smaller conditions. An implicit function theorem states that, under
certain assumptions, once the first few conditions hold the others do as
well.

Notation 3.2. To denote the direct sum of an infinite set of modulus the symbol∏
is used, cf. [Eis95].

Definition 3.3. A Leibniz algebra (U, P ) is a N-graded Leibniz algebra if it can
be written as

U =
∏
i≥0

U (i),
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3.1. An implicit function theorem

where x ∈ U (i) has grading i ∈ N and

P (U (i))U (j) ⊂ U (i+j).

The mapping Q : U → End(V ) is an N-graded representation if

V =
∏
i≥0

V (i),

and
Q(U (i))V (j) ⊂ V (i+j).

Then (V, Q) is called an N-graded (U, P )-module.

Lemma 3.4. Let (V, Q) be an N-graded (U, P )-module. Write

x =
∞∑
i=0

xi and y =
∞∑
i=0

yi,

with xi ∈ U (i) and yi ∈ V (i). Then the equation

Q(x)y = 0

is equivalent to the set of equations

i∑
j=0

Q(xj)yi−j = 0, (3.1)

with i = 0, 1, 2, . . ..

Proof. Since (V, Q) is an N-graded (U, P )-module, Q(x)y ∈ V can be written as

Q(x)y =
∞∑
i=0

zi.

The element zi of grading i has the form

zi =
∑

j

Q(xj)yi−j.

Since both j and i− j are nonnegative, j runs from 0 to i.

The following lemma states that certain of the yi are zero when certain xj are. It is
based on the notion of ‘nonlinear injectivity’, to be introduced in Definition 3.5.

Definition 3.5. We call x0 nonlinear injective if

Q(x0)y = 0

implies that y has grading 0.
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Chapter 3. Polynomial evolution equations

Lemma 3.6. Let (V, Q) be an N-graded (U, P )-module. Suppose that Q(x)y = 0.
Write

x = x0 +
∞∑
i=j

xi and y =
∞∑
i=0

yi,

with xi ∈ U (i) and yi ∈ V (i). If x0 is nonlinear injective then yi = 0 for 0 < i < j.
Furthermore we have

Q(x0)yj + Q(xj)y0 = 0.

Proof. By Lemma 3.4 we have to solve the set of equations (3.1). Since xi = 0
for 0 < i < j, the equations (3.1) with 0 < i < j reduce to Q(x0)yi = 0. By
nonlinear injectiveness yi = 0. The last statement follows from taking i = j in
equation (3.1).

The following implicit function theorem states that under certain conditions only
the first few of equations (3.1) have to be solved in order to prove the existence of
y ∈ V such that Q(x)y = 0.

We introduce one other notion, ‘relatively l-primeness’, which may seem a little
odd and hard to verify. However, for our application it is perfectly natural in the
context of the symbolic calculus; it can be verified by checking relatively primeness
between certain polynomials, cf. 4.3.

Definition 3.7. We call x relatively l-prime with respect to y if

Q(y)z ∈ Im(Q(x))

implies z ∈ Im(Q(x)) for all z with grading equal to or bigger than l.

Theorem 3.8 (Sanders, Wang). Let (V,Q) be an N-graded (U, P )-module. Suppose
that for x, z ∈ U and yi ∈ V (i)

? P (x)z = 0,

? x0 is nonlinear injective,

? x is relatively (l + 1)-prime with respect to z,

?
∑k

i=0 Q(xi)yk−i = 0 for k = 0, 1, . . . , l,

? Q(z0)y0 = 0.

Then a unique y =
∑∞

i=0 yi ∈ V exists such that

? L(x)y = 0,

? L(z)y = 0.

31



3.1. An implicit function theorem

The proof of this theorem is quite cumbersome in a graded setting. We have
included the proof in the more general setting of filtered modules in Appendix B.

Note that Theorem 3.8 can be used to prove the existence of an invariant in
any (U, P )-module, but that the invariant z ∈ U plays a special role and that in
the application we have in mind this role is played by a symmetry of the evolution
equation.

The total number of variables uα
k gives us an N-grading on g. This number is

obtained by taking the Lie derivative in the direction of the scaling

σu =
N∑

α=1

σuα .

Lemma 3.9. The space g is an N-graded Leibniz algebra. The spaces h,A, Ω are
N-graded g-modules.

Proof. Since A consists of formal power series in the uα
n and f ∈ C implies f 6∈ A,

we can write
g =

∏
i≥0

g(i),

where L(σu)v = i if v ∈ g(i). The spaces h,A, Ω can be written similarly. Suppose
that v ∈ g(i) and q in some g-module with L(σu)q = jq. By Lemma 2.31 we have

L(σu)L(v)q = (i + j)L(v)q.

Consider some homogeneous equation ut = K and a homogeneous invariant Q.
By Lemma 3.9 we can write

K = K0 + K1 + · · ·+ Kn,

Q = Q0 + Q1 + · · ·+ Qm−n,

where L(σu)K
i = iKi and L(σu)Q

j = jQj. By Lemma 3.4 solving the equation
L(K)Q = 0 consists of solving the m + 1 equations

j∑
i=0

∂tQ
j + L(K i)Qj−i = 0, (3.2)

where j = 0, 1, . . . , m and Qj = 0 for all j > m − n. Note that m can be
arbitrarily large, think of the invariants of infinite order that do exist if the equation
is integrable.

In Chapter 4 we will introduce the symbolic calculus. There the strength of
Theorem 3.8 can really be appreciated. Using the symbolic calculus both nonlinear
injectivity and relatively (l +1)-primeness can be verified. For almost all systems of
evolution equations, the integer l turns out to be 1 or 2, cf. Theorem 5.2. Moreover,
using the symbolic calculus the first few equations can be solved for infinitely many
orders at once. Therefore, Theorem 3.8 can be used to prove integrability.
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Chapter 3. Polynomial evolution equations

3.2 Bigraded modules

Abstract. The more gradings the smaller the problems to solve. Here
we introduce the notion of a bigraded module. This will be useful when
treating 2-component equations.

Definition 3.10. A Leibniz algebra (U, P ) is a bigraded Leibniz algebra if it
can be written

U =
∏

i,j≥−1,i+j>0

U (i,j),

where x ∈ U (i,j) has bigrading (i, j) and

P (U (i,j))U (k,l) ⊂ U (i+k,j+l).

In particular we have

P (U−1,k)U (−1,l) = P (U (k,−1))U (l,−1) = 0.

The mapping Q : U → End(V ) is a bigraded representation if

V =
∏

i,j≥−1,i+j>0

V (i,j),

and
Q(U (i,j))V (k,l) ⊂ V (i+k,j+l).

Then (V, Q) is called a bigraded (U, P )-module .

Note that the sum i + j of this bigrading (i, j) is a nonnegative integer. Therefore
it defines a N-grading.

Definition 3.11. The sum i + j of a bigrading (i, j) is called the total grading.

The total grading makes it possible to apply the implicit function theorem.

Lemma 3.12. Let (V, Q) be a bigraded (U, P )-module . Write

x =
∞∑

j=0

j+1∑
i=−1

xi,j−i and y =
∞∑

j=0

j+1∑
i=−1

yi,j−i,

with xi,j ∈ U (i,j) and yi,j ∈ V (i,j). Then the equation Q(x)y = 0 is equivalent to the
set of equations

min(j+1,i+1)∑

k=max(−1,i−j−1)

min(j−i+1,j−k)∑

l=max(−1,−k)

L(xk,l)yi−k,j−l−i = 0,

with j = 0, 1, 2, . . . and i = −1, 0, . . . , j + 1.
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3.3. Symmetries of 2-component equations

Proof. Since (V, Q) is a bigraded (U, P )-module, Q(x)y ∈ V can be written

Q(x)y =
∞∑

j=0

j+1∑
i=−1

zi,j−i.

The element zi,j−i ∈ V of bigrading (i, j − i) has the form

zi,j−i =
∑

k,l

Q(xk,l)yi−k,j−l−i.

We have k ≥ −1 and l ≥ −1. Also we have i−k ≥ −1 and j− l−1 ≥ −1, implying
that k ≤ i + 1 and l ≤ j − i + 1. Since the total grading of yi−k,j−l−i is nonnegative
and the total grading of z is j, we have k + l ≤ j. Together with l ≥ −1 this implies
k ≤ j + 1. Similarly we get i − k ≤ j + 1. Now fix k. The total grading of xk,l

satisfies 0 ≤ k + l ≤ j. Therefore l ≥ −k and l ≤ j − k. Taking this all together we
get

max(−1, i− j − 1) ≤ k ≤ min(j + 1, i + 1),

max(−1,−k) ≤ l ≤ min(j − i + 1, j − k).

3.3 Symmetries of 2-component equations

Abstract. We explicitly write down the conditions for a 2-component
equation to possess a symmetry using vector calculus and bigrading.

The 2-component equation {
ut = K1

vt = K2

is written in vector notation
[

ut

vt

]
=

[
K1

K2

]
= K.

This corresponds to the vector field

Dt = ∂t +
∞∑
i=1

(
Di

x(K1)∂ui
+ Di

x(K2)∂vi

) ∈ g.

The equation has a symmetry S = (S1, S2) if

L(Dt)S = 0.

In all applications we consider equations and symmetries that are x, t-independent.
We refer to [Ser01, Ser98] for related results on x, t-dependent equations.
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Chapter 3. Polynomial evolution equations

Assumption 3.13. We assume that S does not depend on x, t.

Under this assumption Dt = δ(K) and S is a symmetry if

L(K)S = DS[K]−DK [S] = 0.

According to equation (2.4) we have

0 = L(K)S =

[
Du

S1
Dv

S1

Du
S2

Dv
S2

] [
K1

K2

]
−

[
Du

K1
Dv

K1

Du
K2

Dv
K2

] [
S1

S2

]

=

[
Du

S1
[K1]−Du

K1
[S1] + Dv

S1
[K2]−Dv

K1
[S2]

Du
S2

[K1]−Du
K2

[S1] + Dv
S2

[K2]−Dv
K2

[S2]

]
, (3.3)

where we used the notation, with f, g ∈ A,

Du
f [g] =

∞∑

k=0

∂uk
fDk

x(g) and Dv
f [g] =

∞∑

k=0

∂vk
fDk

x(g).

Lemma 3.14. h is a bigraded g-module.

Proof. Since A consists of formal power series in the uk and vl, we can write

g =
∏

i,j≥−1,i+j>0

g(i,j),

where L(σu)K = i, L(σv)K = j if K ∈ g(i,j). The space h can be written in the
same way. Suppose that K ∈ g(i,j) and S ∈ h(k,l). By Lemma 2.31 we have

L(σu)L(K)S = (i + k)L(K)S and L(σv)L(K)S = (j + l)L(K)S.

The spaces g(−1,k) (and h(−1,k)) contain elements K of the form K = (K1, 0) only.
We have for example

∞∑

k=0

Dk
x(v

2)∂uk
∈ g(−1,2).

When K ∈ g(−1,k) and S ∈ h(−1,l) we have
[

0 Dv
S1

0 0

] [
K1

0

]
−

[
0 Dv

K1

0 0

] [
S1

0

]
= 0.

Similarly, we see that L(g(l,−1))h(k,−1) = 0.

By Lemmas 3.14 and 3.12 the equation L(K)S = 0 is equivalent to the set of
equations

min(j+1,i+1)∑

k=max(−1,i−j−1)

min(j−i+1,j−k)∑

l=max(−1,−k)

L(Kk,l)Si−k,j−l−i = 0, (3.4)

with j = 0, 1, 2, . . . and i = −1, 0, . . . , j+1. In most applications we restrict ourselves
to equations and symmetries that have a diagonal linear part.
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3.3. Symmetries of 2-component equations

Assumption 3.15. We assume that K±1,∓1 = S±1,∓1 = 0.

When the weights of u and v are equal, this is not a stringent restriction.

Lemma 3.16 (Jordan form). Suppose that the weight of u equals the weight of v.
By a linear transformation any homogeneous system of two evolution equations can
be put in one of the forms

[
ut

vt

]
=

[
a1un + K1

a2vn + K2

]
or

[
ut

vt

]
=

[
a1un + vn + K1

a1vn + K2

]
,

where Ki contains nonlinear terms only. In the first case, one of the eigenvalues
a1, a2 can be scaled to 1 if it is nonzero. In the second case, the eigenvalue a1 can
be scaled to 1 if it is nonzero.

Proof. The linear part K0 of a homogeneous system of weight n has the form

K0 = K−1,1 + K0,0 + K1,−1.

In vector notation ut = K0 becomes
[

ut

vt

]
= A

[
un

vn

]
with A =

[
a11 a12

a21 a22

]
.

We can apply the following linear homogeneous transformations to the system.
[

u
v

]
→ M

[
u
v

]
with M =

[
M11 M12

M21 M22

]
.

After the transformation we write the system in evolutionary form and get
[

ut

vt

]
= M−1AM

[
un

vn

]
+ · · · .

The matrix A of our linear equation will be put as diagonal as possible. This is the
Jordan form of A. The columns of M consist of ‘generalised’ eigenvectors of A, cf.
[Str80]. In this way two different cases are obtained. The matrix M−1AM is either

[
a1 0
0 a2

]
or

[
a1 1
0 a1

]
.

Suppose we are in the first case and ai 6= 0, i = 1, 2. The transformation

t → t

ai

sets the i-th eigenvalue to 1. Suppose we are in the second case and a1 6= 0. The
transformations

t → t

a1

, v → a1v

set the eigenvalues to 1.
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Chapter 3. Polynomial evolution equations

Example 3.17 (Boussinesq). Consider the 2-component evolution equation

{
ut = v2

vt = u2 + 2u2 .

A matrix of eigenvectors of

A =

[
0 1
1 0

]
is M =

[
1 1
1 −1

]
.

The corresponding linear homogeneous transformation of u, v puts the Boussinesq
system in Jordan form: {

ut = u2 + (u + v)2

vt = −v2 − (u + v)2 .

Under Assumption 3.15 the symmetry conditions of total grading 0, 1 and 2
become

L(K0,0)S0,0 = 0. (3.5)

L(K−1,2)S0,0 + L(K0,0)S−1,2 = 0,

L(K0,0)S0,1 + L(K0,1)S0,0 = 0,

L(K0,0)S1,0 + L(K1,0)S0,0 = 0,

L(K0,0)S2,−1 + L(K2,−1)S0,0 = 0. (3.6)

L(K−1,2)S0,1 + L(K−1,3)S0,0 + L(K0,0)S−1,3

+L(K0,1)S−1,2 = 0,

L(K−1,2)S1,0 + L(K0,0)S0,2 + L(K0,1)S0,1

+L(K0,2)S0,0 + L(K1,0)S−1,2 = 0,

L(K−1,2)S2,−1 + L(K0,0)S1,1 + L(K0,1)S1,0 + L(K1,0)S0,1

+L(K1,1)S0,0 + L(K2,−1)S−1,2 = 0,

L(K0,0)S2,0 + L(K0,1)S2,−1 + L(K1,0)S1,0

+L(K2,−1)S0,1, + L(K2,0)S0,0 = 0,

L(K0,0)S3,−1 + L(K1,0)S2,−1 + L(K2,−1)S1,0

+L(K3,−1)S0,0 = 0. (3.7)

The higher the grading the bigger the size of the symmetry conditions. Luckily, most
equations are relatively 2- or 3-prime with respect to their symmetries. Therefore
by the implicit function theorem the above equations of grading 0, 1 and 2 are the
only equations that have to be solved at arbitrary order.

If in an equation terms of certain grading vanish, nonlinear injectiveness can be
used to conclude the vanishing of the terms with this grading in any invariant.
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3.3. Symmetries of 2-component equations

Lemma 3.18. Suppose that K0,0 is nonlinear injective. Under Assumption 3.13
and 3.15, for any positive integer k, if Ki,j = 0 for all 0 < i + j < k, we have the
following symmetry conditions

L(K0,0)Si,k−i + L(Ki,k−i)S0,0 = 0, i = −1, 0, . . . k + 1. (3.8)

Moreover we have Si,j = 0, for all 0 < i + j < k.

Proof. The equations of total grading k have the form
∑
m,n

L(Km,n)Si−m,k−n−i = 0, i = −1, 0, . . . k + 1. (3.9)

Since Km,n = 0 for all 0 < m + n < k and K±1,∓1 = S±1,∓1 = 0 the sum contains
only two terms, i.e. m = n = 0 and m = i, n = k − i. A similar argument shows
that for all 0 < l < k the equations of total grading l are

L(K0,0)Si,l−i = 0.

By the nonlinear injectivity of K0,0 it follows that Si,k−i = 0.

The components of the first term in the left hand side of equation (3.8) are

L(K0,0)Si,j =

[
Du

Si,j
1

[K0,0
1 ] + Dv

Si,j
1

[K0,0
2 ]−Du

K0,0
1

[Si,j
1 ]

Du
Si,j

2

[K0,0
1 ] + Dv

Si,j
2

[K0,0
2 ]−Dv

K0,0
2

[Si,j
2 ]

]
. (3.10)

This follows from equation (3.3) and

Dv
K0,0

1
= Du

K0,0
2

= 0.

Chapters 6 and 8 are devoted to ‘B-equations’. These are equations of the form
ut = K where

K = K0,0 + K−1,2.

Here we write out the symmetry conditions for such equations.

Lemma 3.19. The vector S is a symmetry of ut = K0,0 + K−1,2 if, for any non-
negative integer k, the following equations are satisfied.

? L(K0,0)Si,k−i = 0 if i = k, k + 1 and k = 0, i = −1.

? L(K0,0)Si,k−i + L(K−1,2)Si+1,k−i−2 = 0 if i = 0, . . . , k − 1 and i = −1, k > 0.

Proof. The equations of total grading k have the form
∑
m,n

L(Km,n)Si−m,k−n−i = 0, (3.11)

with i = −1, 0, . . . k+1. Due to the form of K each sum contains at most two terms,
(m,n) = (0, 0), (−1, 2). We have k−n− i ≥ −1. Hence the terms with n = 2, i < k
do not contribute. When k = 0 the term S0,k−1 does not exist.
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Chapter 3. Polynomial evolution equations

Once more we prove that, under the assumption of nonlinear injectiveness, the
non-existence of certain terms puts stringent conditions on the symmetry.

Lemma 3.20. Suppose that K0,0 is nonlinear injective. Under the assumption that
S1,−1 = 0, any symmetry S of ut = K0,0 + K−1,2 has the form

S = S0,0 + S−1,1 + S−1,2.

Proof. By induction on k. Take k > 0. As induction-hypothesis we suppose that
Si,j = 0 for all i, j such that i + j = k and j 6= 2 if i = −1. For k = 1 this follows
from the assumption. For k > 1, the equations in Lemma 3.19 of total grading k +1
reduce to

L(K0,0)Si,k+1−i,

with i = −1, 0, . . . , k + 2, because the term L(K−1,2)Si+1,k−i−1 does not contribute.
This follows from the fact that the total grading of Si+1,k−i−1 is k and its u-
weight nonnegative. By the nonlinear injectivity of K0,0 it follows that Si,j = 0
if i + j = k + 1.

39



3.3. Symmetries of 2-component equations

40



Chapter 4

Symbolic calculus and proving
integrability

The basic idea of the symbolic calculus is very old, probably dating from the time
when the position of index and power were not as fixed as they are today. The
following formulas illustrate that differentiating a product is similar to taking the
power of a sum. From the Leibniz rule we have

(uv)n =
n∑

i=0

(
n

i

)
uivn−i,

while Newton’s binomial formula reads

(u + v)n =
n∑

i=0

(
n

i

)
uivn−i.

It is seen that in these formulas the index, counting the number of derivatives, could
be interchanged with the power. Of course, with expressions containing both indices
and powers, one has to be more careful. In this case we perform the Gel’fand-Dikĭı
transformation, cf. [GD75]. This can be seen as short notation for the Fourier
transform, as was clearly pointed out in [MN02].

4.1 Symbolic calculus for scalar equations

Abstract. We introduce the symbolic calculus for scalar equations and
show how to use this calculus to prove nonlinear injectivity or relatively
l-primeness.

The ‘symbolic method’ consists of a rule to translate any polynomial P in the
variables u, u1, u2, . . . into a polynomial P̂ in the variables u, ξ1, ξ2, . . ..
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4.1. Symbolic calculus for scalar equations

Notation 4.1. The symbolic expression for P ∈ A is denoted by P̂ . The
Gel’fand-Dikĭı transformation is written P D P̂ .

A differential monomial M with m variables uk is transformed as:

M =
m∏

j=1

uij

D 1

m!

∑

σ∈Sm

m∏
j=1

ξ
ij
σ(j)u

m

= M̂,

where
∑

σ∈Sm
means one has to sum over all different permutations of the integers

1, . . . , m. This symmetrising is done to ensure that, for example, ûiuj = ûjui. By
linearity the mapping extends to polynomials.

When multiplying two polynomials the total u-grading increases. Therefore sym-
bolic polynomials can not simply be multiplied. Suppose that P̂ depends on p sym-
bols. Number the symbols in M̂ from 1 to m and the ones in P̂ from m+1 to m+p,
then multiply and symmetrise:

MP D M̂ ◦ P̂

=
1

(m + p)!

∑

σ∈Sm+p

M̂(ξσ(1), · · · , ξσ(m))P̂ (ξσ(m+1), · · · , ξσ(m+p))u
m+p

= M̂P .

The operation of taking a total derivative turns into multiplication with the sum of
all symbols involved. We have

DxM =
m∑

k=1

uik+1

m∏

j 6=k

uij

D
m∑

k=1

ξik+1
k ◦ 1

(m− 1)!

∑

σ∈Sm−1

m∏

j 6=k

ξ
ij
σ(j)u

m

=
m∑

i=1

ξiM̂(ξ)

= D̂xM,

which follows from the fact that taking the sum over all permutations of a symmetric
polynomial in m− 1 symbols equals multiplying with (m− 1)!.
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Chapter 4. Symbolic calculus and proving integrability

The Fréchet derivative becomes

DM =
m∑

k=1

m∏

j 6=k

uijD
ik
x

D
m∑

k=1

1

(m− 1)!

∑

σ∈Sm−1

m∏

j 6=k

ξ
ij
σ(j)D̂x

ik
um−1

= mM̂(ξ1, . . . , ξm−1, D̂x)/u

= D̂M ,

where ξn is replaced by the symbol D̂x, representing the sum of all symbols in the
monomial the Fréchet derivative is acting on. Symmetrising over these symbols
has to be done after multiplication. As was noticed by Mikhailov and Novikov, cf.
[MN02], an operator is a Fréchet derivative if it is symmetric in the symbols

Dx, ξ1, ξ2, . . . .

Note that in the symbolic calculus taking the Fréchet derivative in the direction
of a linear term becomes

DM [un] D (
m∑

i=1

ξn
i )M̂.

Thus, the Lie derivative of S ∈ H(i), i.e., of grading i, in the direction of un is
symbolic multiplication with so-called G-functions. We have

L(un)S D Gi
nŜ

where the G-functions are

Gi
n =

i+1∑
j=1

ξn
j − (

i+1∑
j=1

ξj)
n. (4.1)

We are going to show how to verify the conditions ‘nonlinear injectiveness’ and
‘relative l-primeness’, see Definitions 3.5 and 3.7. We need this when applying the
implicit function theorem (Theorem 3.8).

Lemma 4.2. Take n ∈ N and n > 1. Then un is nonlinear injective.

Proof. Let S ∈ H(i) be nonzero. According to Definition 3.5, un is nonlinear injective
if

L(un)S = 0

implies that i = 0. Turning to the symbolic language we get

Gi
nŜ = 0.

Hence we have Gi
n = 0 and together with n > 1 this implies i = 0.
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4.2. The Korteweg-De Vries equation

Lemma 4.3. Let un be the linear part of K and um be the linear part of S. Then
K is relatively l-prime with respect to S if Gl

n and Gl
m are relatively prime.

Proof. K is relatively l-prime with respect to S if un is relatively l-prime with respect
to um. According to Definition 3.7, un is relatively l-prime with respect to um if

L(um)S ∈ Im(L(un))

implies
S ∈ Im(L(un))

for all S ∈ H(k) where k ≥ l. In symbolic language, for k ≥ l the equality

Gk
mŜ = Gk

nRuk+1

should imply that
Ŝ = Gk

nTuk+1

for some R, T ∈ C[ξ1, . . . , ξk+1]. This is the case, with T = R/Gk
m, whenever Gk

n and
Gk

m are relatively prime. On the other hand, suppose that Gl
n and Gl

m are relatively
prime. Then, since

Gl+1
n |ξl+2=0= Gl

n, Gl+1
m |ξl+2=0= Gl

m

the polynomials Gk
n and Gk

m are relatively prime for all k ≥ l.

Now, the question arises how to check relative primeness of two polynomials.
This can be done by calculating their resultant. The definition of the resultant
is given in Appendix C. Resultants can also be used for nonlinear elimination,
see Theorem C.3. The origin of the resultant lies with Sylvester’s criterion for
determining when two polynomials have a nontrivial common factor. This criterion
simply states that two polynomials, A(x) and B(x), have a nontrivial common factor
if and only if resx(A,B) = 0.

Remark 4.4. K can be relatively l-prime with S without Gl
n being relatively prime

with Gl
m, see Theorem 5.9.

4.2 The Korteweg-De Vries equation

Abstract. We prove the existence of infinitely many commuting symme-
tries for the KDV equation. using the symbolic calculus and the implicit
function theorem.

We prove the integrability of the KDV equation ut = K0 + K1 = u3 + uu1 by
verifying the conditions in Theorem 3.8.

? One symmetry
S5 is a symmetry of the KDV equation, see Example 2.16.
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Chapter 4. Symbolic calculus and proving integrability

? Nonlinear injectiveness
By Lemma 4.2, the linear part u3 is nonlinear injective.

? Relatively l–primeness
We verify that G2

3 and G2
5 are relatively prime. Their resultant is

resξ4(G2
3 ,G2

5) = (45ξ1ξ2ξ3(ξ1 + ξ2)(ξ1 + ξ3)(ξ2 + ξ3)(ξ1 + ξ2 + ξ3))
2 (4.2)

which is nonzero. Therefore, using Lemma 4.3, K is relatively 3-prime with
respect to S5.

? Infinitely many approximate symmetries
The n-th order symmetry is written

Sn = S0
n + S1

n + S2
n + · · · ,

with S0
n = un. We start by solving L(K0)S1 + L(K1)S0 = 0. In the symbolic

calculus

Ŝ1
n =

G1
n

G1
3

K̂1 =
(ξ1 + ξ2)

n − ξn
1 − ξn

2

6ξ1ξ2

.

Let us go one step further and show that we can calculate the cubic terms of
infinitely many symmetries. The equation

L(K0)S2
n + L(K1)S1

n + L(K2)S0
n = 0

can be solved for S2
n if

̂L(K1
1)S1

n =
2

3!

∑

S3

(
K̂1(ξ1, ξ2 + ξ3)Ŝ1

n(ξ2, ξ3)− Ŝ1
n(ξ1, ξ2 + ξ3)K̂1(ξ2, ξ3)

)

is divisible by G2
3 = 3(ξ1 + ξ2)(ξ2 + ξ3)(ξ1 + ξ3). This is the case if n is odd

since the expression is symmetric and substitution of ξ1 = −ξ2 gives

ξ3(ξ
n
2 + (−ξ2)

n)

18ξ2
2

.

? The approximate symmetries commute with the symmetry in lowest
grading
We have L(u5)un = 0.

By Theorem 3.8 the Korteweg-De Vries equation has infinitely many odd order sym-
metries. Observe that these have finitely many terms since they are homogeneous.
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4.3. Symbolic calculus for 2-component equations

4.3 Symbolic calculus for 2-component equations

The Gel’fand-Dikĭı transformation is easily extended to differential monomials in
more variables by introducing other symbols. We describe the N = 2 case. For u
we use symbols ξ and for v we use symbols η. Any monomial in uk, vl is a product
of a monomial M in the uk and a monomial Q in the vl. Such a product transforms
by

M(u)Q(v) D M̂(ξ)Q̂(η).

Symmetrising is only done in the symbols with the same name since uiuj = ujui and
uivj 6= ujvi. By linearity the transformation extends to polynomials. Let P be a
polynomial in m variables uk and n variables vl. Thus total differentiation becomes

DxP D (
m∑

i=1

ξi +
n∑

j=1

ηj)P̂ . (4.3)

and taking a Fréchet derivative is done using

Du
P D mP̂ (ξ1, . . . , ξm−1, D̂x, η)/u,

Dv
P D nP̂ (ξ, η1, . . . , ηn−1, D̂x)/v.

(4.4)

In the symbolic calculus taking the Lie bracket with a diagonal linear part is a
semisimple operation.

Lemma 4.5. Suppose that the linear part of the equation is given by

K0,0 = a1un∂u + a2vn∂v

Then we have

L(K0,0)Si,j D
[ Gi,j

1;n[a1, a2](ξ, η) 0

0 Gi,j
2;n[a1, a2](ξ, η)

]
Ŝi,j,

where

Gi,j
1;n[a1, a2](ξ, η) = a1(ξ

n
1 + · · ·+ ξn

i+1) + a2(η
n
1 + · · ·+ ηn

j )

−a1(ξ1 + · · ·+ ξi+1 + η1 + · · ·+ ηj)
n

and

Gi,j
2;n[a1, a2](ξ, η) = Gj,i

1;n[a2, a1](η, ξ). (4.5)

Proof. By equations (3.10), (4.3) and (4.4) the result follows.

46



Chapter 4. Symbolic calculus and proving integrability

4.3.1 Nonlinear injectiveness and relatively l-primeness

Lemma 4.6. Let a1 and a2 be nonzero. Take

K = a1un∂u + a2vn∂v

with n > 0 and a1 6= a2 if n = 1. Then K is nonlinear injective.

Proof. K is nonlinear injective if for all S ∈ h(i,j) the equation L(K)S = 0 implies
i + j = 0. In symbolics this translates to

Gi,j
1;n[a1, a2] = 0 when S1 6= 0,

Gi,j
2;n[a1, a2] = 0 when S2 6= 0.

Note that S1 = 0 if j = −1 and that S2 = 0 if i = −1. We distinguish two cases:

? Suppose a1 6= a2. For k = 1, 2 we have Gi,j
k;n[a1, a2] = 0 if i = j = 0.

? Suppose a1 = a2. With n > 1 we have Gi,j
1;n[a1, a2] = 0 if i = j = 0 or

−i = j = 1. Also Gi,j
2;n[a1, a2] = 0 if i = j = 0 or i = −j = 1.

In both cases we have i + j = 0.

Lemma 4.7. Take K = a1un∂u + a2vn∂v and S = b1um∂u + b2vm∂v. Then K is
relatively l-prime with respect to S if the G-functions Gi,l−i

k,n and Gi,l−i
k,m are relatively

prime for i = −1, 0, . . . l + 1 and k = 1, 2.

Proof. According to Definition 3.7, K is relatively l-prime with respect to S if

L(S)Q ∈ Im(L(K))

implies
Q ∈ Im(L(K))

for all Q ∈ h(i,j) where i + j ≥ l. In symbolic language we need, for all i + j ≥ l and
k = 1, 2,

Gi,j
k,mQ̂k = Gi,j

k,nR̂k

implying
Q̂k = Gi,j

k,nT̂k

for some R, T ∈ h(i,j). This is the case, with

T̂k = R̂k/Gi,j
k,m,

whenever Gi,j
k,n and Gi,j

k,m are relatively prime. On the other hand, suppose that Gi,l−i
k,n

and Gi,l−i
k,m are relatively prime for i = −1, 0, . . . , l + 1 and k = 1, 2. Since

Gi+1,j
1,k = Gi,j

1,k |ξi+2=0, Gi,j+1
1,k = Gi,j

1,k |ηj+1=0

the G-functions Gi,j
1,n and Gi,j

1,m are relatively prime for all i + j ≥ l.
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4.4 An integrable 2-component equation with a

continuous spectrum

Using the symbolic calculus and the implicit function theorem we prove the existence
of infinitely many commuting symmetries for the 2-component equation:

{
ut = u2 + 2u1v + (1− α)uv1 + (1− 2α)uv2 − u3

vt = αv2 + 4αvv1 + 2uu1
, (4.6)

where α 6∈ {0, 1
3
}. This equation appeared in [SW01], where the classification of

homogeneous second order equations with two components was performed.

? One symmetry
A symmetry S of equation (4.6) is given by S = (S1, S2) with

S1 =u3 + 3v1u1 + 3u2v + 3
1− α

2
uv2 + 3u1v

2

+ (−9α + 6)uv1v − 3u1u
2 − 3u3v + (3− 6α)uv3

and

S2 =
3α− 1

2
v3 + 3u2

1 + 3u2u + (−3 + 9α)v2v

+ (−3 + 9α)v2
1 + 6uu1v + 3u2v1 + (−6 + 18α)v1v

2

? Nonlinear injectiveness
We have

K0,0 = u2∂u + αv2∂v.

By Lemma 4.6, K0,0 is nonlinear injective if α 6= 0.

? Relatively l–primeness
We calculate some resultants:

resη3(G−1,3
1;2 [1, α],G−1,3

1;3 [1,
3α− 1

2
]) =

9

4
(α− 1)2

(
2α(α− 1)2η6

1 + (3α3 − 3α2 + 9α− 1)η4
1η

2
2 + · · · ) ,

resη2(G0,2
1;2 [1, α],G0,2

1;3 [1,
3α− 1

2
]) = 18α(α− 1)2ξ2

1η
4
1 + · · · ,

resη1(G1,1
1;2 [1, α],G1,1

1;3 [1,
3α− 1

2
]) =

9(α− 1)2ξ2
1ξ

2
2

(
(α + 1)(ξ2

1 + ξ2
2) + 2αξ1ξ2

)
,

resξ3(G2,0
1;2 [1, α],G2,0

1;3 [1,
3α− 1

2
]) = −12(ξ1 + ξ2)ξ

2
1ξ

2
2 ,

resξ3(G3,−1
2;2 [1, α],G3,−1

2;3 [1,
3α− 1

2
]) =

9(α− 1)2ξ2
1ξ

2
2

(
(1− α)(ξ2

1 + ξ2
2)− 2αξ1ξ2

)
,

48



Chapter 4. Symbolic calculus and proving integrability

resη1(G2,0
2;2 [1, α],G2,0

2;3 [1,
3α− 1

2
]) =

− 3/2(ξ1 + ξ2)
(
(α− 1)3ξ4

2 + 2(3α− 1)(α2 + 1)ξ2
1ξ

2
2 + · · · ) ,

resη2(G1,1
2;2 [1, α],G1,1

2;3 [1,
3α− 1

2
]) =

− 3/2ξ2
1(η1 + ξ1)

(
(α− 1)3ξ2

1 + 2α(α + 1)(3α− 1)η2
1 + · · · ) ,

resη3(G0,2
2;2 [1, α],G0,2

2;3 [1,
3α− 1

2
]) = −6α2(3α− 1)(η1 + η2)η

2
1η

2
2.

If α = 1, all G-functions are relatively prime. Note that we are in case 3 of
Theorem C.3. Therefore, K0,0 is relatively 2-prime with S0,0 when α 6∈ {0, 1

3
}.

If α = 0, the G-functions G0,2
1;2 [1, α] and G0,2

1;3 [1,
3α−1

2
] share the divisor η1 + η2.

Moreover, if α = 0 we have G0,2
2;2 [1, α] = 0. If α = 1

3
, we have G0,2

2;3 [1,
3α−1

2
] = 0.

? Infinitely many approximate symmetries

We solve the equations (3.6) symbolically. The calculation is done for arbitrary
order m, i.e., we set Q0,0 = um∂u + βvm∂v.

Q̂0,1
1 =

G0,1
1;m[1, β]

G0,1
1;2 [1, α]

K̂0,1
1 =

(ξ1 + η1)
m − ξm

1 − βηm
1

η1

Q̂0,1
2 =

G0,1
2;m[1, β]

G0,1
2;2 [1, α]

K̂0,1
2 = β(η1 + η2)

(η1 + η2)
m − ηm

1 − ηm
2

η1η2

Q̂2,−1
2 =

G2,−1
2;m [1, β]

G2,−1
2;2 [1, α]

K̂2,−1
2 = (ξ1 + ξ2)

β(ξ1 + ξ2)
m − ξm

1 − ξm
2

α(ξ1 + ξ2)2 − ξ2
1 − ξ2

2

The fact that the first two expressions are polynomial can easily be seen by
substituting η1 = 0 or η2 = 0 in the numerator. Demanding the latter expres-
sion to be polynomial gives us a restriction on the eigenvalue. Suppose that
(r, 1) is a projective zero to G2,−1

2;2 [1, α]. The other zero is given by (1, r). These

should be zeros of G2,−1
2;m [1, β]. This is the case if

β =
1 + rm

(1 + r)m
.

By nonlinear injectiveness Q has no other quadratic parts.

? The approximate symmetries commute with the symmetry in lowest
grading
We have L(S0,0)Q0,0 = 0.

By the implicit function theorem (Theorem 3.8) the equation (4.6) has infinitely
many symmetries.
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4.5 Biunit coordinates and anharmonic ratios

Abstract. We introduce an uncommon way to describe complex num-
bers which will be especially convenient when describing the solutions
to G-functions that correspond to the integrable equations. Also we in-
troduce the group of anharmonic ratios since the symmetry properties
of G-functions can easily be expressed in term of these ratios.

The most familiar way to describe a point r in the complex plane is probably

r = <(r) + =(r)i,

where <(r) ∈ R is the real part of r, =(r) ∈ R is the imaginary part of r and
i2 = −1. A second way to describe r ∈ C is

r = |r|earg(r)i,

where |r| > 0 is the absolute value of r and 0 ≤ arg(r) < 2π the argument of r. Yet,
we would like to give a third description.

Definition 4.8. We call (ψ, φ), where |ψ| = |φ| = 1, ψ, φ 6= ±1, biunit coordi-
nates of the point r ∈ C \R, which is the intersection of the lines ψR and φR− 1,
cf. Figure 4.1.

ψ
φ

r

–1

0

1

2

–2 –1 1

Figure 4.1: The point r in biunit coordinates (ψ, φ).

50



Chapter 4. Symbolic calculus and proving integrability

Lemma 4.9. If (ψ, φ) are biunit coordinates of r, we have

r = P(ψ, φ) = ψ2 (φ + 1)(φ− 1)

(ψ + φ)(ψ − φ)
. (4.7)

Proof. We solve the system of linear equations in |r| and |r + 1|:

|r|sin(arg(r)) = |r + 1|sin(arg(r + 1)),

|r + 1|cos(arg(r + 1)) = |r|cos(arg(r)) + 1.

This gives

|r| = sin(arg(r + 1))

cos(arg(r + 1))sin(arg(r))− sin(arg(r + 1))cos(arg(r))
.

Using the identities

sin(arg(r)) =
ψ − ψ−1

2i
, cos(arg(r)) =

ψ + ψ−1

2
,

sin(arg(r + 1)) =
φ− φ−1

2i
, cos(arg(r + 1)) =

φ + φ−1

2
,

we express |r| in terms of ψ, φ. Multiplying |r|(ψ, φ) by ψ gives expression (4.7).

Notation 4.10. The set of points

{P(a, b))|a ∈ A, b ∈ B}

is denoted with P(A,B).

From Definition 4.8 and from expression (4.7) it is clear that if (ψ, φ) are biunit
coordinates of r, then (−ψ, φ) and (ψ,−φ) are biunit coordinates of r as well. Note
that we have ψ 6= ±φ, i.e., there is no point r ∈ C with biunit coordinates (ψ,±ψ).

A G-function can be invariant under interchanging certain symbols. For example
we have

G−1,2
1,n (η1, η2) = G−1,2

1,n (η2, η1). (4.8)

Another way of expressing this fact is the following: if (1, r) is a projective zero to
G−1,2

1,n , then (1, 1
r
) is a projective zero of G−1,2

1,n as well, i.e., the set of zeros of G−1,2
1,n is

invariant under the anharmonic transformation r → 1
r
.

Definition 4.11. The group generated by the transformations

f2 : r 7→ 1

r
, f3 : r 7→ −1− r

is called the group of anharmonic ratios and denoted by A.
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4.5. Biunit coordinates and anharmonic ratios

The group of anharmonic ratios is a representation of the permutation group S3,
cf. [MM97]. We number the elements fi ∈ A in the following way.

f1 = f2 ◦ f2, f4 = f2 ◦ f3 ◦ f2, f5 = f2 ◦ f3, f6 = f3 ◦ f2

Explicitly we have

f1 : r → r , f2 : r → 1

r
,

f3 : r → −1− r , f4 : r → − r

1 + r
, (4.9)

f5 : r → −1 + r

r
, f6 : r → − 1

1 + r
.

We consider the image of r under the group of anharmonic ratios in terms of biunit
coordinates.

f1 : (ψ, φ) → (ψ, φ) , f2 : (ψ, φ) → (ψ−1, φψ−1),

f3 : (ψ, φ) → (φ, ψ) , f4 : (ψ, φ) → (ψφ−1, φ−1), (4.10)

f5 : (ψ, φ) → (ψ−1φ, ψ−1) , f6 : (ψ, φ) → (φ−1, ψφ−1).

These are just algebraic identities and simple to check. However, they can be given a
geometrical meaning. For example the second identity is equivalent to the following
proposition.

Proposition 4.12. Consider a triangle ABC. Let D be the point on the line BC
such that

∠(AB,AD) = ∠(CA, CB).

Then the length of BD times the length of BC equals the square length of AB.

Proof. The proposition can also be proven by using the cosine rule twice.

Conjugation is also a simple operation in biunit coordinates. If the biunit co-
ordinates of r are given by (ψ, φ) we have (ψ−1, φ−1) as biunit coordinates of r̄,
i.e.,

r̄ = P(ψ−1, φ−1) =
(ψ + 1)(φ− 1)

(ψ − φ)(ψ + φ)
, (4.11)

since ψ̄ = ψ−1 whenever |ψ| = 1.
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Chapter 5

The classification of scalar
equations

In this chapter we review the classification of scalar equations, with respect to the
existence of symmetries, obtained by Sanders and Wang in [SW98]. Moreover,
we elucidate that the classification with respect to integrability can be performed
without diophantine approximation theory.

5.1 Divisibility conditions

Using the symbolic method and the implicit function theorem, the paper [SW98]
classifies all homogeneous integrable and almost integrable equations of the form

ut = un + f(u, . . . , un−1), n > 1, (5.1)

with (purely) nonlinear f ∈ A and λ(u) > 0. The result heavily depends on divisi-
bility properties of the functions Gi

n, which are given by equation (4.1).
Note that we consider the right hand side of equation 5.1 to be an element in H:

K = (un + f(u, . . . , un−1))∂u ∈ H,

see Definition 2.2. We write

K = K0 + K1 + · · · ,

where

L(σu)K
i = iKi, i ≥ 0.

By abuse of notation, in what follows we omit ∂u.
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5.1. Divisibility conditions

By Lemma 4.2 the linear part K0 = un is nonlinear injective. Therefore, if the
equation has a nonzero symmetry

S = S0 + S1 + · · · ,

we have S0 6= 0. Let S0 be homogeneous of weight m. Then

S0 = um

and the first symmetry condition is satisfied, i.e.,

L(K0)S0 D G0
nS0 = 0.

Suppose that the first i− 1 nonlinear terms of K vanish, i.e., K i 6= 0, Kj = 0 when
0 < j < i. Then, by Lemma 3.6, we have Sj = 0 with 0 < j < i and

L(K0)Si + L(K i)S0 = 0,

leading to the symbolic divisibility condition that

Ŝi =
Gi

m

Gi
n

K̂i

is polynomial. Since λ(u) is positive, the degree of K̂i is smaller than n which is
the degree of Gi

n. Therefore the greatest common divisor of Gi
n and Gi

m should have
positive degree. We now distinguish three cases: i = 1, i = 2 and i > 2. These cases
correspond to equations with quadratic terms, equations with cubic lowest nonlinear
part and equations with neither quadratic nor cubic terms.

For the cases i = 2 and i > 2 proving the relative l-primeness condition in the
implicit function theorem (Theorem 3.8) consists of showing irreducibility of the
G-functions. This is done by using the following theorem.

Theorem 5.1 (Bézout’s theorem). If C and D are two projective curves of degrees
n and m in CP2 which have no common component, they have precisely nm points
of intersection counting multiplicities;

∑
p∈C∩D

Ip(C, D) = nm.

A proof based on resultants is given in [Kir92], an other proof is found in [Har77].
It was shown that if an equation without quadratic terms possesses a symmetry

it does have cubic terms and it is in a hierarchy of order three, cf. Sections 5.2 and
5.3. For equations with quadratic terms we will treat the matter a little differently
from how it was originally done by distinguishing the classification of integrable
equations, cf. Section 5.4 and the classification of almost integrable equations, cf.
Section 5.5. This serves to separate the difficult from the easy part. The easy part
is to obtain all integrable equations. The use of the Lech-Mahler theorem is crucial
(and new) here. The difficult part is to show that there are no equations with
finitely many symmetries. This is where the results obtained by F. Beukers using
diophantine approximation theory are really needed, cf. Section 5.5.
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Chapter 5. The classification of scalar equations

5.2 Equations with neither quadratic nor cubic

terms

Abstract. Using Bézout’s theorem we show that any scalar equation
with neither quadratic terms nor cubic terms does not possess a symme-
try. More generally this is true for diagonalisable N-component equations
with nonzero eigenvalues.

Theorem 5.2 (Beukers). Let i > 2, i ∈ N. For any positive integer n the function

G = an−1
1 ξn

1 + · · ·+ an−1
i+1 ξn

i+1 − a0(ξ1 + · · · ξi+1)
n,

where aj 6= 0, 1 ≤ j ≤ i + 1, is irreducible over C.

Proof. If G is reducible the projective hypersurface H given by G = 0 consists of
two components. These components intersect in an infinite number of points, which
should be singularities of H. Thus it suffices to show that H has finitely many
singular points. When a0 = 0 it is easy to see that there is no singularity. When
a0 6= 0 there are the singularities

ξj =
ζj

aj

, j = 1, · · · , n,

where

ζn−1
j = 1,

i∑
j=1

ζj

aj

= 1.

In particular there are only finitely many of them.

Corollary 5.3. As a special case of this theorem all Gi
n with i > 2 are irreducible

over C. In particular the greatest common divisor (gcd) of Gi
n and Gi

m is constant if
i > 2, n 6= m.

This immediately implies that if an equation has neither quadratic terms nor cubic
terms it has no symmetry. At the same time it implies the following.

Corollary 5.4. K is relatively 3-prime with respect to S.

Remark 5.5. Theorem 5.2 is applicable to equations with any number of compo-
nents. If an equation with diagonal linear part and nonzero eigenvalues has neither
quadratic nor cubic terms, it has no symmetry. If the equation has a symmetry, it
is relatively 3-prime with respect to this symmetry.
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5.3 Equations with cubic lowest nonlinear terms

Abstract. Using Bézout’s theorem we show that if a scalar equation
with cubic lowest nonlinear part possesses a symmetry, it is contained in
a 3-rd order hierarchy. More explicitly it is a symmetry of the modified
Korteweg-De Vries equation or of the Ibragimov-Shabat equation.

Theorem 5.6 (Beukers). The G-function

G2
n = ξn

1 + ξn
2 + ξn

3 − (ξ1 + ξ2 + ξ3)
n

is irreducible over C when n is even. When n is odd it factorises as

(ξ1 + ξ2)(ξ2 + ξ3)(ξ1 + ξ3)H
2
n,

where H2
n is irreducible over C.

Proof. The singular points of the projective curve C given by G2
n = 0 are given by

the solutions of the simultaneous equations.

G2
n = ∂ξ1G2

n = ∂ξ2G2
n = ∂ξ3G2

n = 0.

This leads to

ξn−1
1 = ξn−1

2 = ξn−1
3 = ξn−1

0 , with ξ0 + ξ1 + ξ2 + ξ3 = 0.

Since we work in projective space CP2, we may take ξ3 = 1. The singularities are
the points (ξ1, ξ2, 1) such that

ξ0 + ξ1 + ξ2 + 1 = 0, ξn−1
i = 1, i = 0, 1, 2.

Four complex numbers of the same absolute value add up to zero if they form the
sides of a parallelogram with equal sides. Hence one of ξi equals −1 and the others
are opposite. But

(−ξj)
n−1 6= 1

if ξn−1
j = 1 and n is even. Therefore, when n is even, the projective curve is

nonsingular. When n is odd there are 3n− 6 singularities given by

(ζ,−ζ, 1), (ζ,−1, 1), (−1, ζ, 1),

where ζn−1 = 1, ζ 6= ±1 and the 3 points

(1,−1, 1), (−1, 1, 1), (−1,−1, 1).

Consider such a singular point, say (ζ,−ζ, 1). We study the singular point locally
by introducing coordinates

u′ = ζ + u, v′ = −ζ + v.
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Chapter 5. The classification of scalar equations

Up to 3-rd degree terms we find the local equation

(ζ(u + v) + v − u)(u + v) = 0.

Since the quadratic part consists of two distinct factors, the singularity is simple,
i.e., there are two distinct tangent lines through the singular point. The projective
curve

(ξ1 + ξ2)(ξ2 + ξ3)(ξ1 + ξ3) = 0

has 3 singular points and intersects H2
n = 0 in 3(n − 3) points. This accounts for

the 3n − 6 points we found. Hence H2
n = 0 is nonsingular and in particular H2

n is
irreducible.

Corollary 5.7. If n and m are even then K is relatively 2-prime with respect to S.

Suppose that an equation of order n is integrable. Then n is odd and the sym-
metries appear at odd orders. The cubic part of each symmetry satisfies

Ŝ2 =
G2

m

G2
n

K̂2.

We have
G2

n

(ξ1 + ξ2)(ξ1 + ξ3)(ξ2 + ξ3)

dividing K̂2. Therefore we can take m = 3 as well and view K as a symmetry of
some 3-rd order equation. We check which homogeneous 3-rd order equations have
a symmetry on order 5. The possible values for the weight λ(u) are 3/2, 1 and 1/2,
given by the solutions of

degree(K̂2) + 2λ(u) = 3, where 0 ≤ degree(K̂2) < 3.

When λ(u) = 1 we find the modified Korteweg-De Vries equation

ut = u3 + u2u1.

When λ(u) = 1/2 we find the Ibragimov-Shabat equation

ut = u3 + 3u2u2 + 9uu2
1 + 3u4u1.

By Lemma 4.2, u3 is nonlinear injective. By Corollary 5.4 the 3-rd order equations
are relatively 3-prime with respect to their 5-th order symmetries, another proof is
based on resultants, cf. 4.2. Therefore, with the implicit function theorem (Theorem
3.8) we conclude that these two equations are integrable.
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5.4. Integrable scalar equations with a quadratic part

5.4 Integrable scalar equations with a quadratic

part

Abstract. Using the theorem of Lech and Mahler we show that if a
scalar equation with quadratic terms is integrable, it is contained in a
hierarchy of order 2, 3, 5 or 7. There are eight such hierarchies.

If the scalar equation (5.1) is integrable the G-function

G1
n = ξn

1 + ξn
2 − (ξ1 + ξ2)

n

should have a common divisor with G1
m for infinitely many m. We look at zeros

(ξ1, ξ2) of the G-functions in projective space CP1, i.e., we may scale ξ2 to 1. We
call the point r a zero of G1

n if
G1

n(r, 1) = 0.

The problem translates into: find all zeros r ∈ C such that

G1
m(r, 1) = (r + 1)m − rm − 1 = 0

has infinitely many integer solutions m. The lowest solution m is the order n of
our equation, the starting point of the hierarchy. We solve this problem using
the theorem of Lech-Mahler, see Appendix D. By Corollary D.2 it follows that if
r 6= 0,−1 the triple

r + 1, r,
r

1 + r

consists of roots of unity. It is easy to see that this implies that r is a primitive 3-rd
root of unity. We now look at the orders of the symmetries. We have

G1
m(0, 1) = 0 for all m,

G1
m(−1, 1) =

{
0 if m ≡ 1 mod 2
−2 if m ≡ 0 mod 2,

G1
m(ζ, 1) =





0 if m ≡ 1, 5 mod 6
−1 if m ≡ 0 mod 6
2ζ if m ≡ 2 mod 6
−3 if m ≡ 3 mod 6
2ζ2 if m ≡ 4 mod 6.

We solve the simultaneous equations

G1
m(r, 1) = ∂rG1

m(r, 1) = 0.

to find that the multiple zeros at order m are given by (m − 1)-th roots of unity.
Since at these points the second derivative of G1

n is nonzero, they are actually double
zeros.

Translating the above to common divisors of G-functions proves Theorem 5.8.
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Chapter 5. The classification of scalar equations

Theorem 5.8. All greatest common divisors of G1
n with infinitely many Gi

m are:

n = 2,m ≡ 0 mod 1 : ξ1ξ2,

n = 3,m ≡ 1 mod 2 : ξ1ξ2(ξ1 + ξ2),

n = 5,m ≡ 5 mod 6 : ξ1ξ2(ξ1 + ξ2)(ξ
2
1 + ξ1ξ2 + ξ2

2),

n = 7,m ≡ 1 mod 6 : ξ1ξ2(ξ1 + ξ2)(ξ
2
1 + ξ1ξ2 + ξ2

2)
2.

We now state an important result obtained in [SW98, Theorem 5.5].

Theorem 5.9 (Wang). If S is a symmetry of a scalar equation 5.1, K is relatively
2-prime with S.

Proof. This is obvious if the order of K or the order of S is even, i.e. then it follows
from Theorem 5.6 and Lemma 4.3. Wang first proved that if S is an odd order

symmetry of an odd order equation ut = K then ξ1 + ξ2 or ξ1ξ2 is a divisor of K̂1.
Using this result, she proved that in this case K is relatively 2-prime with S.

Now we can prove an result, which is weaker version of Theorem 5.12. Never-
theless, it is much easier to prove and almost as useful.

Theorem 5.10. Suppose that a scalar equation ut = K with nonzero linear part is
integrable. Then it is contained in a hierarchy starting at order 2, 3, 5 or 7.

Proof. The case where K1 = 0 has been treated in the previous sections. Assume
that the equation ut = K of order n with quadratic part K1 6= 0 is integrable. By
assumption we have one symmetry S, say of order m. By Lemma 4.2, un is nonlinear
injective with um. By Theorem 5.9, K is relatively 2-prime with S. By assumption,
infinitely many symmetries Qk exist. In particular, the first integrability condition

L(un)Q1
k + L(K1)uk = 0

can be solved for infinitely many integer values of k. By Theorem 5.8, we may take
k ∈ {2, 3, 5, 7}. By the implicit function theorem Q = uk +

∑
i>0 Qi

k exists such that
L(K)Qk = 0.

By now, the classification of integrable scalar equations has become a finite
problem. A rather extensive computer algebra computation, based on generating
functions, shows that if a given 7-th order equation has a nontrivial symmetry, then
the symbolic expression of its quadratic part is divisible by (ξ2

1 + ξ1ξ2 + ξ2
2). This

means that the equation is in the hierarchy of some 5-th order equation, cf. [SW98,
Section 6]. What is left, is finding the homogeneous equations of order 2, 3 and 5
that have a symmetry of order 3, 5 and 7 respectively.

For 2-nd order equations, the possible values for the weight λ(u) are 2 or 1 given
by the solutions of

degree(K̂1) + λ(u) = 2, where 0 ≤ degree(K̂1) < 2.
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5.5. Almost integrable scalar equations

When λ(u) = 1 we find Burgers’ equation

ut = u2 + uu1.

The 3-rd order homogeneous equations with a 5-th order symmetry are the potential
Korteweg-De Vries equation

ut = u3 + u2
1

and the Korteweg-De Vries equation

ut = u3 + uu1.

The 5-th order equations with a 7-th order symmetry are the potential Sawada-
Kotera equation

ut = u5 + u1u3 +
1

15
u3

1,

the potential Kaup-Kupershmidt equation

ut = u5 + 10u1u3 +
15

2
u2

2 +
20

3
u3

1,

the Kupershmidt equation

ut = u5 + 5u1u3 + 5u2
2 − 5u2u3 − 20u2u1u− 5u3

1 + 5u1u
4,

the Kaup-Kupershmidt equation

ut = u5 + 10uu3 + 25u2u1 + 20u2u1

and the Sawada-Kotera equation

ut = u5 + 5u3u + 5u2u1 + 5u1u
2.

5.5 Almost integrable scalar equations

Abstract. Based upon a result obtained by using diophantine approx-
imation theory it is shown that there are no almost integrable scalar
equations of finite depth.

Suppose the existence of an almost integrable scalar equation of the form (5.1).
Then, for some i, there are n and m 6= n such that H = gcd(Gi

n, Gi
m) has positive

degree and does not divide Gi
k for infinitely many k. By Theorems 5.2 and 5.6 this

is not possible if i > 1. The case i = 1 is treated by F. Beukers, cf. [Beu97, Theorem
4.1], who used modern techniques from diophantine approximation theory to prove
the following.

Theorem 5.11 (Beukers). Let r ∈ C such that r(r + 1)(r2 + r + 1) 6= 0. Then at
most one integer n > 1 exists such that G1

n(r, 1) = 0.

This result was used in [SW98, Theorem 5.7] to prove the following theorem.

Theorem 5.12 (Wang). A nontrivial symmetry of a homogeneous equation is part
of a hierarchy starting at order 2, 3, 5 or 7.
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Chapter 6

Classification of integrable
B-equations

We classify integrable equations of the form

{
ut = a1un + K(v0, v1, . . .)
vt = a2vn

,

where a1, a2 ∈ C, n ∈ N and K a quadratic polynomial in derivatives of v. This
is done using biunit coordinates and the Lech-Mahler theorem. Furthermore we
present a new method, based on resultants, to determine whether an equation is in
a hierarchy of lower order.

6.1 Introduction to B-equations

Abstract. We define a special class of (triangular) equations, of which
the symmetry structure is extremely rich. This class has the nice prop-
erty that it contains all symmetries of (almost) all its equations. We
review some important results and give the relatively simple symmetry
condition using the symbolic method.

I.M. Bakirov devoted the article [Bak91] to the description of local symmetries of
the following evolution equations with parameter a:

{
ut = un + v2

vt = avn
, (6.1)

for n ≥ 2. This class of equations is interesting since it contains both integrable and
almost integrable equations.
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6.1. Introduction to B-equations

We list the main results that were obtained in [Bak91].

1. It is proved that any symmetry of equation (6.1) with a 6= 0, 1 is a linear
combination of [

a1um +
∑bm−n

2
c

i=0 αivivm−n−i

a2vm

]
.

2. In the case n = 2, for all a one symmetry exists at each order. For n = 3
odd symmetries exist for all a. Explicit calculation, performed by a computer,
showed that if n = 3, a 6= 0, equation 6.1 does not possess symmetries at order
4, 6, 8, 10, 12.

3. A candidate equation that possesses only one higher order symmetry is

{
ut = u4 + v2

vt = 1
5
v4

,

which possesses a symmetry at order 6. By means of computer algebra it was
shown, that the equation does not possess other symmetries of order n ≤ 53.

For a long time it was not known if this fourth order equation of Bakirov had other
symmetries than the one at order 6.

The paper [BSW98], which was also devoted to equations of type (6.1), changed
this situation. In this article the symbolic method was used and, to our knowledge,
both the Lech-Mahler theorem and p-adic analysis first appeared in the literature
in connection with symmetries of evolution equations. We give a list of the main
results obtained in [BSW98].

1. It was proven, by using p-adic analysis, that the equation of Bakirov does not
have generalised symmetries at any order but at order 6, i.e., it was shown
beyond doubt that ‘one symmetry does not imply integrability’.

2. [BSW98, Theorem 2.2]. It was proven that under one of the conditions

? n ≥ 6

? n = 4, 5 and G−1,2
1,n [c, 1](x, 1) has two zeros r, s 6= 0,−1 such that

r

s
,
1 + r

1 + s
or rs,

(1 + r)s

1 + s
(6.2)

are not simultaneously roots of unity.

the equation (6.1) with a = 1
c

has finitely many symmetries (c 6∈ {0, 1}).
The treatment of almost integrable equations, of which the Bakirov equation is the
first and simplest example, is postponed to chapter 8. We will include the proof of
the second result, since it is of great importance for the analysis presented in this
chapter.
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Chapter 6. Classification of integrable B-equations

The authors of [BSW98] actually considered equations of the form

{
ut = aun + v2

vt = vn
, (6.3)

with n > 1. Notice that by rescaling t, v, i.e.,

t → t/a, v → √
av,

any such an equation, with a 6= 0, is transformed into an equation of the form (6.1).

In [BSW98] it was implicitly assumed that a 6= 0, 1, cf. [BSW01, Remark 2.2].
Therefore, by the first result of Bakirov, any symmetry of equation (6.3) is a linear
combination of symmetries of the form

[
bun + S

vn

]
,

where S is quadratic in the variables vi. We have to solve the equation

L(K0,0)S−1,2 + L(K−1,2)S0,0 = 0.

This problem translates into determining whether G−1,2
1;n [a, 1] is a divisor of G−1,2

1;m [b, 1],
cf. Lemma 4.5. If this is true for infinitely many (m, b), the equation is integrable.
In [BSW98, Appendix], the cases n = 2, 3 with arbitrary a ∈ C were treated by
expressing the G-functions in terms of the S2-invariants

η1 + η2, η1η2.

It was shown that all 2-nd order equations are integrable with symmetries at every
order. It was mistakingly remarked that the same was true for n = 3. For n > 3
the polynomials

fa,n = a(1 + r)n − rn − 1

were used. Observe that the divisibility condition on G-functions is equivalent with
the question [BSW98, question 1.1]:

given a, n, for which b ∈ C and m ∈ N, does fa,n divide fb,m?

In the consideration it is important to realise that fa,n has double zeros for some
values of a. After the following lemma, cf. [BSW98, Lemma 3.1], we can understand
the proof of [BSW98, Theorem 2.2] as it was given by Beukers, Sanders and Wang.

Lemma 6.1. Suppose that ζ is a multiple zero of fa,n. Then ζ is an (n− 1)-th root
of unity and a = 1/(ζ + 1)m−1. Together with 1/ζ these are the only multiple zeros
and they have multiplicity 2 .
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6.1. Introduction to B-equations

Proof. (of [BSW98, Theorem 2.2].) The first step of the proof consists of showing
that, when n > 3, there exist zeros r, s 6= 0,−1 such that the pairs (6.2) are not
simultaneously roots of unity. For n = 4, 5 this follows from the assumption. For
n ≥ 6 we will show a contradiction. If one of the pairs (6.2) would be roots of unity,
this implies in particular one of the relations

s = r, s =
1

r
, s = r̄, s =

1

r̄
.

If fa,n has only simple zeros we can certainly choose zeros r, s such that

s 6∈ {r, 1

r
, r̄,

1

r̄
}.

In case of double zeros we can take for r such a double zero and for s a simple zero.
Next, suppose that r, s are zeros of fb,m. Then, we have

b =
1 + rm

(1 + r)m
=

1 + sm

(1 + s)m

yielding

Um(r, s) = (1 + r)m + (s(1 + r))m − (1 + s)m − (r(1 + s))m = 0. (6.4)

Suppose that equation (6.4) holds for infinitely many m, including m = n. Then,
according to Corollary D.4, if both r 6= 0,−1 and s 6= 0,−1, at least one of the pairs
(6.2) consists of root of unity. This was excluded by the assumptions.

It was conjectured, cf. [BSW98, Conjecture 2.3], that there are only finitely
many integrable equations of the form (6.3). This conjecture became a theorem in
[BSW01, Theorem 2.1], where the following list was proven to be exhaustive:

{
ut = au2 + v2

vt = v2
,

{
ut = au3 + v2

vt = v3
,

{
ut = −u4 + v2

vt = v4
,

{
ut = −3u4 + v2

vt = v4
, (6.5)

{
ut = −1

4
u5 + v2

vt = v5
,

{
ut = −13±5

√
5

2
u5 + v2

vt = v5
,

{
ut = u5 + v2

vt = v5
,

{
ut = u7 + v2

vt = v7
,

where a ∈ C, a 6= 0.
Of great importance was the use of the algorithm of Smyth, cf. [BS01], that solves

polynomial equations for roots of unity. Since roots of unity play an crucial role in
the classification of integrable equations and the points ±1 often are exceptional
cases, we like to introduce the following notation:
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Chapter 6. Classification of integrable B-equations

Notation 6.2.
Φn = {ζ ∈ C| ζn = 1, ζ 6= ±1}.

We will now sketch how all integrable equations (6.3) were found in [BSW01],
and elucidate how it can be done more efficiently. We treat the 4-th order case. By
[BSW98, Theorem 2.2],

(x− r)(x− 1

r
)(x− r̄)(x− 1

r̄
)

should be a divisor of fa,4. The authors of [BSW01] obtain the necessary condition

|r +
1

r
+ 3/2| = 1/2 (6.6)

by comparing coefficients. Note that the points

x =
r

r̄
, y =

1 + r

1 + r̄

are roots of unity. Substituting

r =
x(1− y)

y − x

in equation (6.6) gives, using x̄ = x−1, ȳ = y−1,

2y2x2 − yx2 + x2 − xy − 2y2x− y3x + y4 + 2y2 − y3 = 0. (6.7)

Applying the algorithm of Smyth yields

(x, y) = (1,±ζ4), (±ζ4,−1), (±ζ4,∓ζ4), (ζ3, ζ
2
3 ), (ζ2

3 , ζ3),

where ζn ∈ Φn. From these solutions we conclude

r = −1,−1± ζ4,
−1± ζ4

2
, ζ3, ζ

2
3 .

By applying the map r → (1 + r4)/(1 + r)4 the ratios of eigenvalues are found,

a1

a2

= −1,−3.

Method 6.3. There is a more efficient way of obtaining equation (6.7): substitute

n = 4, r =
x(1− y)

y − x
, r̄ =

1− y

y − x

in
Un(r, r̄) = 0

This idea works for any value of n. Thus, by applying the algorithm of Smyth, all
points r such that Um(r, r̄) = 0 for infinitely many m, including m = n, can be
found.
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In [BSW01] a recursive formula that produces all symmetries is explicitly given
to confirm that an equation is integrable. Here, we directly show that for the points
r, found by Method 6.3, the equation

Um(r, r̄) = 0

holds for infinitely many m, thereby proving the integrability of the equations. By
working with n-th roots of unity it becomes possible to prove the integrability of
both a 4-th and a 5-th order equation (and more) with only one calculation. To
illustrate this idea we we will now explicitly prove that all equations of order n > 3
in the list (6.5) are integrable and, meanwhile, give the order of their symmetries.

The multiple zeros are given by Lemma 6.1. Note that

Φn−1 ⊂ Φm

whenever m ≡ 0 mod (n− 1) and hence each root in Φn−1 is a double root of some
Gm-function with m ≡ 1 mod (n− 1). This implies the following:

? the 4-th order equation with a = −1 corresponds to the double zeros Φ3, it
has symmetries at order m ≡ 1 mod 3.

? the 5-th order equation with a = −1/4 corresponds to the double zeros Φ4, it
has symmetries at order m ≡ 1 mod 4.

Lemma 6.4. The point r = −1− ζn satisfies Um(r, r̄) = 0 for all m ≡ 0 mod n.

Proof. By substitution of r = −1− ζn we get

Um(r, r̄) = (−ζn)m + ((1 + ζ̄n)ζn)m − (−ζ̄n)m − ((1 + ζn)ζ̄n)m

When m ≡ 0 mod n we have ζn
m = ζ̄n

m
which makes the expression vanish.

Lemma 6.4 has the following applications:

? The 4-th order equation with a = −3 correspond to the set of zeros

{−1± ζ4,−1± ζ4

2
}.

It has symmetries at order m ≡ 0 mod 4.

? The 5-th order equations with a = (−13±5
√

5)/2 correspond to a set of zeros
of the form

{−1,−1− ζ5,−1− ζ5 − ζ3
5 , ζ5 + ζ3

5 , ζ5 + ζ2
5 + ζ3

5}.

Since the zero −1 appears at odd orders only and the other four appear at
m ≡ 0 mod 5, the equations have symmetries at order m ≡ 5 mod 10.
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Chapter 6. Classification of integrable B-equations

Note that the integrability of the equations with equal eigenvalues follows from
Theorem 5.8.

Thus, the classification of integrable equations of the form 6.3 (or 6.1) is com-
pleted. However, there is still a question that could be asked:

do the equations in the list (6.5) have other symmetries?

For the equations that correspond to double zeros of G-functions the answer is ‘no’,
since by Lemma 6.1 we know all double zeros. For the other equations the answer
might be ‘yes’.

A corollary, cf. [BSW01, Corollary 2.1], says that each of the equations (6.5) with
arbitrary quadratic part (in derivatives of v) is integrable as well. It was remarked
that the list is not necessarily complete in this more general class of equations that
is the object of research in this chapter.

Definition 6.5. A B-equation, after I.M. Bakirov, is an equation of the form

Bn[a1, a2](K) :

{
ut = a1un + K(v0, v1, . . .)
vt = a2vn

, (6.8)

where a1, a2 ∈ C, n ∈ N and K a quadratic polynomial in derivatives of v.

The quadratic part of a B-equation may contain some vi with i higher than the
order of the linear part. It might look more natural to restrict to equations where this
is not the case. Although this could be done, it would be a more stringent condition
than what we have in mind. Moreover, the theorems concerning the recognition of
integrable B-equations would be harder to formulate. Therefore we rather adapt the
definition of order.

Definition 6.6. The order of a B-equation is the order of its linear part.

B-equations at order 0 have weird symmetries symmetries outside the class of
B-symmetries; any linear combination of

[
n
√

(vi1vi2 · · · vin)a

0

]

is a symmetry of the zeroth order equation
{

ut = au + F (v, v1, . . .)
vt = v

,

where F is an arbitrary, i.e., not necessarily quadratic, function that depends on
derivatives of v.

Assumption 6.7. For any Bn[a1, a2](K) we assume that its G-function G−1,2
1;n [a1, a2]

does not divide its quadratic part K̂. This rules out all B-equations of order 0 as
well as their symmetries. We also assume that the G0,1

1;n[a1, a2](η1, η2) does not divide

the quadratic part K̂ .
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6.1. Introduction to B-equations

Proposition 6.8. Under Assumption 6.7 any symmetry of a B-equation with non-
equal and nonzero eigenvalues, is a linear combination of B-symmetries:

[
b1um + S(v, v1, . . .)

b2vm

]
,

where b1, b2 ∈ C, m ∈ N and S a quadratic polynomial in derivatives of v. If the
eigenvalues are equal and the order of the B-equation is higher than 1, any symmetry
is a linear combination of B-symmetries and the linear symmetry (vm, 0).

Proof. In our framework, at least in the setting of formal power series, the statement
almost follows from the nonlinear injectiveness of the linear part, cf. Lemma 4.6 and
Lemma 3.20. We only have to prove that S1,−1 = 0. As we will show, this follows
from

L(K0,0)S0,1 + L(K−1,2)S1,−1 = 0.

Since the eigenvalues are nonzero we may scale a1 to 1. We take

K0,0 = (un, avn), K−1,2 = (K, 0).

Furthermore, we choose the linear part of the symmetry to be homogeneous

S1,−1 = (0, bum).

By equations (3.3) and (3.10), we see that

[
Du

S0,1
1

[un] + Dv
S0,1

1

[avn]−Du
un

[S0,1
1 ]−Dv

K [bum]

Dv
S0,1

2

[avn]−Dv
avn

[S0,1
2 ] + Du

bum
[K]

]
= 0.

By equations (4.3) and (4.4), this translates into

(ξn
1 + aηn

1 − (ξ1 + η1)
n) Ŝ0,1

1 = bξm
1 K̂(ξ1, η1),

a (ηn
1 + ηn

2 − (η1 + η2)
n) Ŝ0,1

2 = −b(η1 + η2)
mK̂(η1, η2).

By Assumption 6.7 and the first equation, η1 divides G0,1
1;n[1, a]. This implies that

a = 1. Therefore

Ŝ0,1
1 (η1, η2) = b

ηm
1

G1
n

K̂, Ŝ0,1
2 (η1, η2) = b

(η1 + η2)
m

G1
n

K̂.

Since for a = 1, by Assumption 6.7, G1
n does not divide K̂ this implies that b = 0. Be-

cause of nonlinear injectiveness, cf. Lemma 4.6, the statement follows from Lemma
3.20.

We do consider B-equations with zero eigenvalues. In this case we solve the
restricted problem of finding all B-equations that commute with them.
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Notation 6.9. In this chapter we omit all redundant indices, i.e., we write

K = K−1,2
1 , Gn[a1, a2] = G−1,2

1;n [a1, a2].

Thus, we have

Gn[a1, a2](η1, η2) = a2(η
n
1 + ηn

2 )− a1(η1 + η2)
n.

Note that if r is a zero of both Gn[a1, a2] and Gm[b1, b2] then these have a common
factor (η1 − rη2).

In the symbolic calculus we have K̂ ∈ C[η1, η2]. The equation Bm[b1, b2](S) with

Ŝ ∈ C[η1, η2] is a symmetry of Bn[a1, a2](K) when

Ŝ =
Gm[b1, b2]

Gn[a1, a2]
K̂

is polynomial. By Assumption 6.7 a necessary condition for the existence of a
symmetry is: Gn[a1, a2] has a common factor with Gm[b1, b2]. Moreover, it is a
sufficient condition. Suppose we have a1, a2, b1, b2 ∈ C such that, with F,L, T ∈
C[η1, η2],

Gn[a1, a2] = FL, Gm[b1, b2] = FT.

Then, if we take K̂ = LMv2 and Ŝ = MTv2, where M ∈ C[η1, η2] can be chosen
freely, the Lie derivative of Bm[b1, b2](S) with respect to Bn[a1, a2](K) vanishes.

In what follows we will solve the classification and recognition problems for
B-equations by answering the following (related) questions:

? What are all hierarchies of B-equations?

? What are all symmetries of a given integrable B-equation?

? What are all integrable n-th order B-equations that are not in a lower hierar-
chy?

? Given an n-th order B-equation, how to efficiently determine whether it is
integrable?

A finite number of integrable B-equations exist at any order n > 4. We will present
a formula for the number of n-th order integrable B-equations, as well as a formula
for the number of n-th order integrable B-equations that are not in a lower hierarchy.
Also we will prove that all these B-equations are real, up to complex scalings. The
results described in this chapter are taken from [vdK02a].

6.2 B-equations of order 1, 2 or 3 and their sym-

metries

Abstract. We prove that all B-equations of order 1, 2 or 3 are integrable
and we show how to efficiently calculate their symmetries.
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6.2. B-equations of order 1, 2 or 3 and their symmetries

Proposition 6.10. All 1-st order B-equations are integrable.

This proposition is easy to prove and an explicit formula for all the symmetries of
B1[a1, a2](a3v

2) can be given.

Proof. To find all symmetries of Bn[a1, a2](K) we have to find for arbitrary m all
(b1, b2) such that G1[a1, a2] divides Gm[b1, b2]. This can be done by substitution. Take
a1 6= a2. The G-function

G1[a1, a2] = (a2 − a1)(η1 + η2)

has a common factor with Gm[b1, b2] if

b2(η
m
1 + (−η1)

m)− b1(η1 − η1)
m = 0.

The infinitely many solutions are b2 = 0 or m is odd.
Exceptional case:

? Take a1 = a2. For any S the symmetry condition becomes

Gm[b1, b2]K̂ = 0.

Equality holds when b1 = b2 = 0. The symmetries (at any order) have arbi-
trary nonlinear part but no linear part.

Example 6.11. We explicitly write down the symmetries of
{

ut = a1u1 + a3v
2

vt = a2v1

Its quadratic part is calculated as follows:

Ŝ =
Gm[b1, b2]

G1[a1, a2]
K̂ =

a3

a2 − a1

(b2
1

η1 + η2

(ηm
1 + ηm

2 )− b1(η1 + η2)
m−1).

By applying the inverse Gel’fand and Dikĭı transformation, at even order m we
obtain the symmetry [

b1um + a3b1
a1−a2

Dm−1
x v2

0

]

and at odd order m we obtain the symmetry

[
b1um + a3b1

a1−a2
Dm−1

x v2 + a3b2
a1−a2

D−1
x vvm

b2vm

]
.

It is only here that we can describe the whole hierarchy in differential language.
For higher order B-equations we have to do the computation of a particular sym-
metry symbolically and translate the result to obtain its differential expression.
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Chapter 6. Classification of integrable B-equations

Proposition 6.12. All 2-nd order B-equations are integrable.

Proof. They have symmetries at all orders. The ratio of eigenvalues (and quadratic
part) of the symmetries are fixed. Take a1 6= a2 again and a2 6= 0, i.e.,r 6= 0,−1.
The G-function

G2[a1, a2] =
a2 − a1

r
(η1 − rη2)(rη1 − η2) with r2 +

2a1

a1 − a2

r + 1 = 0

has a factor (η1 − rη2) in common with Gm[b1, b2] when

Gm[b1, b2] |η1=rη2= 0 ⇒ b1

b2

=
1 + rm

(1 + r)m
.

For this ratio (rη1 − η2) is a factor as well because the fraction

1 + rm

(1 + r)m

is invariant under r → 1/r, i.e., the G-function is symmetric in η1, η2, cf. 4.8.
Exceptional cases:

? When a1 = a2 the equation is integrable; we have G2[a1, a1] = −2a1η1η2 divides
Gm[b1, b2] for arbitrary m > 2 if b1 = b2.

? When a2 = 0 the equation is integrable; we have G2[a1, 0] = −a1(η1 + η2)
2

divides Gm[b1, b2] for arbitrary m > 2 if b2 = 0.

We demonstrate the method by calculating a symmetry of some nonhomogeneous
second order equation.

Example 6.13. We calculate the 3-rd order symmetry Bm[b1, b2](S) of

{
ut = a1u2 + a3v

2 + a4vv1 + a5v
2
1

vt = a2v2
.

The ratio of eigenvalues of the symmetry is

1 + r3

(1 + r)3
=

3a1 − a2

2a2

.

We take b1 = 3a1 − a2 and b2 = 2a2. The G-function of the symmetry is

G3[3a1 − a2, 2a2] = 3(η1 + η2)G2[a1, a2].

The quadratic part S is obtained by multiplying

K = a3 + a4
η1 + η2

2
+ a5η1η2
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6.3. B-equations in a hierarchy of order 1, 2 or 3

with the ratio of G-functions 3(η1 + η2):

S = 6a3
η1 + η2

2
+ 3a4(

η2
1 + η2

2

2
+ η1η2) + 6a5

η1η
2
2 + η2

1η2

2
.

By applying the inverse Gel’fand and Dikĭı transformation we obtain the 3-rd order
symmetry of the above equation

[
(3a1 − a2)u3 + 6a3vv1 + 3a4(vv2 + v2

1) + 6a5v1v2

2a2v3

]
.

The procedure works for symmetries of any order.

Proposition 6.14. All 3-rd order B-equations are integrable

Proof. All 3-rd order equations have infinitely many symmetries but unlike the 2-nd
order equations not all of them have symmetries at odd order. The reason is that
(η1 + η2) is a divisor of Gm[b1, b2] only when m is odd or when b2 = 0. Therefore,
unless the 3-rd order equation is in a lower hierarchy, its first symmetry appears at
order 5.

Take a2 6= 0, a1 again. The 3-rd order G-function factorises like

G3[a1, a2] =
a1 − a2

r
(η1 + η2)(η1 − rη2)(rη1 − η2),

with

r2 +
2a1 + a2

a1 − a2

r + 1 = 0.

This can be used to calculate all higher order G-functions in the same way we did
for 2-nd order equations.

Exceptional cases:

? When a1 = a2 the equation is integrable, G2[a1, a1] = −3a1η1η2(η1+η2) divides
Gm[b1, b2] for arbitrary odd m > 3 if b1 = b2.

? When a2 = 0 the equation is integrable, G2[a1, 0] = −a1(η1 + η2)
3 divides

Gm[b1, b2] for arbitrary m > 3 if b2 = 0.

We have now proven that all B-equations of order smaller than 4 are integrable.

6.3 B-equations in a hierarchy of order 1, 2 or 3

Abstract. In this section we turn from the classification problem to the
recognition problem. We present an efficient way to determine whether
a B-equation is in a hierarchy of order 1, 2 or 3 using resultants.
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Chapter 6. Classification of integrable B-equations

Theorem 6.15. Bm[b1, b2](S) is in a hierarchy of order n, where n is 1, 2 or 3, if
the degree of the greatest common divisor of Gm[b1, b2] and S equals m− n.

Proof. Since every symmetric factor of degree n, where n is 1,2 or 3, is a multiple
of Gn[a1, a2] for some (calculable) a1, a2, the quadratic part can be written

S =
Gm[b1, b2]

Gn[a1, a2]
K

such that gcd(K,Gn[a1, a2])=1.

The use of resultants is very effective here, as we will show in the following two
examples. Recall that if the greatest common divisor of two polynomials has positive
degree, then their resultant vanishes.

Example 6.16. The equation

{
ut = b1u3 + b3v2v + b4v

2
1

vt = b2v3

can be in a hierarchy of order 1 or 2. The η1-resultant of G3[b1, b2] and Ŝ is:

η6
2

4
(b3 − b4)(2b3b1 + b3b2 − 2b4b1 + 2b4b2)

2.

There are two special cases.

? When b3 = b4 the quadratic part is Ŝ = b3
2
(η1 + η2)

2. The greatest common

divisor of Ŝ and G3[b1, b2] has degree 1, so the order of the hierarchy is 2.
The ratio of eigenvalues can be calculated using the above factorising of the
G3-function and the map r → 1+r2

(1+r)2
. The equation commutes with

{
ut = (2b1 + b2)u2 + 2b3vv1

vt = 3b2v2
.

? When b3 = 2(b1 − b2)a1, b4 = (2b1 + b2)a1 the equation is in the hierarchy of

{
ut = b1u1 + a1(b1 − b2)v

2

vt = b2v1
.

All other cases are not in an other hierarchy.

The method works for any order in principle. However it depends on the order
and the number of parameters in the equation whether we can actually solve the
resultant. This is illustrated by the following example.
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6.3. B-equations in a hierarchy of order 1, 2 or 3

Example 6.17. When an equation of the form{
ut = au7 + cvv4 + dv1v3 + ev2

2

vt = bv7

is a symmetry of a lower equation, its parameters make the resultant of the G-
function and the quadratic part vanish, i.e.,

0 = a2(12d2e− 24dc2 − 24dec− 6de2 + 24d2c + 6e2c + 12ec2 + 8c3 + e3 − 8d3)

+b2(de2 + c3 − 3cde + e3 − d3 + 4c2d− 2c2e + 3cd2 − ce2 − 2d2e) + ab(9d3

−2e3 + 40c3 − 10d2e + 5de2 + 44ce2 − 108c2e− 71cde + 118c2d + 22cd2).

For some specific 7-th order B-equation (which may contain free parameters) we
can check whether it is contained in a hierarchy by substituting the coefficients into
the above equation. However, to describe all such equations we really have to know
where they could come from. Here we have the following possibilities:

? The equation is a symmetry of the integrable equation{
ut = fu3 + hv2

vt = gv3

if a = 7f 3 + 21gf 2 − g3, b = 27g3, c = 14h(f 2 + 4fg + 4g2),
d = 14h(4f 2 + 13fg + g2) and e = 21h(2f 2 + 6fg + g2).

? The equation is a symmetry of the integrable equation (g 6= 0)
{

ut = u4 + f
g
vv1

vt = −v4

if a = g, b = g, c = 0, d = 7f
2

and e = 7f
2
.

? The equation is a symmetry of the integrable equation
{

ut = u5 + f
g
vv2 + h

g
v2

1

vt = v5

if a = g, b = g, c = 7f
5
, d = 7f+14h

10
and e = 7(f+h)

5
.

? The equation is the symmetry of the almost integrable equation
{

ut = 88u6 + 37f
g

vv3 + 101f
g

v1v2

vt = 125v6

if a = 83g, b = 125g, c = 42f , d = 133f and e = 91f .

As can easily be verified, all these parametric representations of the coefficients
a, b, c, d, e make the resultant vanish.

How did we find the order n < 7 equations in this example? In Chapter 8 we give
a general procedure, which is also based on resultants, to determine all eigenvalues
of n-th order B-equations possessing a symmetry of order m, cf. Lemma 8.8. Once
the eigenvalues are known, the quadratic part of the 7-th order symmetry can be
calculated and by equating coefficients the equations obtained.
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6.4 Integrable B-equations of order higher than 3

and their symmetries

Abstract. Using biunit coordinates we prove the existence of inte-
grable B-equations at order n with symmetries of order m ≡ 0 mod n.
Based on the Lech–Mahler theorem we prove that every nondegenerate
B-symmetry is contained in such a hierarchy, or in a hierarchy with orders
m ≡ 1 mod n−1, or in a hierarchy of order 2, 3, 5 or 7. Moreover, using
biunit coordinates together with number theoretical arguments provided
by F. Beukers, we prove that the integrable B-equations do not have any
other symmetries.

As we are now interested in equations that are not in a 1-st , 2-nd or 3-rd order
hierarchy, we need to consider common factors of G-functions of degree at least 4,
cf. Theorem 6.15. The case where a2 = 0 is almost trivial, the equation is integrable
since Gn[a1, 0] = a1(η1 + η2)

n divides Gm[b1, b2] for arbitrary m > n if b2 = 0. In the
following we assume a2 6= 0.

Lemma 6.18. The function Gn[1 + rn, (1 + r)n](η1, η2) has a factor of the form

(η1 − rη2)(rη1 − η2)(η1 − sη2)(sη1 − η2), s 6= r, r−1,

whenever

Un(r, s) = Gn[1 + rn, (1 + r)n](s, 1) = 0.

Proof. The condition Un(r, s) = 0 expresses the fact that the ratio of eigenvalues
of the G-function containing zero r equals the ratio of eigenvalues of the G-function
containing zero s, cf. expression (6.4).

As proven in [BSW98] the only factors of G-functions (with nonzero eigenvalue)
which appear on infinitely many orders have zeros forming a subset of a set of the
form

{0,−1, r,
1

r
, r̄,

1

r̄
}. (6.9)

Therefore, to find all hierarchies of B-equations is to find all points r such that
Um(r, r̄) = 0 for infinitely many integers m. At fixed order Method 6.3 can be used.
By means of computer algebra, we raised the order up to 23. We did observe quite
some structure in the minimal polynomials of all the points we calculated. However,
a clear picture did not arose until we plotted the points in the complex plane. We
have included the plot for order 23, cf. figure 6.1. Note that the upper half unit
disc may be taken as a fundamental domain.

The inspection of the patterns formed by the values r obtained in this way,
can be described as a form of experimental mathematics. At every fixed order
n the calculated points formed a similar pattern, which inspired us to use biunit
coordinates, cf. Definition 4.8 and equation (4.7).
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Figure 6.1: The special zeros of G-functions of integrable equations with order 23,
in the complex plane and inside the upper half unit disc form a nice pattern.

There are basically two kinds of zeros, those on the unit circle and those of the unit
circle. The following theorem asserts the existence of a certain finite set of integrable
equations at any order n > 3.

Theorem 6.19. Let n > 3. To any point r in one of the sets

1. r ∈ P(Φ2n, Φ2n) such that |r| 6= 1,

2. r ∈ Φn−1,

3. r ∈ Φ2n such that rn = −1

corresponds an integrable n-th order B-equation, which is not in a hierarchy of order
smaller than 4.

Proof. 1. For r ∈ P(Φ2n, Φ2n) the proof consists of showing that Um(r, r̄) has
infinitely many solutions m including m = n. By substitution of r = aψ =
bφ− 1, with ψ, φ ∈ Φ2n, in Um(r, r̄) we get

Um(ψ, φ) = (bφ̄)m + (abψφ̄)m − (bφ)m − (abψ̄φ)m.
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Chapter 6. Classification of integrable B-equations

This vanishes when m ≡ 0 mod n. Note that when n is odd and η1 + η2 does
not divide the quadratic part of the equation, no symmetries appear at even
order. When r is real or on the unit circle the set {r, 1/r, r̄, 1/r̄} does not
contain 4 elements.

2. The (n − 1)-th roots of unity are all double zeros of Gn. They appear in
conjugated pairs and are double zeros at order m ≡ 1 mod n − 1 as well, cf.
Lemma 6.1. A real zero and its conjugate do not form a pair.

3. All odd powers of a primitive (2n)-th root of unity are mapped to zero for all
m ≡ n mod 2n.

The following theorem asserts that there are no ‘new’ integrable B-equations,
i.e., equations that do not commute with an integrable B-equation we have proven
to exist in Theorem 6.19.

Theorem 6.20. Any integrable B-symmetry is a symmetry of

? a B-equation described in Theorem 6.19, or

? a 1-st, 2-nd or 3-rd order B-equation, or

? a 5-th or 7-th order B-equation with equal eigenvalues, or

Proof. Suppose the eigenvalues are nonzero. Let H be a divisor of infinitely many
Gm. Any set of zeros Z of H is a subset of a set of the form (6.9). If 0 ∈ Z, the
eigenvalues of the equation are equal. It follows from Theorem 5.8 that the equation
is a symmetry of a B-equation of order 2, 3, 5 or 7. If

Z ⊂ {−1, r,
1

r
}

and the multiplicity of r is 1, the equation is a symmetry of a B-equation of order
1, 2 or 3, cf. Theorem 6.15. If

Z ⊂ {−1, r,
1

r
}

and the multiplicity of r is 2, r is a root of unity. If

Z ⊂ {−1, r,
1

r
, r̄,

1

r̄
}

the biunit coordinates of r are roots of unity because otherwise none of the pairs

r

r̄
,
1 + r

1 + r̄
or rr̄,

1 + r

1 + 1
r̄

are roots of unity.
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6.4. Integrable B-equations of order higher than 3 and their symmetries

The following theorem asserts that any integrable B-equation has no other B-
symmetries than the symmetries we have proven to exist.

Theorem 6.21. If the integrable B-equation
{

ut = (1 + rn)un + K
vt = (1 + r)nvn

is not in a lower hierarchy it has no B-symmetries other than the symmetries on
order m, with:

1. m ≡ 0 mod n if r ∈ P(Φ2n, Φ2n), and 2|n or 2 6 |n, η1 + η2|K̂,

2. m ≡ n mod 2n if r ∈ P(Φ2n, Φ2n), and 2 6 |n, η1 + η2 6 |K̂,

3. m ≡ 1 mod n− 1 if r ∈ Φn−1,

4. m ≡ n mod 2n if r ∈ Φ2n.

Proof. From the proof of Theorem 6.19, we know that symmetries exist at these
orders. We now prove that the equations do not have any other symmetries.

1. We write Um(r, r̄) in terms of ψ and φ using equations 4.7 and 4.11. Further-
more, we perform the transformations

ψ2 → µν, φ2 → ν.

Thus, we obtain the Diophantine equation
(

1− µ

1− ν

)m

=
1− µm

1− νm
(6.10)

for roots of unity µ, ν. By Theorem E.1, under the conditions

µ, ν 6= ±1, µ 6= ν, ν̄, µm, νm 6= 1,

the equation (6.10) has no solution unless m = 1. We check the conditions.
When µ = −1 we find that φ = ±iψ, we have

|r +
1

2
| = 1

2
.

In this case equation (6.10) reduces to

νm = 1, when m even,

(1− ν)m = 2m−1(1− νm), when m odd,

with ν 6= ±1 a root of unity. The same equation, in µ instead of ν is obtained
when ν = −1, i.e., when φ = ±i or

r + r̄ = −2.
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By Proposition E.3 the equation for odd order has no solutions m > 1. For the
even solutions, note that we are in the case where n is even. The equation is
not in a lower hierarchy if ψ is a primitive (2n)-th root of unity. This implies
that ν is a primitive n-th root of unity and the even solutions are given by
m ≡ 0 mod n.

2. When n is odd and η1 + η2 does not divide K̂ there is no symmetry at any
odd order since η1 + η2 does not divide G2m+1.

3. When m 6≡ 1 mod n− 1 the point r ∈ Φn−1 is not a double zero of Gm.

4. Two (2n)-th roots of unity r = ψ, s = φ are both zeros of Gm if Um(ψ, φ) = 0.
By applying the transformation

ψ → −µ, φ → −ν

we obtain (
1− µ

1− ν

)m

=
1 + (−µ)m

1 + (−ν)m

for (2n)-th roots of unity µ, ν. Suppose that

µ, ν 6= −1, µ 6= ν, ν̄.

Then, by Theorem E.1, the equation has no odd solutions m > 1 such that
µm, νn 6= 1. For even m we use Theorem E.4, which states that

(
1− µ

1− ν

)m

=
1 + µm

1 + νm

has no solutions m > 1 such that µm, νn 6= −1.

6.4.1 Quadratic part of the integrable B-equations

Abstract. We describe the quadratic part of the integrable B-equations
and we show that the equations are real (up to a complex scaling).

If a1 = 0 then K can be anything because the G-function of the equation divides
the G-functions of all the symmetries. Take a1 6= 0. Let Q be the greatest common
divisor of

Gn[1 + rn, (1 + r)n]

and
η1η2(η1 + η2)(η1 − rη2)(rη1 − η2)(η1 − r̄η2)(r̄η1 − η2).

Q is the common factor of all G-functions of the symmetries. The quadratic part of
the equation can be written as:

K̂ =
Gn

Q
P,
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with P an arbitrary symmetric polynomial that does not have Q as a divisor.
Although in the analysis complex roots of unity play an important role, in the

end the equations turn out to be real.

Proposition 6.22. All integrable B-equations with nonzero eigenvalues are real (up
to a complex scaling).

Proof. Since
a1

a2

=
1 + rn

(1 + r)n
=

1 + r̄n

(1 + r̄)n
=

ā1

ā2

all ratios of eigenvalues of integrable B-equations are real valued. What about the
quadratic part? We have

(η1 − rη2)(rη1 − η2)(η1 − r̄η2)(r̄η1 − η2) = rr̄(η4
1 + η4

2)

+(rr̄ + 1)(r + r̄)η1η2(η
2
1 + η2

2).

Hence Q is real. Therefore the quadratic part is real if the eigenvalues and P are
chosen to be real.

We demonstrate our method by calculating an integrable equation together with
its first higher order symmetry.

Example 6.23. Take n = 6. The line

Re
1
3
πi − 1

intersects the imaginary axis in the point

r =
√

3i.

This is a zero of the G-function G6[−13, 32], since

1 + r6

(1 + r)6
= −13

32
.

The polynomial dividing all G-functions of the symmetries is

Q = (3η2
1 + η2

2)(η
2
1 + 3η2

1).

The quadratic part of the equation is, with P = 1
2
,

K =
G6[−13, 32]

2Q
=

15

2
(η2

1 + η2
2) + 13η1η2.

Therefore the equation

{
ut = −13u6 + 15vv2 + 13v2

1

vt = 32v6
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is integrable. Let us calculate the symmetry B12[b1, b2](S). To obtain the eigenvalues
we compute

b1

b2

=
1 + r12

(1 + r)12
=

365

2048
.

The symbolic quadratic part is given by

Ŝ =
Gm[365, 2048]

G6[−13, 32]
K̂.

By applying the inverse Gel’fand and Dikĭı transformation we obtain the symmetry
at order 12:

[
365u12 + 561vv8 − 1460v1v7 − 9900v2v6 − 21900v3v5 − 13893v2

4

2048v12

]
.

6.5 B-equations in a lower hierarchy

Abstract. We describe all B-equations that belong to a lower hierarchy.
This solves the recognition problem.

Let K be the quadratic part of an integrable B-equation. Let k be the degree of

Q =
Gn

gcd(Gn, K̂)
.

If the equation is nondegenerate we have 0 < k < 8. If k < 4 or k = 7 the equation
is in a k-th order hierarchy. It never happens that k = 6 because whenever G6 has
zeros 0 and r it does not have r̄ as zero. The remaining cases are enumerated as in
Theorem 6.19.

1. Let r 6= −1 be a zero of the polynomial Q. It has biunit coordinates (ζa, ζb)
where ζ is a primitive (2n)-th root of unity. The equation is in a hierarchy of
order d, with d (> 3) a divisor of n, if a/n and b/n are integer multiples of
1/d.

2. The equation is in a hierarchy of order d + 1, with d (> 2) a divisor of n− 1,
if the double zero r is a d-th root of unity.

3. When n = lm with l odd and m > 3 the equation can be in a m-th order
hierarchy. This is the case if Gn/Gm divides K̂.

6.6 The number of integrable B-equations

Abstract. We present formulas for the number of n-th order integrable
equations and for the number of n-th order integrable equations that are
not in a lower order hierarchy of order higher than 3.

81



6.6. The number of integrable B-equations

1. The number of points r ∈ P(Φ2n, Φ2n) leading to different eigenvalues of inte-
grable equations is

f(n) =

{
(n−2)2

4
if n is even

(n−1)(n−3)
4

if n is odd

We count the number of points in the upper half plane (because conjugation
leaves the set invariant) excluding the points on the unit circle where r̄ = r−1.

Put ζ = e
1
n

πi. The imaginary part of P(ζa, ζb) is positive only when 0 < b < a.
There are exactly

n−2∑
a=1

a

such points. A point is on the unit circle when the angle of the line through 0
is twice the angle of the line through -1. The set Φn−1 contains

bn− 1

2
c

points on the upper half unit circle. Subtracting these two numbers and divid-
ing by 2 (because inversion leaves the set invariant) gives the desired number.

If g(n) is the number of these integrable equations not in the hierarchy of an
other equation we have

f(n) =
∑

d|n
g(d)

and by Möbius’ inversion

g(n) =
∑

d|n
µ(d)f(

n

d
),

with the Möbius function defined as follows: (pi are prime)

µ(

j∏
i=1

pαi
i ) =





1 if αi = 0 for all i,
0 if αi > 1 for some i,
(−1)j if αi = 1 for all i.

2. The number of complex (n − 1)-th roots of unity giving different eigenvalues
at fixed n is

f(n) =

{
n−2

2
if n is even

n−3
2

if n is odd

We counted the zeros that are above the real line.

If g(n) is the number of these integrable equations not in the hierarchy of an
other we have

f(n) =
∑

d|n−1

g(d + 1)
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and by Möbius’ inversion

g(n) =
∑

d|n−1

µ(d)f(
n− 1

d
+ 1).

3. The last case is concerned with a vanishing first eigenvalue. When n is prime,
twice a prime or a power of 2 , the equation can not be in a lower hierarchy.

At order 5 there is the extra equation with eigenvalue 1. Its G-function has the set
of zeros

{0,−1, ζ3, ζ
2
3}.

Thus, there are exactly

n(n− 2)/4 when n even,

(n + 1)(n− 3)/4 when n odd,

4 when n = 5

nondegenerate n-th order integrable B-equations.
Finally, the number of n-th order integrable equations that are not in a lower

hierarchy with 3 < n < 24 is given in Table 6.1.

n 4 5 6 7 8 9 10 11 12 13

# 3 5 7 8 12 15 18 23 26 33

n 14 15 16 17 18 19 20 21 22 23

# 37 44 45 61 57 76 74 89 87 116

Table 6.1: The number of integrable equations not in a lower hierarchy with orders
between 3 and 24.
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Chapter 7

On the spectrum of integrable
equations

The classification of integrable B-equations is based on the knowledge of all divisors
H of G−1,2

1,n that are divisors of infinitely many G−1,2
1,m . For this particular kind of

equation, a hierarchy of integrable equations corresponds to any such divisor. The
results also have an immediate implication for the general N-component equation.
If part of a diagonal equation is a non-integrable B-equation, the equation is not
integrable. In other words, by the classification of B-equations we have obtained
a condition on the spectrum of more general equations and on the order of their
symmetries. Other conditions on the spectrum or on the order of the symmetries
can be obtained by requiring terms with other gradings to be nonvanishing.

7.1 Nonvanishing terms linear in both uk and vl

Abstract. We give all divisors H of

G0,1
1;n[a1, a2] = a1 (ξn

1 − (ξ1 + η1)
n) + a2η

n
1

such that there are infinitely many m ∈ N and b1, b2 ∈ C for which H
divides G0,1

1;m[b1, b2]. We assume that a1, a2 ∈ C are not both zero.

If a G-function of a given equation does not have a common divisor with the symbolic
expression for the corresponding nonlinear part, then it should have a common
divisor with the G-function of any symmetry of the equation.

This observation leads to the following problems: How can we determine all
common divisors of Gi,j−i

k,n with infinitely many Gi,j−i
k,m for fixed i, j and k. Note that

we may take k = 1 since the results for k = 2 follow from relation (4.5). Moreover,
when k = 1, i = j the problem is basically the same as a problem that was solved for
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7.1. Nonvanishing terms linear in both uk and vl

the classification of integrable scalar equations. Here no conditions on the spectrum
are obtained. Thus for j = 1 the only case to be considered is k = 1, i = 0, which
we will do in this section.

We start by assuming that one of the eigenvalues a1 or a2 is zero.

Proposition 7.1 (a1 = 0). For every m ≥ n and b2 ∈ C the G-function G0,1
1;n[0, a2]

divides G0,1
1;m[0, b2].

Proof. We have
G0,1

1;m[0, b2]

G0,1
1;n[0, a2]

=
b2

a2

ηm−n
1 .

Proposition 7.2 (a2 = 0). For every m ≡ 0 mod n and b1 ∈ C the G-function
G0,1

1;n[a1, 0] divides G0,1
1;m[b1, 0].

Proof. We have

(
ξkn
1 − (ξ1 + η1)

kn
)

= (ξn
1 − (ξ1 + η1)

n)

(
k−1∑
i=0

ξni
1 η

n(k−i−1)
1

)
.

When n is odd, the problem of finding all the divisors that appear infinitely
many times is solved by relating it to the G-function we treated in the preceding
chapter. For odd n we have

G0,1
1;n[a1, a2](r, 1) = −(1 + r)nG−1,2

1;n [a2, a1](1, f4(r)), (7.1)

where f4 is the anharmonic transformation, cf. 4.9,

f4 : r → − r

1 + r
.

To see what is going on we will treat the cases n < 4 without using the relation 7.1.
We will find that our G-function divides infinitely many higher G-functions for any
value of a1, a2 but in the case n = 3 only at odd order. Note that this resembles the
situation in Section 6.2.

Proposition 7.3 (n = 1). Let n = 1 and a1 6= a2. Then for every m ∈ N and
b1, b2 ∈ C the G-function G0,1

1;n[a1, a2] divides G0,1
1;m[b1, b2].

Proof. We have
G0,1

1;n[a1, a2] = (a2 − a1)η1

and
G0,1

1;m[b1, b2](ξ1, 0) = 0.
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Chapter 7. On the spectrum of integrable equations

In the sequel we will assume that both the eigenvalues are nonzero and that the
degree of the common divisor is higher than 1.

Proposition 7.4 (n = 2). For every m > 1 there are b1, b2 ∈ C such that G0,1
1;2 [a1, a2]

divides G0,1
1;m[b1, b2].

Proof. The point (r, 1) is a solution to G0,1
1;2 [a1, a2] = 0 if

r =
a2 − a1

2a1

.

It is a zero of G0,1
1;m[b1, b2] when

b1

b2

=
1

(1 + r)m − rm
.

Proposition 7.5 (n = 3). For every odd m, there are b1 and b2 such that G0,1
1;3 [a1, a2]

is a divisor of G0,1
1;m[b1, b2].

Proof. The expression for the ratio b1/b2 is invariant under

f3 : r → −1− r

if m is odd. Therefore in this case the point (−1 − r, 1) is a zero of G0,1
1;m[b1, b2] if

(r, 1) is.

Thus, we are in the following situation: any common divisor H of G0,1
1;n[a1, a2]

and G0,1
1;m[b1, b2] of degree 2 divides a G-function of order 2. If H has degree 3 and is

of the form
η1(ξ1 − rη1)(ξ1 + (1 + r)η1)

it divides a G-function of order 3. We will describe all common divisors H of
G0,1

1;n[a1, a2] and infinitely many G0,1
1;m[b1, b2] which have degree higher than 2 and

are not of the form above. We start with a description of the zeros with higher
multiplicity.

Proposition 7.6. Suppose that G0,1
1;n[a1, a2] has a multiple zero (r, 1). Then we have

r =
ζ

ζ − 1
,

where ζ ∈ Φn−1. If n is odd we also have r = −1/2. The ratio of eigenvalues is

a1

a2

= (1 + r)1−n.

The multiple zero has multiplicity two. If n is even it is the only multiple zero and
if n is odd there is one other double zero (−1− r, 1).
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Proof. We solve the simultaneous equations

G0,1
1;n[a1, a2](r, 1) = ∂rG0,1

1;n[a1, a2](r, 1) = 0

in r. Explicitly:

a2 = a1 ((1 + r)n − rn) and rn−1 = (1 + r)n−1.

From the last equation we get r = ζ(r + 1) where ζn−1 = 1. By taking ζ = −1 we
have r = −1

2
, which is a double root only if n is odd. When ζ 6= 1 we have

r =
ζ

1− ζ
.

In particular we have |r| = |r + 1|, which implies that <(r) = −1
2
. By substituting

the second equation into the first equation we get

a1

a2

= (1 + r)1−n.

Consider the second derivative

(∂r)
2G0,1

1;n[a1, a2](r, 1) = a1n(n− 1)
(
(r + 1)n−2 − rn−2

)
.

It has no simultaneous zero with the first derivative. Therefore (r, 1) is a double
zero. Suppose that we have a second double zero (s, 1). Then we have

a1

a2

= (1 + r)1−n = (1 + s)1−n,

and hence |1 + r| = |1 + s|. Together with <(r),<(s) = −1
2

this implies that s = r
or s = r̄. Note that if <(r) = −1

2
we have r̄ = −1− r.

Next we assume that our common divisor H has (at least) two zeros (r, 1) and
(s, 1) where s 6= r,−1− r. When H divides G0,1

1;m[a1, a2] we have

(1 + r)m − rm − (1 + s)m + sm = 0. (7.2)

Since H should divide infinitely many other G-functions, equation (7.2) should have
infinitely many integer solutions m. By Corollary D.4 at least one of the pairs

1 + r

1 + s
,
r

s
or

1 + r

s
,

r

1 + s

consists of roots of unity. If
1 + r

1 + s
,
r

s

are roots of unity we have in particular that |r| = |s| and |r + 1| = |s + 1|. This
implies, see Figure 7.1, that s = r̄ since we assumed s 6= r. If

1 + r

s
,

r

1 + s

are roots of unity we have in particular that |r + 1| = |s| and |r| = |s + 1|. This
implies, see Figure 7.1, that s = −r̄ − 1 since we assumed r 6= −s− 1.
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s s+1 r

s’ s’+1

r+1

s+1s

r+1r

Figure 7.1: Points in the complex plane, we see that s = r̄ or s = −1− r̄.

We first treat the cases in which the order is odd. Recall that if n is odd,
(−r̄ − 1, 1) is a zero of the G-function if (r̄, 1) is.

Theorem 7.7. Let n be odd. Equation (7.2) with

s ∈ {r̄,−1− r̄}, s 6∈ {r,−1− r}

has infinitely many solutions m ≡ 0 mod n when

r ∈ P(Φ2n, Φ2n), r + r̄ 6= −1.

There are no other solutions m ∈ N.

Proof. This follows from relation (7.1) and Theorems 6.19, 6.21. The set P(Φm, Φm)
is invariant under A since it is invariant under the generators f2, f3 which is clear
from the biunit coordinate descriptions (4.10). The image of the unit circle, the
exceptional case in Theorem 6.19, is the line r + r̄ = −1.

We will find a bigger set of points at even orders. When s = r̄ the same set is
obtained and s = −1− r̄ gives an extra set.

Theorem 7.8. Let n be even. Equation (7.2) with

s = r̄, s 6= r,−1− r

has infinitely many solutions m ≡ 0 mod n when

r ∈ P(Φ2n, Φ2n), r + r̄ 6= −1.

There are no integer solutions other than m ≡ 0 mod n.
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Proof. We use biunit coordinates (ψ, φ) to describe r. For some α, β ∈ R we have

r = αψ = βφ− 1 and s = r̄ = α
1

ψ
= β

1

φ
− 1.

The left hand side of equation (7.2) becomes

(βφ)m − (αψ)m − (βφ−1)m + (αψ−1)m.

This vanishes when m ≡ 0 mod n and ψ2n = φ2n = 1. When ψ, φ = ±1 we have
s = r. Hence we have obtained

r ∈ P(Φ2n, Φ2n).

When r + r̄ = −1 we have s = −1 − r which we excluded in the theorem. This
proves the first part of our theorem.

By Corollary D.4 the ratios
r

s
,

1 + r

1 + s

are roots of unity. Therefore ψ, φ are roots of unity. By using the formula (4.7) and
performing the transformation

φ2 = ν, ψ2 = µ,

equation (7.2) becomes: (
1− µ

1− ν

)m

=
1− µm

1− νm
.

By Theorem E.1 this equation has no solution unless m = 1 if

µ, ν 6= ±1, µ 6= ν, ν−1, µm, νm 6= 1.

We check these conditions.

• To µ, ν = 1 corresponds ψ, φ = ±1. The point r is real, which is excluded in
the theorem.

• To µ = ν corresponds ψ = ±φ. The lines αψ, βφ− 1 do not intersect.

• To µ = ν−1 corresponds ψ = ±φ−1. The point r has real part −1
2

which is
excluded in the theorem.

• To µ, ν = −1 corresponds ψ, φ = ±i where i2 = −1. The point r satisfies
r + r̄ = 0 or r + r̄ = −2.The equation reduces to

(1− µ)n = 2n−1(1− µn)

and, in both cases, Proposition E.3 is used.
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Proposition 7.9. If n is even the points (r, 1), with

r ∈ P(Φ2n, Φ2n), r + r̄ = −1

are zeros of G0,1
1;n[a1, 0].

Proof. For such a point we have φ = ±ψ−1, hence r is given by

r(ψ,±ψ−1) = − ψ2

1 + ψ2
,

where ψ ∈ Φ2n. With ζ = −ψ2 we obtain

r = ζ(1 + r).

If n is even we have ζ ∈ Φn. By taking the n-th power we obtain

rn = (1 + r)n.

Theorem 7.10. Let n be even. Equation (7.2) with

s = −1− r̄, s 6= r

has infinitely many solutions m ≡ n mod 2n when

r ∈ P(Φ4n \ Φ2n, Φ4n \ Φ2n), r + r̄ 6= −1

There are no other solutions m > 1.

Proof. We use biunit coordinates (ψ, φ) to describe r. For some α, β ∈ R we have

r = αψ, 1 + r = βφ, s = −β
1

φ
, 1 + s = −α

1

ψ
.

The left hand side of equation (7.2) becomes

(βφ)m − (αψ)m − (−αψ−1)m + (−βφ−1)m.

This vanishes when m ≡ n mod 2n and ψ2n = φ2n = −1. Thus we have obtained

r ∈ P(Φ4n \ Φ2n, Φ4n \ Φ2n).

When r + r̄ = −1 we have s = r which we excluded in the theorem.
The ratios

1 + r

s
,

r

1 + s

are roots of unity. Therefore ψ, φ are roots of unity. By using the formula (4.7) and
performing the transformations

ψ2 = µ, φ2 = ν,
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equation (7.2) becomes (
1− µ

1− ν

)m

=
1 + (−µ)m

1 + (−ν)m
. (7.3)

We have
µ, ν 6= ±1, µ 6= ν, ν−1.

This is seen as follows:

• to µ, ν = 1 corresponds ψ, φ = ±1. Then ψ, φ 6∈ Φ4n \ Φ2n.

• to µ = ν corresponds ψ = ±φ. Here the lines αψ, βφ− 1 do not intersect.

• to µ = ν−1 corresponds ψ = ±φ−1. The point r has real part −1
2

which is
excluded in Theorem 7.10.

• to µ, ν = −1 corresponds ψ, φ = ±i where i2 = −1. Then ψ, φ 6∈ Φ4n \ Φ2n.

By Theorem E.1 the odd solutions m > 1 to equation (7.3) satisfy

µm = 1, νm = 1

which does not happen when ψ, φ ∈ Φ4n \ Φ2n. By Theorem E.4 the even solutions
m > 1 to equation (7.3) satisfy

µm = −1, νm = −1

yielding no other solutions than m ≡ n mod 2n. Hence, the last statement in the
theorem is proved.

To see where we are and where we are going, we will summerise and give a short
outlook. All greatest common divisors of Gi,1−i

1,n with infinitely many Gi,1−i
1,m were

described:

• in Theorem 5.8 for i = 1,

• in Theorem 6.19 for i = −1, n > 3,

• in Theorem 7.7 for i = 0, n > 3, n odd,

• in Theorems 7.8 and 7.10 for i = 0, n > 3, n even.

We immediately obtain similar results on the common divisors of Gi,1−i
2,m -functions,

since by the relation (4.5), any Gi,1−i
2;m -function is related to a G1−i,i

1;m -function.
What we have solved is the problem of finding the possible eigenvalues for which

the equation can be integrable if we require the nonvanishing of the k-th component
of u-grading i and v-grading 1− i. No restriction on the eigenvalues of 1-st, 2-nd or
3-rd order equation was obtained.

The next step is to require the nonvanishing of the k-th component of u-grading
i and v-grading 1 − i together with the nonvanishing of the l-th component of u-
grading j and v-grading 1− j, where of course i 6= j if k = l.

92
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7.2 Nonvanishing quadratic terms with different

gradings

Abstract. We first consider equations that have nonvanishing terms
K−1,2

1 and K1,0
2 . This leads to an equation of Lech–Mahler type with four

terms, which will be solved in a similar way as the previous problems.
New conditions on the spectrum are obtained when n is even.

The other combinations of nonvanishing quadratic terms of different type
yield equations of Lech–Mahler type with five terms. These problems will
be solved using the algorithm of Smyth. In particular, a finite number
of solutions will be obtained.

7.2.1 Nonvanishing terms K−1,2
1 and K1,0

2

We give all divisors H1 of G−1,2
1;n [a1, a2] and H2 of G1,0

2;n[a1, a2] such that infinitely many

m and b1, b2 exist for which H1 divides G−1,2
1;m [b1, b2] and H2 divides G1,0

2;m[b1, b2].
When the order is odd, no new conditions on the spectrum are obtained since

the relations (4.5) and (7.1) imply that

G1,0
2;n[a1, a2](1, r) = −(1 + r)nG−1,2

1;n [a1, a2](1, f4(r)).

Therefore we turn to the even order case. Let r, s ∈ C be such that

G−1,2
1;m [b1, b2](1, r) = G1,0

2;m[b1, b2](1, s) = 0.

Then we have
1 + rm + (s(1 + r))m − ((1 + s)(1 + r))m = 0. (7.4)

An integrability condition for the equation at order n is that this equation has
infinitely many integer solutions m including n.

Theorem 7.11. Let n be even. Suppose that r, s 6∈ {0,−1}. If equation (7.4) has
infinitely many solutions m > 1, including m = n, these are exhaustively given by
m ≡ n mod 2n and we have

r ∈ P(Φ4n \ Φ2n, Φ4n \ Φ2n), s = − 1

1 + r̄

or

r ∈ P(Φ4n \ Φ2n, Φ2n), s = − r̄

1 + r̄
.

Proof. By Corollary D.4 one of the pairs

1

s(r + 1)
,

r

(1 + s)(1 + r)
or

1

(1 + s)(1 + r)
,

r

s(1 + r)

should be roots of unity. The first pair consisting of roots of unity implies that

|1
s
| = |1 + r| and |r| = |1 +

1

s
|.
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The second pair consisting of roots of unity implies that

|1
s
| = |1 +

1

r
| and |1

r
| = |1 +

1

s
|.

Since f3 leaves invariant the zeros of G−1,2
1;n , we may choose the first pair being roots

of unity. This implies that

s = − 1

1 + r
or s = − 1

1 + r̄
,

see Figure 7.1. When s = −1/(1+ r) equation (7.4) with r = αψ = βφ− 1 becomes

1 + (αψ)m + (−1)m − (αψ)m = 0,

which is not true for m = n since n is even. When s = −1/(1+ r̄) the left hand side
of equation (7.4) becomes

1 + (αψ)m + (−φ2)m − (αψ̄φ2)m.

This vanishes if ψ2n = φ2n = −1 and m ≡ n mod 2n. Therefore we have

r ∈ P(Φ4n \ Φ2n, Φ4n \ Φ2n).

If (r, s) solves equation (7.4), then so does (1
r
, s). By Lemma 7.12 this gives the

other points
r ∈ P(Φ4n \ Φ2n, Φ2n).

We translate the last part of the theorem to a statement about the solutions of a
diophantine equation. By using the formula (4.7) and performing the transformation

ψ2 = µν, φ2 = ν

equation (7.4) with s = −1/(1 + r̄) becomes

(
1− µ

1− ν

)n

=
1− (−µ)n

1 + νn

When ν = −1 and m even we apply Proposition E.6, for odd m we obtain
µm = −1. In the other cases we can apply Theorem E.1, since

• when ν = 1 or µ = 1/ν we have r ∈ R,

• when µ = 1 we have r 6∈ C,

• when µ = −1 the equation becomes νn = −1,

• when µ = ν we have ψ = ±φ2, but ±φ2 6∈ Φ4n \ Φ2n if φ ∈ Φ4n.

and the theorem is proved.
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Chapter 7. On the spectrum of integrable equations

Lemma 7.12. The image of P(Φ2n \ Φn, Φ2n \ Φn) under the map f3 : r → 1
r

is
P(Φ2n \ Φn, Φn).

Proof. The biunit coordinates of

r ∈ P(Φ2n \ Φn, Φ2n \ Φn)

are (ψ, φ) with ψ2n = ψ2n = −1. By equation (4.10) the biunit coordinates of
the point f3(r) are (ψ−1, φψ−1). We have (ψ−1)2n = −1 and (φψ−1)2n = 1. Since
f3 ◦ f3 = 1 the map is onto.

Notice that by the relation (4.5) the results obtained in this section immediately
transfer to equations with nonvanishing terms K0,1

1 and K2,−1
2 such as equation (4.6).

Apparently we have obtained a condition on the spectrum of such equations at even
order.

However, the integrable equation (4.6) has a continuous spectrum! How to ex-
plain these seemingly contradictory observations? The requirement in this section
is the existence of divisors of infinitely many G-functions. However, this is not a
necessary condition for integrability. It might occur that a divisor of the G-function
is a divisor of the quadratic part of the equation. Thus, instead of a condition on
the spectrum this determines the form of the quadratic part. We have

G0,1
1,n[1, α](ξ, η) = η ((α− 1)η − 2ξ) .

Therefore (α− 1)η− 2ξ should be a divisor of K̂0,1
1 which is true for equation (4.6).

7.2.2 Nonvanishing terms K−1,2
1 and K0,1

1

The nonvanishing of both K−1,2
1 and K0,1

1 as well as the nonvanishing of both K2,−1
2

and K1,0
2 yields the equation

(1 + rn) ((1 + s)n − sn)− (1 + r)n = 0. (7.5)

Lemma 7.13. If equation (7.5) has infinitely many solutions, then

r,
1 + r

s
,
1 + s

s

are roots of unity.

Proof. The equation is of the form

aAk + bBk + cCk + dDk + eEk = 0.

By using the Lech-Mahler theorem we have proven that if such an equation has
infinitely many integers k as solutions, then three of the numbers A,B, C, D, E have
a root of unity as a ratio and the same holds for the other two, cf. Corollary D.5.
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7.2. Nonvanishing quadratic terms with different gradings

Thus we have to consider ten cases. Take

A = 1 + s,B = r(1 + s), C = s,D = rs, E = 1 + r

Suppose that A/D,B/C, B/E, C/E are roots of unity. This means that

1 + r

s
,
1 + s

rs
,

1 + r

r(1 + s)

are roots of unity. By multiplying the last two and dividing by the first one sees
that r is a root of unity and the result follows. Suppose that A/B, C/D, C/E, D/E
are roots of unity. This means that

r,
1 + r

s

are roots of unity. We need a little more subtle argument here. Write equation (7.5)
as

(1 + rn)

((
1 + s

s

)n

− 1

)
−

(
1 + r

s

)n

= 0.

and suppose it has infinitely many solution n ∈ N. Since r and (1+r)/s are roots of
unity, their powers yield a finite number of values. Moreover, for the infinite number
of solutions we have 1 + rn 6= 0. Hence for these infinite number of solutions

(
1 + s

s

)n

− 1

has only finitely many values. This happens only when (1 + s)/s is a root of unity.
All other eight cases are treated similarly to one of the above and the statement

is proved.

Notation 7.14. The set of all primitive n-th roots of unity is denoted Φ′
n.

Proposition 7.15. If equation (7.5) has infinitely many solutions and r, s 6∈ {0,−1}
then one of the following cases applies:

• r, s ∈ Φ′
3

with solutions odd n such that 3 is not a divisor of n.

• ζ ∈ Φ′
12, r ∈ {ζ, ζ(1− ζ2)}, s = −ζ2(1 + ζ),

with solutions odd n such that 3 is not a divisor of n.

• ζ ∈ Φ′
10, r ∈ {ζ2,−ζ3}, s = −ζ(1 + ζ2),

with solutions odd n such that 5 is not a divisor of n.

Proof. By Lemma 7.13 the ratios

r,
1 + r

s
,
1 + s

s
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Chapter 7. On the spectrum of integrable equations

are roots of unity. Put y = (1 + s)/s. The algorithm of Smyth is used to solve

((1 + r)(y − 1)(1 + 1/r)(1/y − 1)− 1)ry = 0

for roots of unity r, y and s is found from s = 1/(y − 1). By substitution of r, s in
the equation the values n ∈ N are obtained.

Using Proposition 7.15 we obtain the following ratios of eigenvalues:

• a1/a2 = 1 at order 5.

• a1/a2 = 26− 30ζ + 15ζ2 with ζ ∈ Φ′
12 at order 5.

• a1/a2 = −2 + 3ζ2 − 3ζ3 with ζ ∈ Φ′
10 at order 3.

7.2.3 Nonvanishing terms K−1,2
1 and K2,−1

2

The nonvanishing of both K−1,2
1 and K2,−1

2 yields the equation

(1 + rn)(1 + sn)− ((1 + r)(1 + s))n = 0. (7.6)

Lemma 7.16. If equation (7.6) has infinitely many solutions, then

r, s, (1 + r)(1 + s)

are roots of unity.

Proof. As in the proof of Lemma 7.13 we use Corollary D.5 and have to consider
ten cases. Take

A = 1, B = r, C = s, D = rs, E = (1 + r)(1 + s)

Suppose that A/D,B/C, B/E, C/E are roots of unity. This means that rs, r/s and
(1+r)(1+s)/s are roots of unity. By multiplying the first two we see that r2 is a root
of unity and hence r, s and (1+r)(1+s) as well. Suppose that A/B, C/D, C/E, D/E
are roots of unity. This means that r and (1 + r)(1 + s)/s are roots of unity. We
write equation (7.6) as

(1 + rn)

((
1

s

)n

− 1

)
−

(
(1 + r)(1 + s)

s

)n

= 0.

and suppose that it has infinitely many solution n ∈ N. Since r and (1+ r)(1+ s)/s
are roots of unity, their powers yield a finite number of values. Moreover, for the
infinite number of solutions we have 1 + rn 6= 0. Hence for these infinite number
of solutions

(
1
s

)n − 1 has only finitely many values. This happens only when s is a
root of unity and the statement is verified in this case.

All other eight cases are treated similarly to one of the above.
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7.2. Nonvanishing quadratic terms with different gradings

Proposition 7.17. If equation (7.6) has infinitely many solutions and r, s 6∈ {0,−1}
then one of the following cases applies:

• r, s ∈ Φ′
3,

with solutions n ∈ N such that 3 is not a divisor of n.

• s ∈ Φ′
12, r ∈ {−s,−s− s3},

with solutions odd n such that 3 is not a divisor of n and solutions even n such
that 4 divides n.

• s ∈ Φ′
5, r ∈ {s2, s3},

with solutions odd n such that 5 is not a divisor of n.

Proof. By Lemma 7.16 the points r, s, (1+r)(1+s) are roots of unity. The algorithm
of Smyth is used to solve

((1 + r)(1 + s)(1 + 1/r)(1 + 1/s)− 1)rs = 0

for roots of unity r, s. By substitution of r, s in the equation the values n are
obtained.

Using Proposition 7.17 we obtain the following ratios of eigenvalues:

• a1/a2 = 1 at order 5.

• a1/a2 = 7 + 8ζ − 4ζ3 with ζ ∈ Φ′
12 at order 4.

• a1/a2 = −2 + 3ζ2 + 3ζ3 with ζ ∈ Φ′
5 at order 3.

7.2.4 Nonvanishing terms K0,1
1 and K1,0

2

The nonvanishing of both K0,1
1 and K1,0

2 yields the equation

((1 + r)n − rn) ((1 + s)n − sn) = 1. (7.7)

Lemma 7.18. If equation (7.7) has infinitely many solutions, then

1 + r

r
,
1 + s

s
, rs

are roots of unity.

Proof. As in the proof of Lemma 7.13 we use Corollary D.5 and have to consider
ten cases. Take

A = (1 + r)(1 + s), B = r(1 + s), C = s(1 + r), D = rs, E = 1

Suppose that A/D, B/C,B/E, C/E are roots of unity. Then r(1 + s), s(1 + r) and
(1 + r)(1 + s)/(rs) are roots of unity. By dividing the last by the first two, we see
that rs is a root of unity and hence the statement follows in this case. Suppose that
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Chapter 7. On the spectrum of integrable equations

A/B, C/D,C/E,D/E are roots of unity. This means that rs and (1+r)/r are roots
of unity. We write equation (7.7) as

((
1 + r

r

)n

− 1

)
((r(1 + s))n − (rs)n) = 1.

and suppose that it has infinitely many solutions n ∈ N. Since rs and (1 + r)/r
are roots of unity, their powers yield a finite number of values. Moreover, for the
infinite number of solutions we have

(
1+r

r

)n−1 6= 0. Hence for these infinite number
of solutions (r(1 + s))n has only finitely many values. This happens only when
r(1 + s) is a root of unity. Hence (1 + s)/s is a root of unity as well.

All other eight cases are treated similarly to one of the above.

Proposition 7.19. If equation (7.7) has infinitely many solutions and r, s 6∈ {0,−1}
then r, s ∈ Φ′

3, with solutions n ∈ N such that 3 is not a divisor of n.

Proof. By Lemma 7.18 the ratios (1 + r)/r, (1 + s)/s and rs are roots of unity. The
algorithm of Smyth is used to solve

rs(−1− s)(−1− r)− 1 = 0

for roots of unity r, s. By substitution of r, s in the equation the values n are
obtained.

Using Proposition 7.19 we obtain the ratio of eigenvalues a1/a2 = 1 at order 5.
The results obtained in this chapter, so far, are directly applicable in the clas-

sification of 2-component integrable evolution equations of any order with a diago-
nalisable homogeneous linear part and nonvanishing quadratic terms:

{
ut = a1un + K−1,2

1 + K0,1
1 + K1,0

1 + · · ·
vt = a2vn + K2,−1

2 + K1,0
2 + K0,1

2 + · · ·

7.3 Vanishing quadratic terms

Abstract. For the classification of equations without quadratic terms
the following problems have to be solved. Determine all common divisors
of Gk,2−k

1,n with infinitely many Gk,2−k
1,m for fixed k. We treat the case k = −1

which is used to classify the cubic version of the class of B-equations.

We give all divisors H of G−1,3
1;n [a1, a2] such that there are infinitely many m and

b1, b2 for which H divides G−1,3
1;m [b1, b2]. In this way we classify equations of the form

Kn[a1, a2](K) :

{
ut = a1un + K(v0, v1, . . .)
vt = a2vn

,

where a1, a2 ∈ C and K a cubic polynomial in derivatives of v. We assume that
G−1,3

1;m [a1, a2] does not divide K.
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7.3. Vanishing quadratic terms

We have [
b1um + S

b2vm

]
,

with S ∈ A cubic in derivatives of v, as a symmetry of Kn[a1, a2](K) when

Ŝ =
G−1,3

1;m [b1, b2]

G−1,3
1;n [a1, a2]

K̂

is polynomial. Therefore G−1,3
1;n [a1, a2] and G−1,3

1;m [b1, b2] should have a common divi-
sor for there being a symmetry. Suppose we can find a1, a2, b1, b2 ∈ C such that
(F, L, T ∈ C[η1, η2, η3])

G−1,3
1;n [a1, a2] = FL,

G−1,3
1;m [b1, b2] = FT.

Then the Lie derivative of Km[b1, b2](S) with respect to Kn[a1, a2](K) vanishes if we
take

K̂ = LMv3

and
Ŝ = MTv3,

where M ∈ C[η1, η2, η3] can be chosen freely.

Theorem 7.20. The cubic K-equation Kn[a1, a2](K) has no symmetries unless
a1 = a2 or a2 = 0. When a1 = a2 any symmetry is in a hierarchy of order 3.

Proof. The case a2 = 0 is easily proven. The equation is integrable since

G−1,3
1;m [a1, 0] = −a1(η1 + η2 + η3)

n

divides G−1,3
1;m [b1, b2] for arbitrary m > n if b2 = 0. The case a2 6= 0 is proven by

F. Beukers with Proposition 7.21. The eigenvalues a2, b2 are scaled to 1.

Proposition 7.21 (Beukers). The function

G−1,3
1;m [a, 1] = ηn

1 + ηn
2 + ηn

3 − a(η1 + η2 + η3)
n

is irreducible unless a = 1, n odd or a = 1/3, n = 2, where

G−1,3
1;2 [

1

3
, 1] =

2

3
(η1 + ζη2 + ζ2η3)(η1 + ζ2η2 + ζη3) (7.8)

with ζ2 + ζ + 1 = 0.

Proof. The function
G−1,3

1;n [1, 1] = G2
n

has been treated in Theorem 5.6.
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Chapter 7. On the spectrum of integrable equations

The idea of the proof is as follows. Suppose that G−1,3
1;n [a, 1] is reducible with

factors of degree k and n− k, say

G−1,3
1;n [a, 1] = A ·B.

The points of intersection of the curves A = 0 and B = 0 are singular points of

G−1,3
1;n [a, 1] = 0. (7.9)

In Lemma 7.22 it is shown that the singular points of the curve (7.9) are double
points. So the curves A = 0, B = 0 have only simple intersection and by Bézout’s
theorem the number of intersection points is precisely k(n − k). Therefore the
number of singular points of the curve (7.9) is at least k(n− k).

Assume that a 6= 1. Suppose that G−1,3
1;n [a, 1] is divisible by a linear form L.

Suppose that L is not symmetric under all permutations of η1, η2, η3. Then G−1,3
1;n [a, 1]

is divisible by another linear form L′ as well and we have the divisor LL′. So we can
assume k ≥ 2. If L is completely symmetric we necessarily have

L = η1 + η2 + η3.

Note that when η1 + η2 + η3 divides G−1,3
1;n [a, 1], we have that η1 + η2 + η3 divides

ηn
1 + ηn

2 + ηn
3 . Since

ηn
1 + ηn

2 + ηn
3 = 0

is a nonsingular curve and n ≥ 2 we arrive at a contradiction.
From Lemma 7.22 it follows that the number of singular points is at most twelve.

Hence, using k ≥ 2 we get

k(n− k) ≥ 2(n− 2) ≤ 12

and thus n ≤ 8. When n ≤ 8 we have from Lemma 7.22 that the number of singular
points is at most six. So, when n ≤ 8 we get

2(n− 2) ≤ 6.

This implies n ≤ 5. But in those cases Lemma 7.22 tells us that the number of
singularities is at most three. So

2(n− 2) ≤ 3,

hence n < 4. When n = 3 we must have a linear factor L. By Lemma 7.22 the
singular points are either the single point (1 : 1 : 1) or the point (1 : 1 : −1) and its
permutations. When (1 : 1 : 1) is the only singular point, we get

2(n− 2) ≤ 1,

which is impossible when n = 3. When (1 : 1 : −1) is a singular point, we have
a = 1, which we had excluded in this case. When n = 2 the only singular point is
(1 : 1 : 1) where a = 1/3. Here the function is divisible by the two linear factors in
equation (7.8).
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7.3. Vanishing quadratic terms

Lemma 7.22. Let λ ∈ C be nonzero and n an integer ≥ 2. Consider the projective
algebraic curve Cλ,n given by

λ(xn + yn + zn)− (x + y + z)n = 0.

Let µ ∈ C be such that µn−1 = λ. Then the singular points of Cλ,n are given by all
triples x0, y0, z0 ∈ C such that

x0 + y0 + z0 = µ, xn−1
0 = yn−1

0 = zn−1
0 = 1.

Moreover,

(a) Each singularity is an ordinary double point.

In the following results we assume either λ 6= 1 or n even. Then,

(b) There are at most twelve singularities.

(c) When n ≤ 8, there are at most six singularities.

(d) When n ≤ 5, there are at most three singularities.

Proof. The singular points of a projective algebraic curve F (x, y, z) = 0 can be
solved by simultaneous solution of

∂xF (x, y, z) = ∂yF (x, y, z) = ∂zF (x, y, z) = 0.

In our case this yields

(x + y + z)n−1 = λxn−1 = λyn−1 = λzn−1.

As a result we see that the ratios xn−1 = yn−1 = zn−1 in the singular points are of
the form x = x0l, y = y0l, z = z0l where x0, y0, z0 are (n− 1)-th roots of unity and
l ∈ C nonzero. Hence we get (x0 + y0 + z0)

n−1 = λ. By multiplication of x0, y0, z0

with a common (n− 1)-th root of unity, if necessary, we can see that

x0 + y0 + z0 = µ.

This proves the first part of our lemma.
To prove part (a) we must write our equation Fλ,n = 0 locally around a singular

point. Without loss of generality we can take (x0 : y0 : 1) with xn−1
0 = yn−1

0 = 1 for
such a singularity. We let µ = 1 + x0 + y0. Put

x = x0 + ξ, y = y0 + η.

Then the local equation up to terms of order two in ξ, η reads

(
n

2

) (
µn−2(ξ + η)2 − µn−1(xn−2

0 ξ2)− µn−1(yn−2
0 η2)

)
= 0.
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Chapter 7. On the spectrum of integrable equations

Up to a factor, and using xn−1
0 = yn−1

0 = 1 this quadratic form reads

(ξ + η)2 − µ

x0

ξ2 − µ

y0

η2.

Its discriminant equals

4− 4(1− µ/x0)(1− µ/y0) = −4µ/(x0y0),

which is nonzero. Hence every singularity is a double point.
Part (b) follows directly from Lemma 7.23(a).
Part (c) and (d) are proved as follows: if n = 6, 8 then n−1 is prime and Lemma

7.23(b) applies. We see that µ = x0 + y0 + z0 has at most six triples of (n − 1)-th
roots of unity as solution.

When n = 7 we have by assumption λ 6= 1. The number of singular points is
equal to the number of ordered pairs of 6-th roots of unity x0, y0 such that

(x0 + y0 + 1)6 = λ.

The 36 values are easily computed. It is straightforward to verify that values of
λ 6= 0, 1 are assumed at most six times.

The cases n = 4, 5 are treated similarly to the case n = 7, only we work with
3-rd and 4-th roots of unity respectively.

Lemma 7.23. Let ν ∈ C be nonzero and not a root of unity. Consider the equation
ν = ζ1 + ζ2 + ζ3. Then the following two statements hold.

(a) The equation has at most twelve solutions in roots of unity.

(b) Let p be a prime. Then the number of solutions in p-th roots of unity is at
most six.

Proof. To prove (a) we suppose that (ζ1, ζ2, ζ3) and (ζ ′1, ζ
′
2, ζ

′
3) are solutions. Then

ζ1 + ζ2 + ζ3 − ζ ′1 − ζ ′2 − ζ ′3 = 0 (7.10)

is a vanishing sum of roots of unity. Let us suppose that ζ ′1, ζ
′
2, ζ

′
3 is not a permutation

of ζ1, ζ2, ζ3. According to [Rin01] vanishing sums of six roots of unity are of the
following form.

1. The roots of unity cancel pairwise.

2. The sum is, up to permutation, of the form

ζ(1 + ω + ω2) + ζ ′(1 + ω + ω2) = 0,

where η = e±2πi/3.

103



7.3. Vanishing quadratic terms

3. The sum has, up to permutation, the form

ζ(−ω − ω2 + η + η2 + η3 + η4) = 0,

where η = e2πi/5.

Suppose we are in case (1). If any two of ζi cancel, then ν is root of unity, contrary to
our assumptions. So the ζi cancel the −ζ ′j and ζ ′1, ζ

′
2, ζ

′
3 is a permutation of ζ1, ζ2, ζ3.

Suppose we are in case (2). The triple ζi, i = 1, 2, 3 cannot be of the form
ζ, ζω, ζω2, since the sum would be zero. But then the values of ζi, i = 1, 2, 3 and
the relation uniquely determine the set of ζ ′i. We argue similarly in case (3). From
any of the two possibilities we can take all permutations, hence the total number of
solutions is at most twelve.

To prove (b) suppose that

a0 + a1ζp + · · ·+ ap−1ζ
p−1
p = b0 + b1ζp + · · ·+ ap−1ζ

p−1
p

where ζp = e2πi/p and ai, bj ∈ {0, 1, 2, 3} such that

∑
i

ai =
∑

i

bi = 3. (7.11)

Since ζp has 1+x+x2+· · ·+xp−1 as its minimal polynomial over Q, we conclude that
all numbers ai − bi have the same value β. Because of condition (7.11) the number
β must be zero, and we conclude that ai = bi for all i. Hence, in any relation (7.10)
in p-th roots of unity, the ζ ′i must be a permutation of the ζi. We thus conclude that
the number of representations of ν as sum of three p-th roots of unity is at most
six.
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Chapter 8

Almost integrable evolution
equations and p-adic numbers

This chapter is devoted to almost integrable B-equations of finite depth, i.e., equa-
tions of the form (6.8) with a finite number of symmetries. We give a short in-
troduction to p-adic numbers and treat the method of Skolem, which allows us to
conclude that only a finite number of symmetries exist for a given equation. We
present a method by which all n-th order B-equations that possess a m-th order
symmetry are obtained. We show the existence of a 2-component evolution equa-
tion with 2 generalised symmetries and prove, with the method of Skolem, that it is
a counterexample to Fokas’ conjecture. In the end we formulate a new conjecture.

8.1 The conjecture of Fokas

A.S. Fokas formulated the following conjecture in 1987, cf. [Fok87].

Conjecture 8.1 (Conjecture of Fokas). If a scalar equation possesses at least one
time-independent non-Lie point symmetry, then it possesses infinitely many. Simi-
larly for N-component equations one needs N symmetries.

Note that for N = 1 the conjecture of Fokas is proven to be true for the class
of equations (1.1) by the classification result of Sanders and Wang [SW98], which is
reviewed in Chapter 5, cf. Theorem 5.11.

A candidate counterexample that possesses at least one higher order symmetry
was given by I.M. Bakirov in [Bak91]. This is the 2 component equation

{
ut = 5u4 + v2

vt = v4
.
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8.2. p-adic numbers

As can easily be checked this equation possesses the sixth order symmetry
[

11u6 + 5vv2 + 4v2
1

v6

]
.

Bakirov showed, by performing computer calculations, that the equation does not
possess other symmetries of order n ≤ 53.

The use of p-adic methods in integrability theory was initiated in [BSW98].
Beukers, Sanders and Wang proved that the Bakirov equation does not possess
generalised symmetries other than the symmetry at order 6. Their results were
based on a p-adic method of Skolem which provides a way of calculating all orders
at which a symmetry can appear. A remark was made that this method also works
for other cases, i.e., the fourth order equations with ratio of eigenvalues 29, 11, 17

3

are almost integrable of depth 1 with symmetries at order 10, 28, 16 respectively1.

8.2 p-adic numbers

For an elementary introduction to p-adic number theory, see [Gou97]. We just recall
some of the basic notions.

Definition 8.2. Let K be a field. A mapping | · | : K → R+ is an absolute value
on K if

|x| = 0 ⇔ x = 0,

|xy| = |x||y|,
|x + y| ≤ |x|+ |y|.

It is called non-archimedian if

|x + y| ≤ max(|x|, |y|).
The p-adic valuation, vp : Z → N is defined as follows: write n ∈ Z as n = pαn′,
where p is not a divisor of n′. Then, by definition

vp(n) = α, vp(0) = ∞.

The p-adic valuation on Q is vp : Q→ Z with

vp(a/b) = vp(a)− vp(b).

Notice that this is only well defined if p is a prime number. The properties of this
valuation are

vp(ab) = vp(a) + vp(b),

vp(a + b) ≥ min(vp(a), vp(b)).

1A misprint was made in [BSW98]: instead of 17
3 it was written 1

3 .
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Chapter 8. Almost integrable evolution equations and p-adic numbers

Therefore the mapping | · |p : Q → R+ defined by

|x|p = p−vp(x)

is a non-archimedian absolute value. The p-adic field Qp is the completion of Q
with respect to | · |p. In canonical representation x ∈ Qp is written

x =
∑
n≥n0

xnp
n, 0 ≤ xn < p.

Any element in the valuation ring Zp = {x ∈ Qp|vp(x) ≥ 0} can be written as

x =
∑
n≥0

xnp
n, 0 ≤ xn < p.

In the field of p-adic units Z×p = {x ∈ Qp|vp(x) = 0} we have x0 6= 0. These are
the invertible elements.

Example 8.3. In Z5 we write

57 = 2 · 50 + 1 · 51 + 2 · 52,

3

4
= 1 +

1

1− 5
= 2 · 50 +

∞∑
i=1

1 · 5i.

Note that the higher the power of the prime involved, the smaller the number.

8.2.1 Hensel’s lemma

Abstract. We include a version of Hensel’s lemma, which provides a
method to check whether a polynomial has a zero in Z×p . The proof is
included and by means of an example it is shown to be constructive.

The procedure given in the following lemma is called Hensel lifting.

Lemma 8.4 (Hensel). A polynomial

f(r) =
m∑

i=0

cir
i with ci ∈ Zp

has a zero in Z×p if there is an α1 ∈ Z/p such that

• f(α1) ≡ 0 mod p,

• df
dr

(α1) 6≡ 0 mod p.
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8.2. p-adic numbers

Proof. It is possible to construct a sequence {αn} with (induction hypothesis)

αn ≡ αn−1 mod pn−1,
f(αn) ≡ 0 mod pn.

Calculate β ∈ Z/p such that

0 = f(αn+1) = f(αn + βpn) ≡ f(αn) +
df

dr
(α1)βpn mod pn+1.

By the induction hypothesis γ ∈ Z/p exists such that

f(αn) ≡ γpn mod pn+1.

Substituting this and dividing by pn gives an equation that can be solved in Z/p:

β ≡ −γ(
df

dr
(α1))

−1 mod p.

By completeness the sequence converges and, since f is continue for the p-adic
topology, its limit is a zero of f .

Example 8.5. The square roots of 2 are in Z7. Take

f(r) = r2 − 2.

Then we have
f(3) ≡ 0 mod 7, f(4) ≡ 0 mod 7,
df
dr

(3) ≡ 6 mod 7, df
dr

(4) ≡ 1 mod 7.

Therefore Hensel’s lemma can be applied. The number 3 is lifted as follows. We
have

f(3) = 1 · 7,
so γ = 1. The inverse of 6 in Z7 is 6. Then

β ≡ −1 · 6 ≡ 1.

Indeed

f(3 + 1 · 7) = 2 · 72.

One step further gives

f(3 + 1 · 7 + 2 · 72) = 6 · 73 + 4 · 74.

This example illustrates that the method of Hensel is constructive.
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8.2.2 The method of Skolem

Abstract. Skolem’s method allows us to conclude that a given equation
has only a finite number of symmetries. The method is based on the fact
that if some equation does not have a solution in some p-adic field, it
can not have a solution in C. The method reduces the number of orders
that need to be checked to a finite number.

If xi ∈ Z×p then, by Fermat’s little theorem, there exists yi ∈ Zp such that

xp−1
i = 1 + yip.

Choose j ∈ N. Let

um
n =

j∑
i=1

ciy
m
i xn

i , m, n ∈ N.

For instance, Un(r, s) has the form u0
n, with j = 4, ci = (−1)i and

x1 = 1 + s, x2 = 1 + r, x3 = r(1 + s), x4 = s(1 + r),

cf. equation 6.4 and Lemma 6.18.

Lemma 8.6 (Skolem). If
u0

k 6≡ 0 mod p

then for all r we have
u0

k+r(p−1) 6= 0.

Proof. We have

u0
k+r(p−1) =

j∑
i=1

cix
k
i (1 + yip)r ≡ u0

k mod p 6≡ 0.

Therefore u0
k+r(p−1) 6= 0.

Lemma 8.7 (Skolem). If
u0

k = 0, u1
k 6≡ 0 mod p

then for all r > 0 we have
u0

k+r(p−1) 6= 0.

Proof. Assume u0
k+r(p−1) = 0. Then we have

j∑
i=1

cix
k
i (1 + yip)r =

r∑
t=1

(
r
t

)
ptut

k = 0.

By using
1

r

(
r
t

)
=

1

t

(
r − 1
t− 1

)
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and dividing by pr this is written

u1
k +

r∑
t=2

(
r − 1
t− 1

)
pt−1

t
ut

k = 0.

This contradicts the second assumption since (pt−1)/t always contains a divisor p.
To see this, write t = pαs with p 6 | s. Then s is invertible and

pt−1

t
=

1

s
ppαs−α−1.

The power of p is bigger than 1, for when α = 0 we know s ≥ 2 and when α > 0 we
have s ≥ 1 and pα ≥ α + 2 (because p > 2). Hence we conclude u0

k+r(p−1) 6= 0.

How to prove that u0
n = 0 has finitely many integer solutions n? Use Hensel’s

method to look for a prime number p such that the xi are in Z×p and check the
conditions in the lemmas of Skolem. Note that only finitely many orders, have to
be checked and that the computations to be done are all modulo p or p2.

8.3 Almost integrable B-equations

Abstract. We describe a method by which all n-th order B-equation
can be found that have a symmetry at order m.

To find a symmetry of Bn[a1, a2](K) one has to find m, b1, b2 such that G1[a1, a2]
has a common divisor with Gm[b1, b2]. From Theorem 6.15 we know that if this
common divisor has a degree smaller than 4 the corresponding equations are always
in a hierarchy of order 1, 2 or 3. Therefore we consider divisors of degree at least 4.
According to Lemma 6.18 the function

Gn[1 + rn, (1 + r)n](ξ1, ξ2)

has a fourth degree divisor whenever there exists an s such that Un(r, s) = 0. In
the following we disregard the trivial divisors of Un(r, s) which are (r − s)(rs − 1)
for all m and (r + 1)(s + 1) when m is odd. The following method was introduced
in [vdKS01].

Lemma 8.8. Take n > 3. All ratios of eigenvalues of n-th order B-equations with
a symmetry on order m can be obtained by calculating the resultant of Un(r, s) and
Um(r, s) with respect to s. To any of its zeros r corresponds the ratio

a1

a2

=
1 + rn

(1 + r)n
.

of an integrable B-equation.
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Chapter 8. Almost integrable evolution equations and p-adic numbers

Proof. A necessary condition for two polynomials to have a nontrivial common divi-
sor is the vanishing of their resultant. If the resultant of Un(r, s) and Um(r, s) with
respect to s vanishes for some r ∈ C, by Lemma 6.18 the G-functions

Gn[1 + rn, (1 + r)n](ξ1, ξ2)

and

Gm[1 + rm, (1 + r)m](ξ1, ξ2)

have a common 4-th degree divisor. This implies that the n-th order B-equation
with eigenvalues

a1 = 1 + rn, a2 = (1 + r)n

and quadratic part Gn[a1, a2] divided by this 4-th degree divisor has a symmetry on
order m.

Example 8.9 (Bakirov). The resultant of U4(r, s) and U6(r, s) with respect to s
contains the divisor

f = 2r4 + 10r3 + 15r2 + 10r + 2.

We have

1 + r4 ≡ −5

2
r(2r2 + 2 + 3r) mod f

and

(1 + r)4 ≡ −1

2
r(2r2 + 2 + 3r) mod f.

Their ratio is 5, the ratio of the eigenvalues of the Bakirov equation. As expected
G4[5, 1](1, r) is proportional to f .

8.3.1 One symmetry does not imply integrability

Abstract. We demonstrate the use of the method of Skolem while
treating the Bakirov equation.

In [BSW98] it was proven that the Bakirov equation provides a counterexample to
the old believe that one symmetry implies integrability. We let p increase and, using
Hensel lifting, look in Z×p for zeros of the resultant calculated in Example 8.9:

f(r) = 2r4 + 10r3 + 15r2 + 10r + 2.

The lowest ‘good’ prime is 181. In Z/181 we find

f(66) = f(139) = 0.

These numbers can be lifted to elements of Z×181. Modulo p2 they are

r ≡ 66 + 13p, s ≡ 139 + 29p.
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The function Um(r, s) has the form u0
m with ci = (−1)i, j = 4 and

x1 = 1 + s ≡ 140 + 29p mod p2,
x2 = 1 + r ≡ 67 + 13p mod p2,
x3 = r(1 + s) ≡ 9 + 165p mod p2,
x4 = s(1 + r) ≡ 82 mod p2.

For 0 ≤ m < 180 we have u0
m(r, s) ≡ 0 mod p only when m ∈ {0, 1, 4, 6}. Applying

xi → xp−1
i − 1

p

gives
y1 ≡ 40 mod p,
y2 ≡ 33 mod p,
y3 ≡ 140 mod p,
y4 ≡ 46 mod p.

For m ∈ {0, 1, 4, 6} the function

u1
m = 33 · 67m + 46 · 82m − 40 · 140m − 140 · 9m

is nonzero modulo p. Both Skolem’s lemmas can be applied and it is shown that
there is no nontrivial symmetry except at order 6.

8.3.2 The counterexample to Fokas’ conjecture

Abstract. We present a counterexample to Fokas’ conjecture.

The counterexample was first presented in [vdKS02].

Theorem 8.10. The 2-component equation

{
ut = 2r2u7 + 7(2r2 + 4r + 3)(v3v0 + (3− r)v2v1)
vt = (16r2 + 28r + 21)v7

, (8.1)

with
r3 + r2 − 1 = 0,

possesses exactly two nontrivial generalised symmetries.

Proof. The resultant of U7 and U11 has the following divisor in common with the
resultant of U7 and U29:

(r3 − r − 1)(r3 + r2 − 1)
(
(r2 + r + 1)3 − (1 + r)2r2

)
. (8.2)

Therefore, by Lemma 8.8 there are three 7-th order equations possessing symmetries
at order 11 and 29. We explicitly compute the three equations and their symmetries.
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Chapter 8. Almost integrable evolution equations and p-adic numbers

Each zero of r3+r2−1 is mapped to a different eigenvalue. We take C[r]/(r3+r2−1)
as our coefficient ring. As eigenvalues of the equations we take

1 + r7 = 2r2 and (1 + r)7 = 16r2 + 28r + 21.

The quadratic parts are

G7[2r
2, 16r2 + 28r + 21](ξ1, ξ2)

divided by

2(ξ1 − rξ2)(ξ1 − (r + r2)ξ2)(ξ
2
1 + (1− r − r2)ξ1ξ2 + ξ2

2),

i.e.,
7

2
(2r2 + 4r + 3)(ξ1 + ξ2)(ξ

2
1 + (2− r)ξ1ξ2 + ξ2

2).

By applying the inverse Gel’fand–Dikĭı transformation we obtain the quadratic part
of the equations. The symmetries can be calculated in the same way, leading to the
11-th order symmetry S = (S1, S2) with

S1 = (−3r2 + r + 2)u11 + 11
(
(14r2 + 24r + 18)v7v0 + (35r2 + 57r + 42)v6v1

+ (48r2 + 70r + 49)v5v2 + (51r2 + 65r + 42)v4v3

)

and
S2 = (151r2 + 265r + 200)v11,

and the 29-th order symmetry S = (S1, S2) with

S1 = (−40r2 + 9r + 17)u29

+29
(
30(1081r2 + 1897r + 1432)v25v0

+(311920r2 + 547311r + 413143)v24v1

+(706832r + 533441 + 403277r2)v23v2

+(449543r2 + 782050r + 589257)v22v3

+(537572r + 402545 + 317304r2)/2v21v4

+(1026233r2 + 1635821r + 1205570)v20v5

+(1101516r + 779787 + 787277r2)/2v19v6

+(2656229r + 1710194 + 2393075r2)v18v7

+(3831912r2 + 3208669r + 1731205)v17v8

+(6105788r2 + 4007995r + 1678107)v16v9

+(4807604r + 1421555 + 8899703r2)v15v10

+(5263833r + 11440843r2 + 915604)v14v11

+ 3(1793035r + 155000 + 4312473r2)v13v12

)
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and
S2 = (3761840r2 + 6601569r + 4983377)v29.

In Z/101 the first divisor of (8.2) has zero 20 and the third zero 52. They can be
lifted and both Skolem’s lemmas can be applied. We take p = 101. Modulo p2 the
zeros are

r ≡ 20 + 76p, s ≡ 52 + 76p.

The function Um(r, s) has the form u0
m with ci = (−1)i, j = 4 and

x1 = 1 + s ≡ 53 + 76p mod p2,
x2 = 1 + r ≡ 21 + 76p mod p2,
x3 = r(1 + s) ≡ 50 + 3p mod p2,
x4 = s(1 + r) ≡ 82 + 3p mod p2.

For 0 ≤ m < 99 we have u0
m(r, s) ≡ 0 mod p only when m ∈ {0, 1, 7, 11, 29}. The

numbers yi for which xp−1
1 = 1 + yip are modulo p:

y1 ≡ 99 mod p,
y2 ≡ 54 mod p,
y3 ≡ 16 mod p,
y4 ≡ 97 mod p.

For m ∈ {0, 1, 7, 11, 29} the function u1
m:

54 · 21m + 97 · 82m − 99 · 53m − 16 · 50m

is nonzero modulo p. Both Skolem’s lemmas can be applied now. In this way it is
proven that

{r, 1

r
, s,

1

s
} ≡ {20, 96, 52, 68} mod 101 (8.3)

is not a set of zeros of a Gm-function when m 6∈ {0, 1, 7, 11, 29}. If one of the other
sets corresponding to the modulo 101 sets

{40, 48, 42, 89} or {32, 60, 63, 93}
is set of zeros of a function Gm for some m, their minimal polynomials divides the
resultant of U7(r, s) with Um(r, s). That means that the set (8.3) consist of zeros of
this Gm as well, and hence m equals 0, 1, 7, 11 or 29. It is shown that there are no
nontrivial symmetries except at order 11 and at order 29.

8.3.3 On the depth of non-integrable B-equations

Abstract. We calculated 46300 almost integrable B-equations of depth
at least 1. Some refinements of the method of Skolem are presented.
These made it possible to prove that the depth of the calculated B-
equations, with the exception of the counterexamples (8.1), is exactly 1.
A new conjecture is formulated.
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We calculated the resultant of Un(r, s) and Um(r, s) with respect to s for 4 ≤ n ≤ 10
and n + 1 ≤ m ≤ n + 150. To obtain the equations with finitely many symmetries
only, we filtered out the integrable equations using the results of Chapter 6.

We give an indication of the size of the expressions. The resultant of U10 and
U160 has degree 556. The coefficients of rn with 244 < n < 312 have 207 decimal
digits. The number of n-th order equations we calculated is equal to the sum of the
degree’s of the resultants divided by 4. This number is shown in table 8.1.

n 4 5 6 7 8 9 10 4-10

# 2745 2701 5679 5644 8740 8839 11952 46300

Table 8.1: The number of n-th order non-integrable B-equations with a symmetry
at order n < m < n + 151.

In Figure 8.1 and 8.2 the positions of the zeros of these resultants in the complex
plane are plotted. As a fundamental domain the upper half unit circle is chosen.
The full pictures are invariant under r → 1

/
r and r → r̄.

Refinements of the method of Skolem

All these equations are almost integrable of depth at least 1. To calculate the depth
of each equation we implemented the method of Skolem together with the following
two refinements, made in [vdKS01].

1. Most of the resultants we have calculated are irreducible. By the argument in
the proof of Theorem 8.10 it suffices to prove the statement for one particular
set of zeros.

2. Sometimes it is much more efficient to use two pairs of zeros. The argument
goes as follows: the s-resultant of U5(r, s) and U19(r, s) contains the divisor

f(r) = r12 + 4r11 + 10r10 + 19r9 + 28r8 + 34r7

+37r6 + 34r5 + 28r4 + 19r3 + 10r2 + 4r + 1

which is irreducible overQ and splits into linear factors over Z×509. The numbers
(264, 407) form a solution for Um(r, s) when

m ∈ {0, 1, 5, 19, 256, 414}.
The numbers (267, 300) form a solution for Um(r, s) when

m ∈ {0, 1, 5, 19, 162, 254}.
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Figure 8.1: Zeros of the G-functions corresponding to almost integrable equations
of order 4, 5, 6 and 7.

By using both pairs we can apply Lemma 8.6 for all 0 ≤ m < 508 but
{0, 1, 5, 19}, for which we can use Lemma 8.7. It is hard task, even for a
computer, to find a prime for which the normal procedure works. The calcu-
lations that were performed showed that such a prime is bigger than 8146.

With these improvements we have been able to prove that all equations we calcu-
lated have exactly one nontrivial symmetry, with the exception of the seventh order
equations with two symmetries at order 11 and 29.

Theorem 8.11. Take 3 < n < 11, n < m < n + 151 and m 6= 11, 29 when n = 7.
Then, the n-th order non-integrable B-equations with a symmetry of order m is
almost integrable of depth 1.
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The following MAPLE output can be used to verify the above statement for
n = 7, 29 ≤ m ≤ 37.

prf29:=[101, {20, 52}],[97, {4, 32}]:

prf30:=[2531, {75, 871}]:

prf31:=[1021, {16, 42}]:

prf32:=[877, {226, 214}]:

prf33:=[601, {23, 409}]:

prf34:=[2857, {2457, 716}, {742, 391}]:

prf35:=[661, {401, 330}, {122, 245}]:

prf36:=[179, {17, 76}]:

prf37:=[233, {30, 56}, {20, 84}]:

The sequence prf.m consists of a prime number p and one or two sets of modulo p
solutions of ress(U7(r, s), Um(r, s)) such that all conditions in the lemmas of Skolem
are satisfied.

The exceptions, where the resultant has two divisors, are

(n, m) = (4, 24), (4, 28), (6, 42), (7, 8), (7, 49), (8, 56), (10, 70)

Three divisors appear at n = 7,m = 11 and four at n = 7, m = 29.
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The following could be inferred from Theorem 8.11.

Conjecture 8.12. The only integer N > 2 such that

? there exists r, s ∈ C such that the Diophantine equation

(1 + rm)(1 + s)m = (1 + sm)(1 + r)m (8.4)

has exactly N solutions m > 1.

is N = 3. Moreover, when N = 3 the solutions are given by m = 7, 11, 29.

Note that there are finitely many points r, s ∈ C such that m = 7, 11, 29 are all
the solutions m > 1 to equation (8.4). These points are obtained from

1 + r = r3 =
(1 + s)2

s
.

and the transformations r → 1/r and r ↔ s.
When we describe the zeros of

(r3 − r − 1)(r3 + r2 − 1)

in biunit coordinates, something quite peculiar is found. Using the biunit coordinate
description (4.10) of the anharmonic ratios (4.9) we obtain equations for the real
and complex parts separately. Suppose that (ψ, φ) are the biunit coordinates of r.
Then

1 + r = r3, 1 + r = r−2

imply
φ = ψ3, φ = ψ−2

respectively. By substituting these expression for φ in the equations for the real
parts, in both cases we obtain:

(ψ4 + ψ2 + 1)3 = ψ4(1 + ψ2)2.

Thus ψ2 is a zero of the third divisor of the polynomial (8.2). Finally we note that

(r2 + r + 1)3

r2(1 + r)2

is an absolute invariant of A, cf. [MM97, Section 4.6].
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Figure 8.2: Zeros of the G-functions corresponding to almost integrable equations
of order 8, 9 and 10.
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Chapter 9

Nonpolynomial symmetries

We will prove that the KDV equation coupled to a purely nonlinear equation
{

ut = u3 + 3uu1

vt = αu1v + uv1

has polynomial symmetries of even weight only if α is a negative and rational num-
ber. Moreover we prove that, allowing multiplying with vc where c ∈ C, this equation
possesses several mutually noncommuting hierarchies of nonpolynomial symmetries
for any value of α ∈ C.

9.1 Foursovs conjecture, generalised KDV

In [Fou00] a classification of third order symmetrically coupled KDV-like equations
with respect to the existence of two symmetries is presented. One equation in the
list is quite special;

{
ut = 1

2
u3 + 1

2
v3 + (2− α)uu1 + (6− α)vu1 + αuv1 + (4− α)vv1

vt = 1
2
v3 + 1

2
u3 + (2− α)vv1 + (6− α)uv1 + αvu1 + (4− α)uu1

. (9.1)

For all values of α odd order symmetries were found. At even order symmetries
were found as well, but only for some particular values of α. Foursov calculated all
weight 2,4,6,8 and 10 symmetries with the help of computer algebra and formulated
the following conjecture.

Conjecture 9.1 (Foursov, [Fou00]). The equation 9.1 has symmetries of order 2k
and weight 2k + 2n when

α = 2(1− k

n
)

for any nonnegative integer k and any positive integer n.
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A particularly easy case is α = 2: symmetries of zero order and weight 2n are

[
(u− v)n

−(u− v)n

]
.

No extra odd weight symmetries were found because it was assumed that the sym-
metries were polynomial. The crucial observation one has to make is that the weight
can be any number, i.e., the above equation is a symmetry when α = 2 for all n ∈ C.

We put the equation 9.1 in Jordan form by the invertible linear transformation

u → 1

2
(u + v), v → 1

2
(u− v).

Moreover, we apply a scale transformation u → u/2 and the parameter translation
α → α + 2 to obtain the equation we denote K(α):

{
ut = u3 + 3uu1

vt = αu1v + uv1
(9.2)

a generalisation of the famous KDV equation. The Foursov conjecture states that
for all negative α ∈ Q the equation has a hierarchy of even order polynomial sym-
metries. This is the case as we will show that all conditions of the implicit function
theorem are satisfied. Since we allow the symmetries to be nonpolynomial, we find
symmetries at any order for any α 6= 0. The results described in this chapter were
published in [vdK02b].

9.2 Generalisations of the KDV symmetries

Abstract. The first condition in the implicit function theorem, cf. The-
orem 3.8, is finding one symmetry S. Instead of explicitly giving S, we
show that for all α the equation has infinitely many odd order symme-
tries.

Lemma 9.2. Let Zn be the (odd) n-th order symmetry of the KDV equation

ut = u3 + 3uu1

Then for all n we have

Sn(α) =

(
Zn

(αv + v1D
−1
x )Zn−2

)

as a symmetry of K(α), i.e., equation (9.2).

Proof. The Lie derivative

L(K)S(α) = DSn [K](α)−DK [Sn](α)
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Chapter 9. Nonpolynomial symmetries

has as first component Du
Zn

[Z3]−Du
Z3

[Zn], which vanishes because Zn is a symmetry
of KDV (Z3). The second component is expanded in powers of α. The zeroth power
has coefficient

v1D
−1
x Du

Zn−2
[Z3] + D−1

x Zn−2(uv2 + u1v1)

−v1Zn − uv2D
−1
x Zn−2 − uv1Zn−2

= v1

(
(u1D

−1
x + D−1

x (D3
x + 3uDx + 3u1)− u)Zn−2 − Zn

)

= v1

(
(D2

x + 2u + u1D
−1
x )Zn−2 − Zn

)
,

which vanishes because of the recursion relation for KDV symmetries; apply the
scaling u → 3u to the operator (10.3). The coefficient of α,

v
(
(D3

x + 2uDx + 3u1 + u2D
−1
x )Zn−2 −DxZn

)
,

vanishes for the same reason, since

u1D
−1
x −D−1

x u1 = D−1
x u2D

−1
x .

Finally α2 has coefficient

u1vZn−2 − u1vZn−2 = 0.

Therefore the Sn(α) with n odd form a hierarchy of the equation K(α) for all α.

9.3 Nonlinear injectiveness, relative 2-primeness

Abstract. We prove that K0(α) is nonlinear injective and relatively
2-prime with respect to any of its symmetries Sn(α).

The standard choice for a grading on the Lie algebra is the total degree. However,
we take the degree in u as our grading, which is more convenient here.

Lemma 9.3. The linear part of K(α) is nonlinear injective.

Proof. Suppose that Q has u-grading i. We will prove that L(K0)Q = 0 implies
i = 0. The first symmetry condition reads:

0 = L(K0)Q

=

[
Du

Q1
Dv

Q1

Du
Q2

Dv
Q2

] [
u3

0

]
−

[
D3

x 0
0 0

] [
Q1

Q2

]

= Du
Q1

u3 −
[

D3
xQ1

−Du
Q2

u3

]
.

This implies first of all that Q1 does not contain a part that depends on v because
it would be changed by the operation D3

x and left unchanged by Du
Q1

. That Q1 has
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9.4. Solving the symmetry conditions

u-grading 0 is easily seen by using the symbolic method. When Q1 is nonzero we
need

ξ3
1 + ξ3

2 + · · ·+ ξ3
i+1 − (ξ1 + ξ2 + · · ·+ ξi+1)

3 = 0,

which implies i = 0, as in the scalar case, cf. Lemma 4.6. Secondly, L(K0)Q = 0
implies that Q2 does not depend on u or its derivatives, i.e Q2 ∈ L0.

In other words, this lemma states that K(α) is nonlinear injective.

Lemma 9.4. K(α) is relatively 2-prime with respect to Sn(α).

Proof. The symmetries we consider have the form (0, Q). Suppose now that Q has
u-grading i. The actions of L(K0) and L(S0

n) are symbolically given by multiplication
with the G-functions

Gi
n = ξn

1 + ξn
2 + · · ·+ ξn

i+1.

In the symbolic language

L(Sn)Q ∈ Im(L(K))

implies

Q ∈ Im(L(K))

whenever Gi
3 and Gi

n are relatively prime, compare with lemma 4.3. All Gi
n with

i ≥ 2 are irreducible because the projective hypersurfaces given by

Gi
n = 0

are nonsingular, compare with theorem 7.21. This shows that K(α) is relatively
2-prime with respect to Sn(α).

9.4 Solving the symmetry conditions

Abstract. We solve the first nontrivial symmetry condition for several
different forms of the term of lowest grading Q0. We also give a recursive
formula for the higher order terms in a special case.

We look for symmetries of the form (0, Qk). Automatically the first equation

L(K0)Q0
k = 0

is satisfied. The next, and already the last, symmetry condition to solve reads

0 =

[
0 0

Du
Q1

k
Dv

Q1
k

] [
u3

0

]
−

[
D3

x 0
0 0

] [
0

Q1
k

]

+

[
0 0

Du
Q0

k
Dv

Q0
k

] [
3uu1

αu1v + uv1

]
−

[
3(u1 + uDx) 0
αvDx + v1 αu1 + uDx

] [
0

Q0
k

]
.
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Chapter 9. Nonpolynomial symmetries

which is equivalent to the equation

Du
Q1

k
[u3] = uDxQ

0
k + αu1Q

0
k −Dv

Q0
k
[αu1v + uv1].

This can be solved if the coefficients of u, u1 and u2 vanish. Expanding the terms in
the right hand side gives

uDxQ
0
k + αu1Q

0
k −Dv

Q0
k
[αu1v + uv1] = u(DxQ

0
k − vi+1∂vi

Q0
k)

+u1(αQ0
k − (α + i)vi∂vi

Q0
k)

+u2(−αi− i(i− 1)

2
)vi−1∂vi

Q0
k

+ · · ·

where the sum over i is taken. Since total differentiation is done by the operator
Dx = vi+1∂vi

(summation is assumed) the coefficient of u vanishes identically.
Let α 6= 0. We make the following Ansatz.

Ansatz 9.5. The term of lowest grading has the form

Q0
k ≡

2k∑
j=0

cjvjv2k−jv
w/2−k−1,

of order 2k and weight w. Here k is a positive integer and w can be any number.

The operator ivi∂vi
counts the order, it multiplies Q0

k with 2k. The operator vi∂vi

counts the degree in v, it multiplies Q0
k with w/2− k + 1. Therefore the coefficient

of u1 vanishes when

w = 2k
α− 2

α
.

When we put w = 2k + 2n we get

α + 2 = 2(1− k

n
)

as predicted by Foursov in his conjecture. Only if n ∈ N the symmetries are poly-
nomial, however, this would be an peculiar choice for n.

Straightforward calculation shows that the vanishing of the u2-coefficient implies

cj = cj−1
(j − 1− 2k)(2α + 2k − j)

j(2α + j − 1)
.

This recursion relation can be solved as long as

α 6= 0,−1

2
, · · · ,

1

2
− k.
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9.4. Solving the symmetry conditions

The result does not vanish since ck+i = ck−i when k ∈ N, which can easily be proven
by induction on i. It is possible to do the computations for higher order. We use
the symbolic calculus. With Ansatz 9.5 the symmetries of K(α) are symbolically
given by

Q(α, k) =

[
0∑k

n=0 Qn

]
,

where the term of lowest grading

Q0 = F [k, α](η1, η2)v
− 2k+a

a

and F satisfies the linear differential equation

α(∂η1 + ∂η2)F +
1

2
(η1∂

2
η1

+ η2∂
2
η2

)F = 0.

The higher order Qi satisfy the recurrence relation

(
n

n∑
i=1

ξ3
i

)
Qn =

n∑
j=1

(
((

n∑

i=1,i 6=j

ξi) + 2(α + k)ξj + η1 + η2)Q
n−1(ξn/j, η1, η2)

−
2∑

i=1

(αξj + ηi)Q
n−1(ξn/j, η3−i, ξj + ηi)

−3
n∑

i>j

(ξj + ξi)Q
n−1(ξn/j/i, ξj + ξi, η1, η2)

)
,

where

ξn/i = ξ1, . . . , ξi−1, ξi+1, . . . , ξn.

The implicit function theorem guarantees that this relation generates polynomials,
which can be transformed into differential polynomials.

Example 9.6. The equation K(−4
3
) has the k = 2 symmetry

R =

[
0

(v4v + 1
2
v1v3 − 3

20
v2

2 + 3
2
uv2

1 + 4
3
u2v

2 + 5u1v1v + 18
5
uv2v + 16

15
u2v2)v2

]
,

of weight 10 and order 4.

The procedure also works for complex α.

Example 9.7. Let α be a primitive third root of unity. For k = 1 the procedure
gives the symmetry

Q =

[
0

1
6
(α− 1)(3v2

1 − 4vv2 + 2αuv2 − 2αvv2 − 2v2u)v1+2α

]
.
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Chapter 9. Nonpolynomial symmetries

One can also look for odd order solutions by taking k half integer. In this case
we have

ck+1/2+i = −ck−1/2−i

which implies Q0
k = 0. However, when

−2α ∈ N, 0 < 2k + 2α ≤ k

we have cj = 0 for all
j ≥ 2k + 2α.

This means that when −α is integer or half integer there are respectively −α or
−2(α + 1) additional odd order solutions.

Example 9.8. The only additional odd order symmetry with this form of K(−3
2
) is

(0, P ), where

P = vv5 +
5

3
v1v4 +

25

3
u1v

2
1 +

25

3
uv1v2 + 10u1vv2

+5uvv3 + 9u2vv1 +
3

2
u3v

2 +
9

2
uu1v

2 + 6u2vv1.

To cover the higher values of k for integer or half integer negative α we start
counting coefficients from the other side of the polynomial. The assumption we must
make here is that k ≤ −α or k > −2α whenever −2α ∈ N.

Ansatz 9.9. Let

Q0
k ≡

k∑
i=0

bivk+ivk−iv
w/2−k−1.

Then the recurrence relation for the coefficients becomes

b1 = 2b0
k(1− k − 2α)

(k + 1)(2α + k)
,

bi = bi−1
(k + 1− i)(i− k − 2α)

(k + i)(k + i− 1 + 2α)
.

Note that when
−2α ∈ N, k = −2α + 1 + i, i ∈ N,

all coefficients bj with j > i vanish.
There is more symmetry. We make another Ansatz.

Ansatz 9.10. Let

Q0
k ≡

k∑
j=0

ajvk−jv
j
1v

w/2−k/2−j,

of order k and weight w, again k is a positive integer and w ∈ C.
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9.5. Noncommuting symmetries

The coefficient of u1 vanishes if

w = k
α− 2

α
.

The coefficient of u2 vanishes if

aj+1 =
aj(k − j)(j + 1− 2α− k)

2α(j + 1)
.

This procedure works for all integer k > 1 and all w ∈ C. We have Q0
k = 0 when

k = 1. For k = 2 one obtains the same symmetries as taking k = 1 in Ansatz 9.5
or 9.9. Note that when α is a negative integer or half integer we have aj = 0 for all
j > k − 1 + 2α.

Example 9.11. The equation K(−4
3
) has the extra symmetry T = (0, P ) with

P = v3v4 +
1

2
v2v3v1 − 3

16
vv2v

2
1 +

15

256
v4

1

+
4

3
u2v

4 + 5v3u1v1 + 4uv3v2 +
5

4
uv2v2

1 +
4

3
u2v4

The weight and the order is the same as in Example 9.6.

Lemma 9.12. The approximate symmetries Q commute with the symmetries Sn in
lowest grading.

Proof. The first component of S0
n does not depend on v and its second component

vanishes. Moreover the first component of Q0
k vanishes and its second component

does not depend on u. These properties assure that L(S0
n)Q0

k = 0.

9.5 Noncommuting symmetries

We have shown that the KDV equation coupled to a purely nonlinear equation:

K(α) =

{
ut = u3 + 3uu1

vt = αu1v + uv1

has infinitely many odd order symmetries Sn(α), that its linear part is nonlinear
injective and that the linear part of any odd order symmetry Sn(α) is relatively
2-prime with K(α), cf. Lemmas 9.2, 9.3 and 9.4.

We solved the first two symmetry conditions for infinitely many Q (twice) for all
α and showed that L(S0

n)Q0 = 0. By the implicit function theorem, Theorem 3.8,
all Qk(α) commute with K(α) and with all Sn(α).

There is a linear map that transforms every symmetry of K(α) into a symmetry
of the equation (9.1) found by Foursov. His conjecture, Conjecture 9.1, turns out to
be true inside the class of polynomial symmetries. However, the symmetry structure
of the equation is bigger than that.

The several symmetries Qk(α) are mutually noncommuting, i.e., if R and T are
two such symmetries of K(α) we have L(R)T 6= (0, 0). Since the Lie derivative is a
representation, it follows that L(R)T is a symmetry of K(α).
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Chapter 9. Nonpolynomial symmetries

Example 9.13. Let R be the symmetry of example 9.6 and T be the symmetry of
example 9.11. We have that L(R)T = (0, Q), with

Q = (23400v2v4
1u2 + 12288v6u2

2 + 6912v4v2
4 + 1296v2v4

2 + 270v6
1u

+90v5
1v3 − 27v4

1v
2
2 + 63360v2u2v4

1 + 107520v5u2
1v2 + 79872v4u3v2

1

−9216v4u2v
2
2 + 34560v4v2

3u + 23130vv5
1u1 + 2880v3v2

3v2 + 12288v5v3u3

+5310vv4
1v4 − 324vv3

2v
2
1 + 2880v2v3

1v5 − 20736v3uv3
2 + 28672v6u2

1u

+5688v2v2
1v

2
3 + 18432v5u2v4 + 16384v6u1u3 + 456192v4u1v1uv2

+93312v3v1v3uv2 + 116736v5u1v1u
2 + 49152v5u2uv2 + 84480v4v3u1v2

+204288v4u2uv2
1 + 18432v4uv1v5 − 9216v4v2v1u3 + 36864v4v4uv2

+104448v4v1v3u
2 + 92160v4v1v3u2 + 99840v4v4u1v1 + 144960v3v2

1v3u1

−54144v3v2v
2
1u2 + 29952v3v4v3v1 − 6912v3v2v1v5 + 378240v3u1v

3
1u

+251136v3v2v
2
1u

2 + 74880v3v4uv2
1 − 97920v3u1v1v

2
2 − 22320v2v2v

3
1u1

−69552v2v2
2v

2
1u− 7776v2v1v3v

2
2 + 46080v2v3

1v3u− 11232v2v2v
2
1v4

+26460vv2v
4
1u + 1764vv2v

3
1v3 − 6912v3v4v

2
2 + 67584v5v3u1u + 24576v5uv1u3

+202752v5u2u1v1 + 9216v4v3v5 + 41472v4u2v2
2 + 6144v5v4u

2 + 312960v4u2
1v

2
1

+12288v5u1v5 + 8192v6u2u
2 + 3840v3v3

1u3 + 12288v5u3v2)
v

7680

is a symmetry of K(−4
3
). The term of u-grading 0 is neither of the forms given in

Ansatz 9.5, 9.9 or 9.10.

The full symmetry structure of the equation K(α) is related to the sets of poly-
nomial solutions of the linear differential equations

(
n∑

i=1

2α∂ηi
+ ηi∂

2
ηi

)F = 0, n = 2, 3, 4, . . . .

We have not studied the relations between these symmetries. We do not know
whether it is possible to generate all symmetries by taking Lie derivatives starting
from some smaller set of symmetries.
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Chapter 10

Complex of variational calculus

We describe the complex of variational calculus. From the representations on the
space of vertical vector fields and on the space of densities new representations are
constructed. The several corresponding invariants are called cosymmetries, sym-
plectic operators, cosymplectic operators and recursion operators.

10.1 n-Forms

In general, a complex is defined as a sequence of vector spaces and linear maps
between successive spaces with the property that the composition of any pair of
successive maps is identically zero. The framework of formal variational calculus
was developed by Gel’fand and Dikĭı. Apparently Loday, cf. [Lod91][Chapter 10],
was the first to notice that the construction of a Lie algebra complex can be lifted
from the antisymmetric case to the general case. He speaks of a ‘simple, but striking
result’. The sequence of vector spaces we consider consist of the following spaces.

Notation 10.1. Take n ∈ N. A multilinear map from hn to the space of densities
Ω0 is called a n-form. The space of n-forms is notated Ωn.

We will construct representations Ln of g on the spaces Ωn. and linear maps
dn ∈ Hom(Ωn, Ωn+1) that satisfy dn+1dn = 0. We also prove that the dn are g-
module maps, i.e., that the diagram

Ω0 d0−−−→ Ω1 d1−−−→ Ω2 d2−−−→ · · ·yL0(w)

yL1(w)

yL2(w)

Ω0 d0−−−→ Ω1 d1−−−→ Ω2 d2−−−→ · · ·

(10.1)

commutes. This is the complex of variational calculus. The coboundary operator is
related to the Euler operator, or ‘variational derivative’.
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10.2. Constructing new representations

10.2 Constructing new representations

Abstract. We give a general rule to construct new representations and
use this rule to define the Lie derivative on the spaces Ωn, Hom(Ω1, h),
Hom(h, Ω1), Hom(h, h) and Hom(Ω1, Ω1).

Proposition 10.2. Let H = Hom(F, G). If F and G are U-modules then so is H.

Proof. Let the product of U be P : U → End(U). By assumption we have represen-
tations of U on F and on G. They are denoted

Q1 : U → End(F ), Q2 : U → End(G).

They satisfy
Qi(P (x)y) = Qi(x)Qi(y)−Qi(y)Qi(x), i = 1, 2.

We prove the existence of a representation of U on H, i.e., a linear mapping

Q3 : U → End(H)

satisfying the above equation for i = 3.
Let ι : F → Hom(H, G) be defined by

ι(f)h = h(f).

Define Q3 by the Cartan identity:

ι(y)Q3(x) = Q2(x)ι(y)− ι(Q1(x)y). (10.2)

We first calculate

ι(z)Q3(x)Q3(y)

= Q2(x)ι(z)Q3(y)− ι(Q1(x)z)Q3(y)

= Q2(x)Q2(y)ι(z)−Q2(x)ι(Q1(y)z)

−Q2(y)ι(Q1(x)z) + ι(Q1(y)Q1(x)z).

By interchanging x with y

ι(z)(Q3(x)Q3(y)−Q3(y)Q3(x))

= (Q2(x)Q2(y)−Q2(y)Q2(x))ι(z)

+ ι((Q1(y)Q1(x)−Q1(x)Q1(y))z)

= Q2(P (x)y)ι(z)− ι(Q1(P (x)y)z)

= ι(z)Q3(P (x)y).

Since Ker(ι(z)) = 0, i.e., if h ∈ H maps all elements in z ∈ F to zero then h = 0, it
follows that

Q3(P (x)y) = Q3(x)Q3(y)−Q3(y)Q3(x).
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Corollary 10.3. Suppose

G = Hom(V n, F ), H = Hom(V n+1, F ).

If F and G are U-modules then so is H.

Proof. The proof is similar to the proof of Lemma 10.2, except that

ι : V → Hom(H, G)

is defined by

ι(v0)h(v1, . . . , vn) = h(v0, v1, . . . , vn).

Q2 is now a representation of U on Hom(V n, F ) and the existence of a representation
Q3 of U on Hom(V n+1, F ) is proven.

It is surprising that in the corollary we do not need to assume any structure on V .
Often there is a structure on V . In our application V is a Leibniz subalgebra of U .
In this way we get a representation of U on V for free, as well as representations of
V on F and on G.

Remark 10.4. A more general construction can be made. Call F a (U&V )-module
if it is a U-module and a V -module and there exist linear mappings

P : U → End(V ), Q : U → End(F ), R : V → End(F )

such that

R(P (x)y) = Q(x)R(y)−R(y)Q(x).

The word U-module can be replaced by (U&V )-module in both Lemma 10.2 and
Corollary 10.3.

Since Ω0 and h are g-modules, by Proposition 10.2 the space Ω1 = Hom(h, Ω0)
is a g-module. The Lie derivative of ω1 ∈ Ω1 in the direction of v ∈ g is

(L1(v)ω1)(w) = L0(v)ω1(w)− ω1(L1(v)w).

Since both Ω1 and h are g-modules by Proposition 10.2 the spaces

Hom(Ω1, h) Hom(h, Ω1), Hom(h, h), Hom(Ω1, Ω1)

are also g-modules. With Corollary 10.3 we can recursively construct the represen-
tations

Ln : g → End(Ωn).
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10.2.1 Cosymmetries

Definition 10.5. A cosymmetry is an element ω1 ∈ Ω1 that is in the kernel of
L(Dt).

Notation 10.6. We write H̄ for the N-dimensional A-module with basis

du1, du2, . . . , duN .

And we define a product between ω =
∑N

i=1 ωidui ∈ H̄ and V =
∑N

i=1 Vi∂ui ∈ H as
follows:

ω · V =
N∑

i=1

ωiVi ∈ A,

which resembles the inner product on AN .

We have applications in mind where Ω1 can be identified with H̄, the dual to H.
We write ω1 for the element in Ω1 that is identified with the covector ω ∈ H̄.

Notation 10.7. The pairing between ω1 ∈ Ω1 and δ(V ) ∈ h is

ω1(δ(V )) =

∫
ω · V ∈ Ω0.

Proposition 10.8. The pairing is nondegenerate, i.e., ω1 = 0 implies ω = 0.

Proof. We prove that ∫
ω · V = 0

for all V ∈ H implies ω = 0. Suppose that the i-th component of ω contains
the highest order derivative uα

n. Take for V the i-th basis vector. We have that∫
ω · ∂ui = 0 implies that ωi ∈ Im(Dx). This means that ω depends linearly on uα

n.
With V the i-th unit vector multiplied with uα

n, we get
∫

ω · uα
n∂ui = 0. But we have

ω · uα
n∂ui 6∈ Im(Dx).

This contradiction shows that ω does not depend on uβ or its derivatives. Neither
can ω depend on x, t nor can it be constant. Therefore ω = 0.

We like to write the Lie derivative in terms of Fréchet derivatives. The Fréchet
derivative Df [V ] of f ∈ A in the direction of V ∈ H was defined in Definition 2.7.
It satisfies the Leibniz rule, which is easily shown by

Dfg[V ] = δ(V )(fg) = δ(V )(f)g + fδ(V )(g) = Df [V ]g + fDg[V ].

Both the Fréchet derivatives of ω ∈ H̄ and W ∈ H are defined in terms of their
components. We have Dω ∈ Hom(H, H̄), DW ∈ End(H) and

Dω·W [V ] = Dω[V ] ·W + ω ·DW [V ].
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Definition 10.9. The operator P ? ∈ End(Ω1) is the conjugate operator to P ∈
End(h) if

P ?(ω1)(v) = ω1(P (v)),

for all ω1 ∈ Ω1 and v ∈ h in the domain of P . The operator P † ∈ Hom(h, Ω1) is the
adjoint operator to P ∈ Hom(h, Ω1) if

P †(v)(w) = P (w)(v)

for all v, w ∈ h.

Proposition 10.10. The Lie derivative of ω1 ∈ Ω1 in the direction of Dt is written
in terms of the Fréchet derivative as follows

L(Dt)ω = ∂tω + Dω[K] + D?
K [ω].

Proof. With ω(V ) = ω1(δ(V )) and equations (2.8), (2.9) it follows that for ω ∈ H̄
and any V ∈ H

(L(Dt)ω)(V )

= L(Dt)ω(V )− ω(L(Dt)V )

=

∫
(∂t(ω · V ) + D(ω·V )[K]− ω · (∂tV + DV [K]−DK [V ]))

=

∫
(∂tω + Dω[K] + D?

K [ω]) · V .

By the nondegeneracy of the pairing, the formula is obtained.

Example 10.11 (KDV). The first three cosymmetries of the KDV equation are

1, u, 2u2 + u2.

We show that they are in the kernel of L(Dt). The conjugate of the Fréchet derivative
of K = u3 + uu1 is

D?
K = −(D2

x + u)Dx.

Therefore

L(Dt)1 = D1[K] + D?
K [1]

= 0.

L(Dt)u = Du[K] + D?
K [u]

= K −K

= 0.

L(Dt)(2u2 + u2) = D2u2+u2 [K] + D?
K [2u2 + u2]

= 2(D2
x + u)Dx(u2 +

1

2
u2)− (D2

x + u)Dx(2u2 + u2)

= 0.
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10.3. Invariant operators

If ω1 ∈ Ω1 is homogeneous, the product ω · v ∈ A should be homogeneous for all
homogeneous v ∈ H. This means that the components of ω should satisfy

L(σ)(ωβ) = (λ− λ(uβ))ωβ

for ω1 to be homogeneous with weight λ.

Example 10.12 (KDV). Let λ(x) = −1 and λ(u) = 2. The element 2u2+u2 ∈ A is
homogeneous with weight 4. Therefore the cosymmetry it represents is homogeneous
with weight 6.

10.3 Invariant operators

Definition 10.13. A recursion operator maps symmetries to symmetries and a
conjugate recursion operator maps cosymmetries to cosymmetries.

Proposition 10.14. An element R ∈ End(h) that is in the kernel of L(Dt) is a
recursion operator. An element T ∈ End(Ω1) that is in the kernel of L(Dt) is a
conjugate recursion operator.

Proof. This follows from the Cartan identity. Let v be a symmetry and ω a cosym-
metry. We have

L(Dt)R(v) = (L(Dt)R)v −R(L(Dt)v) = 0,

L(Dt)T(ω) = (L(Dt)T)ω − T(L(Dt)ω) = 0.

Proposition 10.15. Let H ∈ Hom(Ω1, h) and J ∈ Hom(h, Ω1) be in the kernel of
L(Dt). Then H(ω) is a symmetry of ut = K if ω ∈ Ω1 is a cosymmetry. Also J(v)
is a cosymmetry if v ∈ h is a symmetry.

Proof. This follows from the Cartan identity (10.2). We have

L(Dt)H(ω) = (L(Dt)H)ω − H(L(Dt)ω) = 0,

L(Dt)J(v) = (L(Dt)J)v − J(L(Dt)v) = 0.

Proposition 10.16. Let H ∈ Hom(Ω1, h) and J ∈ Hom(h, Ω1) be in the kernel of
L(Dt). Then R = HJ is a recursion operator and T = JH is a conjugate recursion
operator.

Proof. This follows from the Cartan identity (10.2) and Proposition 10.15. Let v be
a symmetry and ω a cosymmetry. Then we have

L(Dt)HJ(v) = (L(Dt)H)J(v)− HL(Dt)J(v) = 0,

L(Dt)JH(ω) = (L(Dt)J)H(ω)− JL(Dt)H(ω) = 0.
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Chapter 10. Complex of variational calculus

Since elements in h and Ω1 are both connected to elements in AN , the operators
we considered can be connected to an operator that can be written in the form:

P =
n∑

i=−∞
PiD

i
x,

where Pi are N ×N matrices with entries in A. This is done by using the commu-
tation relations

Dxf = fDx + Dx(f),

D−1
x f = fD−1

x −D−1
x Dx(f)D−1

x .

Furthermore we assume that Pn is an invertible matrix. Under this condition one
can prove that the operator P is invertible if it is nonzero, cf. [Olv93a, Theorem
5.38]. Such operators are nondegenerate, i.e., P (V ) = 0 for all V implies that P = 0.
Therefore we can write the Lie derivatives in terms of Fréchet derivatives.

Definition 10.17. The Fréchet derivative of P in the direction of V is

DP [V ] =
n∑

i=−∞
DPi

[V ]Di
x,

where (DPi
[V ])αβ = DP αβ

i
[V ].

Again we have the Leibniz rule:

DPW [V ] = DP [V ]W + PDW [V ].

Proposition 10.18. The Lie derivatives of H ∈ Hom(Ω1, h) and J ∈ Hom(h, Ω1)
in the direction of Dt are written in terms of the Fréchet derivative as follows

L(Dt)H = ∂tH + DH[K]−DKH− HD?
K ,

L(Dt)J = ∂tJ + DJ[K] + D?
KJ + JDK .

Proof.

(L(Dt)H)(ω)

= LKH(ω)− H(LKω)

= ∂tH(ω) + DH(ω)[K]−DK [H(ω)]− H(∂tω + Dω[K] + D?
K [ω])

= (∂tH + DH[K]−DKH− HD?
K)(ω),

(L(Dt)J)(V )

= LKJ(V )− J(LKV )

= ∂tJ(V ) + DJ(V )[K] + D?
K [J(V )]− J(∂tV + DV [K]−DK [V ])

= (∂tJ + DJ[K] + D?
KJ + JDK)(V ).
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10.3. Invariant operators

Example 10.19 (KDV). Dx ∈ Hom(Ω1, h) is an invariant of the KDV equation.

L(Dt)Dx = DDx [K]−DKDx −DxD
?
K

= 0− (D3
x + Dxu) ◦Dx −Dx ◦ (−D3

x − uDx)

= 0.

Applying the operator Dx to the cosymmetries gives

Dx(1) = 0,

Dx(u) = u1,

Dx(u2 +
1

2
u2) = u3 + uu1.

which are indeed symmetries of the equation. The KDV equation admits another
invariant operator in Hom(Ω1, h),

H = D3
x +

2

3
uDx +

1

3
u1.

We calculate

L(Dt)(H) = DH[K]−DKH− HD?
K

=
2

3
(u3 + uu1)Dx +

1

3
Dx(u3 + uu1)

−(D3
x + Dxu) ◦ (D3

x +
2

3
uDx +

1

3
u1)

+(D3
x +

2

3
Dxu− 1

3
u1) ◦ (D3

x + uDx)

=
2

3
u3Dx +

1

3
Dx(u3) +

1

3
D3

xuDx

−1

3
D3

xu1 − 1

3
DxuD3

x −
1

3
u1D

3
x

=
1

3
(2u3Dx + u4 + u3Dx + 3u2D

2
x + 3u1D

3
x + uD4

x

−u4 − 3u3Dx − 3u2D
2
x − u1D

3
x − u1D

3
x − uD4

x − u1D
3
x)

= 0.

Applying the operator Dx to the cosymmetries gives

H(1) =
1

3
u1

H(u) = u3 + uu1,

H(u2 +
1

2
u2) = u5 +

5

3
uu3 +

10

3
u1u2 +

5

6
u2u1,

which are indeed symmetries of the equation.
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Chapter 10. Complex of variational calculus

We can invert the first operator, Dx, and obtain a new invariant

J = D−1
x ∈ Hom(h, Ω1)

of the KDV equation. We have

L(Dt)D
−1
x = DD−1

x
[K] + DKD−1

x + D−1
x D?

K

= 0 + (D3
x + Dxu) ◦D−1

x + D−1
x ◦ (−D3

x − uDx)

= 0.

By Proposition 10.16 we have

D2
x +

2

3
u +

1

3
u1D

−1
x (10.3)

as an recursion operator of the KDV-equation ut = u3 + uu1.

Remark 10.20. With the expression D−1
x one has to be very careful. The rule

D−1
x Dx = 1 does not hold, i.e., D−1

x (Dx(f)) = 0 when f ∈ Ker(Dx), cf. [OSW02].

Proposition 10.21. The Lie derivatives of R ∈ Hom(h, h) and T ∈ Hom(Ω1, Ω1)
in the direction of Dt are written in terms of the Fréchet derivative as:

L(Dt)R = ∂tR + DR[K]−DKR + RDK ,

L(Dt)T = ∂tT + DT[K] + D?
KT− TD?

K .

Proof.

(LKR)(V )

= LKR(V )−R(LKV )

= ∂tR(V ) + DR(V )[K]−DK [R(V )]−R(∂tV + DV [K]−DK [V ])

= (∂tR + DR[K]−DKR + RDK)(V ),

(LKT)(ω)

= LKT(ω)− T(LKω)

= ∂tT(ω) + DT(ω)[K] + D?
K [T(ω)]− T(∂tω + Dω[K] + D?

K [ω])

= (∂tT + DT[K] + D?
KT− TD?

K)(ω).

The Leibniz rule, or chain rule, implies that the components should satisfy

σ(Hαβ) = (λ + λ(uα) + λ(uβ))Hαβ,

σ(Jαβ) = (λ− λ(uα)− λ(uβ))Jαβ,

σ(Rαβ) = (λ + λ(uα)− λ(uβ))Rαβ,

σ(Tαβ) = (λ− λ(uα) + λ(uβ))Tαβ,

to make H ∈ Hom(Ω1, h), J ∈ Hom(h, Ω1), R ∈ End(h) and T ∈ End(Ω1) homoge-
neous of weight λ.
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10.4. The coboundary operator

10.4 The coboundary operator

Definition 10.22. The coboundary operator dn : Ωn → Ωn+1 is defined recur-
sively by d−1 = 0 and

ι(v)dn = Ln(v)− dn−1ι(v), v ∈ h.

Proposition 10.23. dn is a g-module map.

Proof. Suppose that Ln(v)dn−1 = dn−1Ln−1(v). Then we have

ι(w)Ln+1(v)dn = Ln(v)ι(w)dn − ι(L(v)w)dn

= Ln(v)(Ln(w)− dn−1ι(w))− Ln(L(v)w) + dn−1ι(L(v)w)

= Ln(w)Ln(v)− (Ln(v)dn−1 − dn−1Ln−1(v))ι(w)− dn−1ιn(w)Ln(v)

= ι(w)dnLn(v).

The case n = 0 follows from d−1 = 0. By induction the diagram (10.1) commutes.

Proposition 10.24. The coboundary operator satisfies dndn−1 = 0.

Proof. Assume it holds for n− 1. Then, using the previous proposition,

ιn+2(x)dn+1dn = Ln+1(x)dn − dnιn+1(x)dn

= dnLn(x)− dn(Ln(x)− dn−1ιn(x))

= dndn−1ιn(x).

The case n = 0 follows from d−1 = 0. By induction the statement is proven.

Due to dndn−1 = 0, cohomology can be defined as usual:

Definition 10.25. The space of closed n-forms is Ker(dn) and the space of exact
n-forms is Im(dn−1). The n-th cohomology module is Ker(dn)/Im(dn−1).

10.5 The Euler operator

Abstract. We define the Euler operator and show that it equals d0.

Definition 10.26. The Euler operator E ∈ Hom(A,H) is defined by

E(ρ) =
N∑

β=1

Eβ(ρ), Eβ =
∞∑

k=1

(−Dx)
k∂uβ

k
.

Using partial integration we obtain

d0ρ(V ) =

∫ n∑

β=1

∞∑

k=1

Dk
x(V

β)∂uβ
k
ρ =

N∑

β=1

∫
(
∞∑

k=1

(−Dx)
k∂uβ

k
ρ)V β.

By the nondegeneracy of the pairing we obtain the identification d0ρ = E(ρ) ∈ H̄.
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Chapter 10. Complex of variational calculus

Example 10.27 (KDV). We apply the Euler operator to the first three densities of
example 2.25. We have

E(u) = 1,

E(u2/2) = u,

E(1
6
u3 − 1

2
u2

1) = u2 +
1

2
u2.

Observe that the resulting expressions are the cosymmetries of Example 10.11.

10.6 Symplectic forms

Definition 10.28. An element ω2 ∈ Ω2 such that d2ω2 = 0 is a symplectic form
if it is nondegenerate. If

ω2(v, w) = J(v)w

then J ∈ Hom(h, Ω1) is a symplectic operator. In the other direction, if

ι(v)ω2 = ω1 ∈ Ω1

we write v = H(ω1) where H ∈ Hom(Ω1, h) is a cosymplectic operator.

Proposition 10.29. For any ω1 ∈ Ω1, d1ω1 = 0 is equivalent to Dω1 = D†
ω1

.

Proof. We have

d1ω1(v, w) = L1(v)ω1(w)− d0ω1(v)w

= L0(v)ω1(w)− ω1(L1(v)w)− L0(w)ω1(v)

=

∫
Dω·w[v]−Dω·v[w]− ω · (Dw[v]−Dv[w])

=

∫
Dω[v] · w −Dω[w] · v

=

∫
(Dω −D†

ω)[v] · w.

The result follows from the nondegeneracy of the pairing.

The following question arises: if Dω − D†
ω = 0, can we find ω0 ∈ Ω0 such that

d0ω0 = ω1? The answer depends on the choice of the ring. It is yes when A consists
of polynomials, due to the vanishing of the first cohomology space. More details
and the procedure of finding the solution is described in [Dor93, page 62-73]. The
element ω0 is called the density of ω1. Since d0 is a g-module map ω0 is conserved
if ω1 is a cosymmetry.

On the other hand, suppose that J = Dω − D†
ω is nondegenerate. Then J is

a symplectic operator. If in this case ω1 is a cosymmetry, J : Hom(h, Ω1) is an
invariant of the equation, i.e., it maps symmetries to cosymmetries.

141



10.6. Symplectic forms

Example 10.30. Consider the evolution equation

{
ut = −u2 + v2

vt = v2
.

It has symmetries

S0 =

[
2u
v

]
, S1 =

[
u1

v1

]
,

S2 =

[ −u2 + v2

v2

]
, S3 =

[
3v1v − 2u3

v3

]
.

It has cosymmetries

C0 = [v,−2u] , C1 = [v1,−u1] ,

C2 = [v2, u2 − v2] , C3 = [v3,−3v1v + 2u3] .

The conserved densities from C1, C2 are

B1 = 1
2
v1u− 1

2
u1v, B2 =

1

2
v2u +

1

2
vu2 − 1

3
v3.

The symplectic operators from C0, C3 are

J0 = 3

[
0 1
−1 0

]
, J3 = 3

[
0 D3

x

D3
x −v1 − 2vDx

]
.

They satisfy the relation J3 = T3J0 where

T3 =

[
D3

x 0
−v1 − 2vDx −D3

x

]

is a conjugate recursion operator. Its conjugate

R3 =

[ −D3
x v1 + 2vDx

0 D3
x

]

maps symmetries to symmetries.
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Appendix A

Homogeneity

We will show that the problem of finding homogeneous equations with homogeneous
invariants is part of the problem of finding nonhomogeneous equations with nonho-
mogeneous invariants. Also, we show it suffices to find all homogeneous invariants
of a homogeneous equation.

However, homogeneity need not be imposed from the start; much of the analysis
can be done without! In the classification of B-equations, cf. Chapter 6, and the
determination of the spectrum of eigenvalues, cf. Chapter 7, homogeneity was not
imposed at all. One may want to work with homogeneous equations when writing
down candidate equations possessing candidate symmetries, cf. Chapter 5.

Lemma A.1. Suppose that v ∈ g and q in some g-module are homogeneous. Then

λ(L(v)q) = λ(v) + λ(q).

Proof. This is just a reformulation of Lemma 2.31.

Lemma A.2. Let p, q be elements in some g-module of which p is homogeneous.
Suppose that, if q is homogeneous, λ(q) 6= λ(p). Then, if p + q = 0 then p = 0.

Proof. Suppose that p 6= 0. We have p + q = 0 if q = −p. But then

λ(q) = λ(−p) = λ(p)

which contradicts our assumption. Hence p = 0.

In the considerations we assume that we can (formally) expand the right hand
side of our equation.
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? Suppose that the nonhomogeneous equation ut = K has a nonhomogeneous
time-independent invariant Q, i.e., we have L(K)Q = 0. For any choice of
λ(t), λ(x), λ(u) we can write

K = K1 + K2 + · · · ,

Q = Q1 + Q2 + · · · ,

where λ(Ki) < λ(Kj) and λ(Qi) < λ(Qj) if i < j. The equation L(K)Q = 0
can be written as

L(K1)Q1 + R = 0.

By Lemma A.1 we have

λ(L(K1)Q1) = λ(K1) + λ(Q1) and λ(R) 6= λ(K1) + λ(Q1).

Therefore by Lemma A.2 the homogeneous equation ut = K1 has an invariant
Q1. Different choices of λ(t), λ(x), λ(u) may lead to different homogeneous
equations that have invariants.

? A similar statement can be made for polynomial equations with time de-
pendent invariants. Suppose that the nonhomogeneous polynomial equation
ut = K has a time dependent nonhomogeneous invariant Q. For any choice of
λ(x), λ(u), we can write

K = K1 + K2 + · · ·+ Kn,

where all terms of K with the same weight aiλ(t)+ bi are terms of (Ki). Since
K is polynomial all the ai are positive and the equations λ(∂t) = λ(K i) can
be solved for λ(t). We choose λ(t) to be the minimum of the set

{− bi

ai + 1
, 0 < i ≤ n}.

Then, K is written as
K = K1 + K2 + · · · ,

where λ(K1) = λ(∂t) and λ(Ki) < λ(Kj) for all i < j. We write

Q = Q1 + Q2 + · · · ,

with λ(Qi) < λ(Qj) for all i < j. The equation L(K)Q = 0 can be written as

L(∂t + K1)Q1 + R = 0.

By Lemma A.1 and our choice of λ(t) we have

λ(L(∂t + K1)Q1) = λ(K1) + λ(Q1) and λ(R) 6= λ(K1) + λ(Q1).

Therefore by Lemma A.2 the homogeneous equation ut = K1 has an invari-
ant Q1. Different choices of λ(x), λ(u) may lead to different homogeneous
equations that have invariants.
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Appendix A. Homogeneity

? Suppose that a homogeneous equation ut = K has a nonhomogeneous invariant
Q. Then, for a particular choice of λ(t), λ(x), λ(u) such that the equation is
homogeneous with weight w, we write Q as a sum of homogeneous terms

Q1 + Q2 + · · · ,

where λ(Qi) 6= λ(Qj) if i 6= j. For i = 1, 2, . . ., the equation L(K)Q = 0 can
be written as

L(K)Qi + R = 0.

By Lemma A.1 we have

λ(L(K)Qi) = w + λ(Qi)

and
λ(R) 6= w + λ(Qi).

By repeated application of Lemma A.2, the equation ut = K has homogeneous
invariants Qi, i = 1, 2, . . .. Therefore, it suffices to determine all homogeneous
invariants of a homogeneous equation.
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Appendix B

An implicit function theorem

We define the concept of filtered algebra. This provides a more general setting than
the setting of graded algebra. Also the implicit function theorem of Sanders and
Wang is more easily proven. The theorem was formulated and proven in [SW98],
where it was used in the classification of scalar equations, cf. Chapter 5.

Definition B.1. Modules U and V are filtered modules and P : U → End(V ) is
a filtered action if

U = U (0) ⊃ U (1) ⊃ · · · ,

∞⋂
i=0

U (i) = 0,

V = V (0) ⊃ V (1) ⊃ · · · ,

∞⋂
i=0

V (i) = 0.

and P (U (i))V (j) ⊂ V (i+j).

From a graded module Ū we make a filtered module U by

U (i) =
∞∑
j≥i

Ū (j).

Now finding a solution to P (v)q = 0 consists of solving the set of equations

P (v)q ∈ U j for j = 1, 2, . . .

Under certain conditions all these equations are satisfied provided the first few are.
In the setting of filtered modules v is nonlinear injective if P (v)q ∈ V (i+1)

implies q ∈ V (i+1) for all q ∈ V (i), i > 0.
Let W be a filtered (U&V )-module and P be a filtered action of U on V and

on W . Then v is relatively l-prime with respect to w if P (w)q ∈ Im(P (v)) mod W (i+1)

implies q ∈ Im(P (v)) mod W (i+1) for all q ∈ W (i), i ≥ l.
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Theorem B.2 (Sanders, Wang). Let W be a filtered (U&V )-module and P be a
filtered action of U on V and on W . Suppose that v ∈ U, w ∈ V and q ∈ W such
that

? P (v)w = 0,

? P (v) is nonlinear injective,

? v is relatively l-prime with respect to w,

? P (v)q ∈ W (l),

? P (w)q ∈ W (1).

Then there exists a unique q̃ ∈ W (l) such that q̂ = q + q̃ is an invariant of both v
and w, i.e.

? P (v)q̂ = 0,

? P (w)q̂ = 0.

Proof. We know P (v)P (w)q ≡ P (w)P (v)q mod W (l). Since P (w)q ∈ W (1) we can
use the nonlinear injectiveness of v to conclude that P (w)q ∈ W (l). By induction
we show that there exists a q̂ such that P (v)q̂ ∈ W (p) and P (w)q̂ ∈ W (p) for all
p ≥ l. Suppose P (v)q ∈ W (p) and P (w)q ∈ W (p) hold for some p ≥ l. The case
p = l follows from the first argument. We have

P (v)P (w)q = P (w)P (v)q

and, in particular,
P (w)P (v)q ∈ Im(P (v)) mod W (p+1).

By relative l-primeness of v with respect to w,

P (v)q ∈ Im(P (v)) mod W (p+1).

Therefore, we can uniquely define q̃ ∈ W (p) by

P (v)q̃ = −P (v)q

such that q̂ = q + q̃ satisfies
P (v)q̂ ∈ W (p+1)

and, by taking l = p + 1 in the first argument,

P (w)q̂ ∈ W (p+1).

This implies that q can always be extended such that all homogeneous parts of P (v)q̂
and P (w)q̂ vanish. Uniqueness follows from ∩∞i=0W

(i) = 0.
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Appendix C

Resultants

When using the symbolic method to study generalised symmetries, the problem of
determining common divisors of two polynomials quickly arise. Such problems can
be solved by computing resultants, a useful algebraic tool.

This section contains material from [GCL92], proofs and algorithms can be found
there. Let R be a unique factorisation domain and let A(x), B(x) ∈ R[x] be nonzero
polynomials with

A(x) =
m∑

i=0

aix
i and B(x) =

n∑
i=0

bix
i.

Definition C.1. The Sylvester matrix of A and B is the m×n by m×n matrix



am am−1 . . . a1 a0

am am−1 . . . a1 a0

. . . . . . . . . . . .
am . . . . . . a1

bn bn−1 . . . b1 b0

bn bn−1 . . . b1 b0

. . . . . . . . . . . .
bn . . . . . . b1




,

where the upper part of the matrix consists of n rows of coefficients of A(x), the
lower part consists of m rows of coefficients of B(x). The entries not shown are
zero.

Definition C.2. The resultant of A(x) and B(x) (written resx(A,B)) is the de-
terminant of the Sylvester matrix of A,B. We also define resx(0, B) = 0 and
resx(a, b) = 1 for nonzero a, b ∈ R.

Sylvester’s criterion states that two polynomials, A(x) and B(x), have a non-
trivial common factor if and only if resx(A,B) = 0.
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The coefficient domain can be another polynomial domain. This makes it possible
to use resultants for nonlinear elimination and solve systems of algebraic equations.

Theorem C.3 (Fundamental theorem of resultants). Let F be an algebraically
closed field, and let

f =
m∑

i=0

ai(x2, . . . , xr)x
i
1 and g =

n∑
i=0

bi(x2, . . . , xr)x
i
1

be elements of F [x1, . . . , xr] of positive degrees in x1. Then if (α1, . . . , αr) is a
common zero of f and g, their resultant with respect to x1 satisfies

resx1(f, g)(α2, . . . , αr) = 0.

Conversely, if the above resultant vanishes at (α2, . . . , αr), then at least one of the
following holds:

1. am(α2, . . . , αr) = · · · = a0(α2, . . . , αr) = 0,

2. bn(α2, . . . , αr) = · · · = b0(α2, . . . , αr) = 0,

3. am(α2, . . . , αr) = bn(α2, . . . , αr) = 0,

4. α1 ∈ F exists such that (α1, . . . , αr) is a common zero of f and g.
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Appendix D

Corollaries of the Lech-Mahler
theorem

The following theorem is formulated and proven in [Lec53]. The Lech–Mahler
theorem was firstly used in connection with symmetries of evolution equations in
[BSW98], where also corollary D.4 was proven.

Theorem D.1 (Lech-Mahler). Let a1, a2, . . . , an, A1, A2, . . . , An be nonzero complex
numbers. Suppose that none of the ratios Ai/Aj with i 6= j is a root of unity. Then
the equation

a1A
k
1 + a2A

k
2 + . . . + anAk

n = 0

in the unknown integer k has finitely many solutions.

Corollary D.2. Let a, b, c, A,B, C be nonzero complex numbers. Suppose that the
equation

aAk + bBk + cCk = 0

has infinitely many integers k as solution. Then the ratios A/B,A/C, B/C are roots
of unity.

Proof. According to Theorem D.1, at least one of the ratios A/B, A/C, B/C must
be a root of unity. Without loss of generality we can assume A/B is a root of unity.

? Suppose A/B is an nth root of unity. Then, if we replace k by i + kn for
i = 0, 1, 2, . . . , n− 1 our problem falls into a finite number of problems of the
form

(aAi + bBi)(An)k + cCi(Cn)k.

At least one of them has infinitely many solutions. Hence, according to The-
orem D.1, A/C is a root of unity. Together with A/B being a root of unity
this implies that B/C is a root of unity.
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Interchanging A,B,C in all possible ways proves the statement.

Corollary D.3. Let a, b, c, d, A, B, C, D be nonzero complex numbers. Suppose that
the equation

aAk + bBk + cCk + dDk = 0

has infinitely many integers k as solution. Then at least one of the pairs A/B, C/D
or A/C, B/D or A/D,B/C consists of roots of unity.

Proof. According to Theorem D.1 at least one of the ratios A/B,A/C, A/D,B/C,
B/D, C/D must be a root of unity. Without loss of generality we can assume A/B
is a root of unity.

? Suppose A/B is an nth root of unity. Then, if we replace k by i + kn for
i = 0, 1, 2, . . . , n− 1 our problem falls into a finite number of problems of the
form

(aAi + bBi)(An)k + cCi(Cn)k + dDi(Dn)k.

At least one of them has infinitely many solutions. If aAi + bBi = 0 the ratio
C/D must be a root of unity. In case aAi + bBi 6= 0 by Corollary D.2 the
ratios A/C, A/D, C/D are roots of unity. Hence, if A/B is a root of unity at
least C/D is a root of unity.

Interchanging A,B,C,D in all possible ways proves the statement.

Corollary D.4. Let a, b, c, d, A, B, C, D be nonzero complex numbers. Suppose that
aAk + bBk 6= 0 for all k and that the equation

aAk + bBk + cCk + dDk = 0

has infinitely many integers k as solution. Then at least one of the pairs A/C,B/D
or A/D, B/C consists of roots of unity.

Proof. According to Theorem D.1 at least one of the ratios A/B,A/C, A/D,B/C,
B/D, C/D must be a root of unity. Without loss of generality we can assume A/B
is a root of unity or A/C is a root of unity.

? Suppose A/B is an nth root of unity. Then, if we replace k by i + kn for
i = 0, 1, 2, . . . , n− 1 our problem falls into a finite number of problems of the
form

(aAi + bBi)(An)k + cCi(Cn)k + dDi(Dn)k = 0.

At least one of them has infinitely many solutions. Since we have aAi+bBi 6= 0
by Corollary D.2 the ratios A/C,A/D, C/D are roots of unity. Therefore at
least A/C or A/D is a root of unity.

? Suppose A/C is an nth root of unity. Then, if we replace k by i + kn for
i = 0, 1, 2, . . . , n− 1 our problem falls into a finite number of problems of the
form

(aAi + cCi)(An)k + bBi(Bn)k + dDi(Dn)k = 0.
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Appendix D. Corollaries of the Lech-Mahler theorem

At least one of them has infinitely many solutions. If aAi + cCi = 0 the ratio
B/D must be a root of unity. In case aAi + cCi 6= 0 by Corollary D.2 the
ratios A/B,A/D,B/D are roots of unity. Hence, if A/C is a root of unity at
least B/D is a root of unity.

Interchanging A,B,C,D in all possible ways proves the statement.

Corollary D.5. Let a, b, c, d, e, A,B,C,D,E be nonzero complex numbers. Suppose
that the equation

aAk + bBk + cCk + dDk + eEk = 0

has infinitely many integers k as solution. Then three of the numbers A,B, C,D, E
have a root of unity as a ratio and the same is true for the other two.

Proof. According to Theorem D.1 at least one of the ratios A/B,A/C,A/D,A/E,
B/C,B/D, B/E,C/D, C/E, D/E must be a root of unity. Without loss of gener-
ality we can assume that A/B is a root of unity.

? Suppose A/B is an n-th root of unity. Then, if we replace k by i + kn for
i = 0, 1, 2, . . . , n− 1 our problem falls into a finite number of problems of the
form

(aAi + bBi)(An)k + cCi(Cn)k + dDi(Dn)k + eEi(En)k = 0.

At least one of them has infinitely many solutions. Suppose that this is the
i-th equation. Then aAi+bBi = 0 or aAi+bBi 6= 0. When aAi+bBi = 0 then,
by Corollary D.2, C/D, C/E, D/E are roots of unity. When aAi + bBi 6= 0
then, by Corollary D.3, at least one of the pairs A/C,D/E or A/D,C/E or
A/E, C/D consists of roots of unity. Together with A/B being a root of unity
this implies that one of the quadruples

A/B, A/C, B/C,D/E A/B,C/D, C/E, D/E
A/B, A/D,B/D, C/E A/B, A/E,B/E, C/D

consists of roots of unity.

By interchanging A,B,C,D,E in all possible ways we get that one of the quadruples

A/B, A/C, B/C, D/E A/B, A/D, B/D, C/E
A/B, A/E, B/E, C/D A/B,C/D, C/E, D/E
A/C,A/D,B/E, C/D A/C,A/E,B/D, C/E
A/C,B/D, B/E, D/E A/D, A/E, B/C, D/E
A/D, B/C, B/E,C/E A/E, B/C,B/D, C/D

consists of roots of unity. We see that three of the numbers A,B, C, D, E have a
root of unity as a ratio and the same is true for the other two.
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Appendix E

Diophantine equations

The material presented here is adapted from work done by F. Beukers.

Theorem E.1 (Beukers). Let µ, ν be roots of unity. Suppose that µ, ν 6= ±1,
µn, νn 6= 1 and µ 6= ν, ν−1. Then the Diophantine equation

(
1− µ

1− ν

)n

=
1− µn

1− νn
(E.1)

in the unknown positive integer n has no solution unless n = 1.

Proof. The case n = 2 is excluded with the following argument. Suppose
(

1− µ

1− ν

)2

=
1− µ2

1− ν2
.

Then
1− µ

1− ν
=

1 + µ

1 + ν
.

Hence
1 + ν − µ− µν = 1− ν + µ− µν.

So, µ = ν, a contradiction.
When n > 2 we use Lemma E.2. Choose m, a, b positive integers such that

µ = ζa
m, ν = ζb

m,

where ζm = e2πi/m and gcd(a, b, m) = 1. We distinguish two cases.

? gcd(a, m) = 1 or gcd(b,m) = 1. Suppose the first case happens. Let a∗ be the
inverse of a modulo m. Then we see that

ν = µa∗b.

We apply Lemma E.2 with l ≡ a∗b (mod m) and conclude that l = ±1. In
other words, a ≡ ±b (mod m) and we see that µ = ν or µ = ν−1.
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? gcd(a, m) > 1 and gcd(b,m) > 1. In this case the idea is to choose an integer
l with gcd(l,m) = 1 such that

ν l = ν, µl 6= 1, µ, µ−1.

Now replace µ, ν in the original equation by µl, ν l = ν. Divide the newly
obtained equation by the old one and we obtain an equation of the form (E.2).
Now apply Lemma E.2 to conclude that µl = 1, µ or µ−1. Thus we get a
contradiction, i.e., the original equation has no solution once we have found a
suitable l.

Now let us choose l. Since gcd(a, b, m) = 1, we can assume that not both
gcd(a, m) and gcd(b, m) are even. Hence there is an odd prime p which divides
one of them, say gcd(b,m). Because p is odd we can choose an integer

l = 1 +
km

p
,

with k = ±2 and gcd(l,m) = 1. Clearly we have ν l = ν. Moreover,

µl = ζa+akm/p
m = µζakm/p

m = µe±4πia/p.

Since a is not divisible by p we see that µl/µ is a nontrivial p-th root of unity.
Therefore µl 6= µ. Suppose that µl = µ−1. This implies that

µe±4πia/p = µ−1,

i.e., µ is a p-th root of unity. So if µ is not a p-th root of unity, l is found.

Now assume that µ is a p-th root of unity. So p divides m exactly once.
Suppose that ν is an N -th root of unity. Since p divides b we get that N is
not divisible by p. In particular, gcd(p, N) = 1. Suppose that p > 3. Then we
choose, using the Chinese remainder theorem, the number l such that

l ≡ 1 mod N, l ≡ 2 mod p.

Note that ν l = l and µl = µ2 which is different from µ, µ−1 since p > 3. We
are left with the case p = 3. Now suppose that N 6= 3, 4, 6. Then there is an
integer c, relatively prime with N such that c 6≡ ±1 mod N . Choose l such
that l ≡ 1 mod 3 and l ≡ c mod N . Then

µl = µ, νl = νc 6= ν, ν−1.

We apply our argument with ν and µ interchanged to conclude that we get
a contradiction once more. Since N = 3, 6 are not possible because 3 does
not divide N , we are left with the case p = 3, N = 4. Hence we can assume
that µ = ω, with ω a primitive 3-rd root of unity, and ν = i. Taking absolute
values squared on both sides of

(
1− ω

1− i

)n

=
1− ωn

1− in
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yields (
3

2

)n

=
3

2ε
,

where ε = 1 or 2 depending on whether n is odd or even. This is clearly
impossible when n > 1.

Lemma E.2 (Beukers). Let µ be a root of unity and l an integer. Suppose that
µ 6= ±1 and that for some n > 2 we have

(
1− µl

1− µ

)n

=
1− µln

1− µn
. (E.2)

Then µl is either 1, µ or µ−1.

Proof. Suppose that µ is a primitive m-th root of unity for some m ≥ 3. By
Galois theory equation (E.2) still holds if we replace µ by µh for any integer h with
gcd(h,m) = 1. So we can assume that

µ = e2πi/m.

We can also assume that
|l| ≤ m/2

by shifting l over multiples of m if necessary. For any x ∈ [−π, π] we have the
straightforward inequalities

2

π
|x| ≤ |1− eix| ≤ |x|.

From this it follows that
∣∣∣∣
1− µl

1− µ

∣∣∣∣ ≥
(2/π)(2π|l|/m)

2π/m
=

2|l|
π

.

On the other hand,
∣∣∣∣
1− µln

1− µn

∣∣∣∣ = |1 + µn + µ2n + · · ·+ µ(|l|−1)n| ≤ |l|.

Hence we find that (
2|l|
π

)n

≤ |l|.

From this it follows that
(2|l|/π)n−1 ≤ π/2.

Using n > 2 we get
|l| ≤ (π/2)1.5 < 2.

Hence |l| ≤ 1 and we have µl = 1, µ or µ−1, as asserted.
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Proposition E.3. Let µ be a root of unity. Suppose that µ 6= ±1. Then the
diophantine equation

(1− µ)n = 2n−1(1− µn)

in the unknown positive integer n has no solution unless n = 1.

Proof. Division by 1− µ gives

(1− µ)n−1 = 2n−1(1 + µ + · · ·µn−1).

Therefore

a =
1− µ

2
should be an algebraic integer, i.e., in Z[µ]. But this can not be true since the norm
of any algebraic integer is integer and the absolute value of the norm of a is smaller
than 1. This is seen as follows: the norm of a is the product of its conjugates. Each
conjugate has the form (1− µk)/2 and this has absolute value smaller than 1.

Theorem E.4 (Beukers). Let µ, ν be roots of unity. Suppose that

µ, ν 6= ±1, µn, νn 6= −1, µ 6= ν, ν−1, n > 1.

Then the Diophantine equation
(

1− µ

1− ν

)n

=
1± µn

1 + νn
(E.3)

in the unknown positive integer n has no solutions.

Proof. The proof is similar to the proof of Theorem E.1. The only differences are:

? The case n = 2 is excluded with the following argument. Suppose
(

1− µ

1− ν

)2

=
1 + µ2

1 + ν2
.

Then

(1− µ)2(1 + ν2)− (1− ν)2(1 + µ2) = 2(µ− ν)(µν − 1) = 0.

So, µ = ν or µ = 1/ν, a contradiction. Suppose
(

1− µ

1− ν

)2

=
1− µ2

1 + ν2
.

Then

(1− µ)2(1 + ν2)− (1− ν)2(1− µ2) = 2(µ− 1)(µ(ν2 − ν + 1)− ν) = 0

Since µ 6= 1 we have
µ = ν/(ν2 − ν + 1).

Substituting this into µµ̄ = 1 and using that ν̄ = 1/ν we obtain that ν2 = −1
or ν = 1, contradicting the assumptions.
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? In the case gcd(a,m) = 1 or gcd(b, m) = 1 we use Lemma E.5 instead of
Lemma E.2 to conclude that µl ∈ {µ, 1, µ−1}.

? The absolute value squared of (1 + ωn)/(1 + in) yields

1/4 when n ≡ 4, 8 mod 12,

1/2 when n ≡ 1, 5, 7, 11 mod 12,

1 when n ≡ 0 mod 12,

2 when n ≡ 3 mod 6.

The absolute value squared of (1− ωn)/(1 + in) yields

3/4 when n ≡ 4, 8 mod 12,

3/2 when n ≡ 1, 5, 7, 11 mod 12,

0 when n ≡ 0, 3, 9 mod 12.

Lemma E.5. Let µ 6= ±1 be a root of unity and l an integer. Suppose that for some
n ≥ 2 we have (

1− µl

1− µ

)n

=
1 + αµln

1 + µn
, α = ±1, µn 6= −1.

Then, if α = 1 we have µl = µ or µl = µ−1 and if α = −1 we have µl = 1.

Proof. Suppose that µ is a primitive m-th root of unity for some m ≥ 3. By Galois
theory (E) still holds if we replace µ by µh for any integer h with gcd(h,m) = 1. So
we can assume that

µ = e2πi/m.

We can also assume that

|l| ≤ m

2

by shifting l over multiples of m if necessary.
We have the estimate (

2|l|
π

)n

≤
∣∣∣∣
1− µl

1− µ

∣∣∣∣
n

.

On the other hand, we can give an upper bound for the n-th power of

∣∣∣∣
1− µl

1− µ

∣∣∣∣

by using the trivial bound ∣∣1± µln
∣∣ ≤ 2
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to obtain (
2|l|
π

)n

≤ 2

|1 + µn|
and hence ∣∣∣cos(π

n

m
)
∣∣∣ ≤

(
π

2|l|
)n

.

Then, using the estimate
| cos πx| ≥ |2x− k|,

where k is the nearest odd integer to 2x, and |l| ≥ 2 we get

∣∣∣∣
n

m
− k

2

∣∣∣∣ ≤
1

2

(π

4

)n

.

From these estimates it follows that n/m ≥ 0.19. Using this and the trivial lower
bound ∣∣∣∣

n

m
− k

2

∣∣∣∣ ≥
1

2m

we get
1

m
≤

(π

4

)0.19m

.

Hence m ≤ 100. But then,

1

100
≤ 1

m
≤

(
π

2|l|
)n

,

which in its turn implies that

(2|l|/π)n ≤ 100.

So we are left with a finite number of triples l,m, n. A small computer search yields
no solutions with

α = ±1, 2 ≤ |l| ≤ m/2.

When α = 1 there are the solutions l = ±1 and hence µl = µ or µ−1. When α = 0
we have µl = 1.

Proposition E.6. Let µ be a root of unity. Suppose that µ 6= −1. Then the
diophantine equation

(1− µ)n = 2n−1(1 + µn)

in the unknown positive integer n has no solution unless n = 1.

Proof. From the equation 2n−1 is a divisor of (1− µ)n. It follows that 2 is a divisor
of (1 − µ)2 and therefore a divisor of 1 − µ2. Under the assumption that µ2 6= 1
we are in a similar situation as in the proof of Proposition E.3. The remaining case
µ = 1 gives no solutions either.
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[Gou97] Fernando Q. Gouvêa. p-adic Numbers. Springer-Verlag, Berlin, second
edition, 1997. An introduction.

162



BIBLIOGRAPHY

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York,
1977. Graduate Texts in Mathematics, No. 52.

[IS80] N. H. Ibragimov and A. B. Shabat. Evolution equations with a nontrivial
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5(4):18–27, 1971.

[ZS71] V. E. Zakharov and A. B. Shabat. Exact theory of two-dimensional
self-focusing and one-dimensional self-modulation of waves in nonlinear
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Möbius, cf. transformation

Newton’s binomial formula, 41
Noether, cf. theorem
non-archimedian, 106
noncommutative

equation, 7
noncommuting

mutually, 14, 121, 129
nonhomogeneous, 20, 28, 71, 143

equation, 144
invariant, 28, 143–145

nonlinear
injective, 11, 30–32, 37–39, 41, 43,

45, 47–49, 54, 57, 59, 68, 123,
124, 128, 147, 148

elimination, 150
lattices, 3

norm, 158
Novikov, 5, 43

Olver, 21
operator, 5, 15, 16, 21, 24, 27, 43, 123,

125, 131, 135, 137–139
adjoint, 135
coboundary, 14, 131, 140
conjugate, 135
cosymplectic, 14, 131, 141

differential, 5, 15, 16, 18, 28
Euler, 140
invariant, 138
Hamiltonian, 4
recursion, 5, 7, 14, 123, 131, 136, 139

conjugate, 136, 142
symplectic, 4, 5, 14, 131, 141

order, 16
order of a B-equation, 67

p-adic
analysis, 5, 8, 62
field, 107, 109
p-adic numbers, 13, 105, 106

canonical representation, 107
topology, 108
units, 107
valuation, 106

ring, 107
pairing, 134, 135, 140, 141
Pasta, 2
permutation, 42, 101, 102, 104

group, 52
Perring, 2
primitive n-th roots of unity, 97
prolongation, 16, 17, 21

quadratic terms, 54, 58–60, 85–99

ratios, 50, 65, 90, 91, 97–99, 103, 151–153
anharmonic, 51, 52, 98, 118

Rayleigh, 1
recurrence relation, 126–128
reducible, 55, 101
relatively l-prime, 31, 32, 44, 45, 47, 48,

55, 57, 59, 124, 147, 148
representation, 11, 24, 26, 28, 104, 129,

131–133
bigraded, 33
canonical, 107
N-graded, 30
parametric, 74

representative, 25
resolvent, 5

172



INDEX

resultant, 12, 14, 44, 45, 48, 54, 61, 73,
74, 111–113, 115–117, 149, 150

Riccati, cf. equation
roots of unity, 12, 58, 62–66, 77–79, 81,

88, 90, 92, 94, 96–99, 103, 104,
126, 151–153, 155–161

rule,
chain, 139
cosine, 52
Leibniz, 41, 137, 139

Sanders, 7, 8, 10, 14, 53, 63, 105, 106,
147

Sawada-Kotera equation, 60
scaling, 11, 20, 27, 32, 123

complex, 69, 79
Schrödinger, cf. equation
semisimple, 46
Shabat, cf. equation
singularity, 55–57, 102, 103
Skolem, cf. method
Skyrme, 2
solitary waves, 2
soliton, 2–4
spectrum, 3, 9, 13, 28, 85, 86, 93, 143

continuous 48, 95
stability, 1, 4
Sturm, cf. equation
Sylvester

criterion, 44, 150
matrix, 149

symbolic calculus, 5, 7,11, 12, 31, 32, 41,
42–46, 48, 69, 126

symmetrise, 10, 42, 43, 46
symmetry,

approach, 6–8
approximate, 45, 49, 128
classical, Lie point 5, 17
contact, 5
generalised, 4–8, 11, 13, 17, 22, 62,

105, 106, 113, 149
nonpolynomial, 10, 14, 121
trivial, 23

theorem,

implicit function, 11, 12, 14, 29, 31,
33, 37, 43, 44, 48, 49, 53, 54, 57,
59, 122, 126, 129, 147

Lech–Mahler, 8, 12, 14, 54, 58, 61,
75, 93, 96, 151

Noether, 5, 17
Toda, cf. chain
transformation,

anharmonic, 51, 86
infinitesimal, 17
linear, 14, 23, 36
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Integreerbare

Evolutievergelijkingen:

een Diophantische Aanpak

Samenvatting

Waar gaat dit proefschrift over?

Veel processen in de natuur kunnen worden beschreven met behulp van evolutie-
vergelijkingen. Kenmerkend voor een evolutievergelijking is dat de toestand op
tijdstip t in principe berekend kan worden wanneer deze gegeven is op tijdstip t0 < t.
De Korteweg-De Vries vergelijking is een mooi voorbeeld van zo’n evolutievergelijk-
ing:

ut = u3 + uu1 (KDV ).

Hierin is u een functie van x en t, ut de afgeleide van u naar t en ui de i-de afgeleide
van u naar x. De KDV-vergelijking werd al in de negentiende eeuw afgeleid en
beschrijft de beweging van lange golven in smalle en relatief ondiepe kanalen. In
zo’n kanaal kan het voorkomen dat een berg water zich over het oppervlak blijft
voortbewegen. Hier werd voor het eerst over geschreven door Russell die middels
experimenten aantoonde dat dergelijke golven elkaars vorm niet verstoren.

Halverwege de twintigste eeuw bleek de KDV-vergelijking een rol te spelen in
diverse andere takken van de natuurkunde. Men herondekte de gelokaliseerde en
stabiele oplossing, de zogenaamde ‘soliton’, en ging op zoek naar een verklaring
voor dit interessante fenomeen. Deze kwam in de vorm van behoudswetten. De
bekende behoudswetten, die van impuls en energie, bleken er slechts twee van de
oneindig vele te zijn. Dit leidde tot de ‘inverse scattering’ methode, een methode
waarmee o.a. de KDV vergelijking exact kon worden opgelost.

Een evolutievergelijking die exact opgelost kan worden, bijvoorbeeld door ‘in-
verse scattering’ of door ‘linearisatie’, wordt integreerbaar genoemd. Het blijkt
zo te zijn dat iedere integreerbare evolutievergelijking oneindig veel gegeneraliseerde
symmetrieën bezit. Voor de KDV vergelijking zijn deze gerelateerd aan haar be-
houdswetten door een stelling van Noether. Maar ook Burgers’ vergelijking, waar-
voor slechts één behoudswet geldt, heeft oneindig veel symmetieën. Dit proefschrift
gaat over het herkennen en classificeren van integreerbare evolutievergelijkingen met
betrekking tot het bestaan van gegeneraliseerde symmetrieën.
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Waar stoelt dit proefschrift op?

De volgende ontwikkelingen zijn van groot belang geweest voor het onderzoek dat
beschreven wordt in dit proefschrift.

1. Het vermoeden bestond dat wanneer een evolutievergelijking één symmetrie
heeft, ze er oneindig veel heeft. Dit werd gepreciseerd door Fokas in 1987.

Vermoeden van Fokas:

Als een scalaire vergelijking minstens één symmetrie bezit, dan bezit
ze er oneindig veel. Evenzo, als een vergelijking met n componenten
n symmetrieën heeft, dan heeft ze er oneindig veel.

2. Voor n = 1 werd dit vermoeden bevestigd in de klasse van λ-homogene scalaire
vergelijkingen (met λ ≥ 0):

ut = un + f(u, u1, . . . , un−1).

De classificatie van deze vergelijkingen met betrekking tot het bestaan van
symmetrieën werd uitgevoerd door Sanders en Wang in 1998. Zij was gebaseerd
op:

• de symbolische calculus die gëıntroduceerd werd in 1975 door Gel’fand
and Dikĭı

• een impliciete functiestelling, die laat zien dat onder bepaalde condities
het bestaan van één symmetrie integreerbaarheid impliceert.

Een bepaalde conditie in de impliciete functiestelling werd bewezen door F.
Beukers, die gebruik maakte van recente resultaten uit diophantische approx-
imatie theorie.

Voor λ > 0 werd een volledige lijst van tien integreerbare vergelijkingen verkre-
gen.

3. De vergelijking die in 1991 gegeven werd door Bakirov:
{

ut = 5u4 + v2

vt = v4

heeft een symmetrie van orde 6. De computerberekeningen van Bakirov lieten
zien dat er geen andere symmetrie bestaat van orde n < 53. Met behulp van
de p-adische methode van Skolem bewezen Beukers, Sanders en Wang in 1998
dat de vergelijking van Bakirov slechts één gegeneraliseerde symmetrie bezit.

4. Op basis van de stelling van Lech en Mahler werd een vermoeden geformuleerd
dat er binnen de klasse van vergelijkingen

{
ut = a1un + v2

vt = a2vn
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een eindig aantal integreerbare vergelijkingen bestaat. Dit bleek inderdaad het
geval. Gebruikmakend van een recent algoritme van Smyth, dat polynomiale
vergelijkingen p(x, y) = 0 oplost voor eenheidswortels x, y, werd de volledige
lijst verkregen door Beukers, Sanders en Wang in 2001.

5. De hierboven aangehaalde classificaties onderscheiden zich van andere, doordat
de orde van de te classificeren vergelijkingen niet vast gekozen werd.

Om een recent voorbeeld aan te halen: in 2000 classificeerde Foursov sym-
metrisch gekoppelde homogene derde orde vergelijkingen met twee componen-
ten u, v van gewicht 2. Interessant vond ik het vermoeden van Foursov dat de
vergelijking {

ut = u3 + 3uu1

vt = αu1v + uv1

alleen symmetrieën van een even gewicht heeft als α een negatief rationeel
getal is.

Waar draagt dit proefschrift aan bij?

De belangrijkste resultaten die ik behaalde tijdens mijn onderzoek zijn:

1. De classificatie van integreerbare B-vergelijkingen. Deze is te vinden in hoofd-
stuk 6. B-vergelijkingen zijn vergelijkingen van de vorm:

{
ut = a1un + K(v, v1, . . .)
vt = a2vn

waarbij K quadratisch is. De conditie voor het bestaan van oneindig veel
symmetrieën is equivalent met: er is een zekere r ∈ C zodanig dat

(a) a1, a2 en r voldoen aan
a1

a2

=
1 + rn

(1 + r)n
.

(b) de diophantische vergelijking

(1 + r)m(1 + r̄m) = (1 + r̄)m(1 + rm), r ∈ C

heeft oneindig veel oplossingen m inclusief m = n.

De introductie van ‘biunit coordinates’ maakte het mogelijk te bewijzen dat
er precies

n(n− 2)/4 indien n even,

(n + 1)(n− 3)/4 indien n oneven,

4 indien n = 5
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Waar draagt dit proefschrift aan bij?

niet-gedegenereerde n-de orde integreerbare B-vergelijkingen bestaan en dat
de ordes van hun symmetrieën gegeven worden door

m ≡ 1 mod n− 1 of m ≡ 0 mod n.

2. De diophantische benadering van integreerbaarheid. Door de conditie voor inte-
greerbaarheid te schrijven als een diophantische vergelijking voor de nulpunten
van G-functies kan het lineaire gedeelte van de vergelijking bepaald worden.
Deze benadering is zeer effectief en toepasbaar binnen een grote klasse van
vergelijkingen.

In hoofdstuk 5 kijken we vanuit deze benadering opnieuw naar de classifi-
catie van scalaire vergelijkingen. Het gebruik van de stelling van Lech and
Mahler maakt het mogelijk de integreerbare vergelijkingen te classificeren,
zonder daarbij gebruik te maken van diophantische approximatie theorie.

In Hoofdstuk 7 bepalen we het spectrum van integreerbare vergelijkingen in
twee componenten u, v met quadratische termen. Ook classificeren we het
cubische analogon van de klasse van B-vergelijkingen.

3. Het vermoeden van Fokas. In hoofdstuk 8 wordt bewezen dat de vergelijking

{
ut = 2r2u7 + 7(2r2 + 4r + 3)(v3v0 + (3− r)v2v1)
vt = (16r2 + 28r + 21)v7

,

waarin r3 + r2 − 1 = 0, precies twee symmetrieën heeft. Dit falsificeert het
vermoeden van Fokas.

Ondanks uitvoerige computer-algebräısche berekeningen zijn er geen andere
tegenvoorbeelden gevonden. Een nieuw vermoeden is dat het enige gehele
getal N > 2 waarvoor geldt:

er bestaan r, s ∈ C zodanig dat de diophantische vergelijking

(1 + rm)(1 + s)m = (1 + sm)(1 + r)m

precies N oplossingen m > 1 heeft.

het getal N = 3 is en dat in dit geval de enige oplossingen m = 7, 11, 29 zijn.

4. Het vermoeden van Foursov. In hoofdstuk 9 zien we dat het vermoeden van
Foursov juist is binnen de context van polynomiale symmetrieën. Echter,
als we vermenigvuldiging met vc (waar c ∈ C) toestaan, dan blijkt het voor
elke α ∈ C mogelijk om niet-commuterende hierarchieën van symmetrieën te
vinden.
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